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Abstract

Existing studies indicate that deep neural networks
(DNNs) can eventually memorize the label noise. We ob-
serve that the memorization strength of DNNs towards each
instance is different and can be represented by the con-
fidence value, which becomes larger and larger during
the training process. Based on this, we propose a Dy-
namic Instance-specific Selection and Correction method
(DISC) for learning from noisy labels (LNL). We first use
a two-view-based backbone for image classification, ob-
taining confidence for each image from two views. Then
we propose a dynamic threshold strategy for each instance,
based on the momentum of each instance’s memorization
strength in previous epochs to select and correct noisy la-
beled data. Benefiting from the dynamic threshold strategy
and two-view learning, we can effectively group each in-
stance into one of the three subsets (i.e., clean, hard, and
purified) based on the prediction consistency and discrep-
ancy by two views at each epoch. Finally, we employ differ-
ent regularization strategies to conquer subsets with differ-
ent degrees of label noise, improving the whole network’s
robustness. Comprehensive evaluations on three control-
lable and four real-world LNL benchmarks show that our
method outperforms the state-of-the-art (SOTA) methods
to leverage useful information in noisy data while allevi-
ating the pollution of label noise. Code is available at
https://github.com/JackYFL/DISC.

1. Introduction
Label noise is inevitable in image classification model

learning, especially for large-scale database annotations
through web-crawling [31,40], crowd-sourcing [52], or pre-
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Figure 1. An illustration of DNN’s increasing memorization
strength during network training. The class prototypes are weights
of the DNN classifier, and for simplicity, we only take a two-class
case as an example. (a) In the beginning, DNN first fits clean
data whose features are closer to class prototypes than noisy data,
which is more sparsely distributed in feature space. (b) As training
progresses, DNN begins to fit slightly noisy data, some of which
can also be classified to its labeled class with relatively high con-
fidence. (c) By the end of the training, the DNN has greatly in-
creased its memorization strength, and even extremely noisy data
can also be grouped into its labeled class with high confidence.

trained models [12], etc. Recent studies show that DNNs
are susceptible to label noise and could fit to the entire data
set [2, 55] including the noisy set. Meanwhile, researchers
found that DNNs have a memorization effect [2], i.e., the
learning process of DNNs follows a curriculum, in which
simple patterns are memorized first, followed by more diffi-
cult ones like data with noisy labels. Recent studies have
explored the use of memorization effect for LNL tasks,
with many of these approaches being "early-learning"-
based methods [1, 7, 11, 17, 23, 24, 29, 30, 32, 44, 53, 57, 58].
These methods leverage an early-stage DNN to improve the
model robustness and generalization ability.

Early-learning-based LNL methods can be divided into
three main directions: sample selection [7,17,23,24,29,53],
label correction [1,30,44,57] and regularization [11,32,37,
56, 58, 60]. Sample selection-based methods usually utilize
the early-stage DNN’s losses or confidence to select reliable
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Figure 2. An illustration of different threshold strategies, including
(a) the global threshold, (b) the class-wise threshold, and (c) the
proposed dynamic instance-specific threshold.

instances, which are utilized to update the network. Some
of these methods require a predefined threshold [24, 30] or
prior knowledge about the noise label rate [17, 53] to select
instances. Such a global predefined threshold, as shown in
Fig. 2 (a), is usually difficult to determine, and may require
prior knowledge about the noise label rate to avoid exces-
sive or insufficient noisy data selection, which will further
lead to over-fitting and confirmation bias issues [17]. La-
bel correction-based methods try to learn [44] or generate
pseudo-labels [30, 57] to replace the original noisy ones.
Many of these methods employ the semi-supervised learn-
ing (SSL) techniques to pseudo-label the noisy data, and
most of them use global (say MixMatch [3], FixMatch [39])
or class-wise threshold (say FlexMatch [54]) to recalibrate
labels. As shown in Fig. 2 (b), while a class-wise thresh-
old considers the fitting difficulty of different classes, it still
applies a uniform threshold for individual instances in each
class. This remains sub-optimum if we consider an example
of face images, in which profile face images are more dif-
ficult to fit (relatively lower classification confidence) than
frontal ones (relatively higher classification confidence) of
the same subject. Regularization-based methods aim to de-
sign robust loss functions [11, 32, 37, 58, 60, 61] or regular-
ization techniques such as augmentation [56] that can uti-
lize all instances to improve the model robustness against
label noise. While these methods work well on moderately
noisy data, they may have poor generalization ability under
extremely noisy data (see Table 1), since all instances are
utilized during the training process.

Based on the observation that the memorization strength
for individual instances increases during network training,
we argue that neither a global threshold nor a class-wise
threshold is optimum for LNL. Therefore, we propose a Dy-
namic Instance-specific Selection and Correction (DISC)
approach (see Fig. 3 (a)) for LNL. DISC leverages a dy-
namic instance-specific threshold strategy (Fig. 2 (c)) fol-
lowing a memorization curriculum to select reliable in-
stances and correct noisy labels. Each threshold is ob-
tained through the momentum of each instance’s memoriza-
tion strength in previous epochs. Such a dynamic threshold
strategy can determine a reasonable threshold for each in-
stance according to its memorization strength by the net-
work. Inspired by previous methods of RRL [30], AugDisc
[35] and FixMatch [39], DISC also adopts weak and strong

augmentations to produce two different views for image
classification via a shared-weight model. Unlike previous
methods, which use predictions from one view to select
reliable instances or generate pseudo-labels for unlabeled
data, DISC considers the consistency and discrepancy of
two views and divides the noisy data into reliable instances
(clean set), hard instances (hard set), and recalibrate noisy
labeled instances (purified set), reflecting different degrees
of label noise. By dividing the noisy data into three differ-
ent subsets, DISC can alleviate the contamination of noisy
labels to LNL model learning by conquering them via dif-
ferent regularization strategies. As a result, the method can
better make full use of the whole noisy dataset. The contri-
butions of this paper include:

• We observe the memorization strength of DNNs towards
individual instances can be represented by confidence
value, which increases along with training. We provide
evidence and experimental analyses to validate this claim.

• Based on the insight of memorization strength, we pro-
pose a simple yet effective dynamic instance-specific
threshold strategy of LNL that selects reliable instances
and recalibrates noisy labels following an easy to hard
curriculum.

• Additionally, we leverage the dynamic threshold strategy
to group noisy data into three subsets based on predictions
from two views generated from weak and strong augmen-
tations. We then adopt different regularization strategies
to handle individual subsets.

2. Related Work
Memorization of DNNs. Zhang et.al. [55] observe that

the capacity of DNNs is sufficient for memorizing the en-
tire data set. Arpit et. al. [2] propose that DNNs prioritize
learning sample patterns first. Furthermore, they also sug-
gest that the notions of the DNNs’ capacity are not likely to
explain DNNs’ memorization degree. Nevertheless, DNNs’
memorization degree remains to be studied. Towards the
goal of depicting the memorization degree of DNNs during
the training process, we propose the memorization strength
of DNNs defined by the confidence of each instance.

Learning from Noisy Labels. LNL can be roughly
categorized into two directions depending on whether or
not an additional clean dataset is used. Previous works
[20, 21, 28, 45, 46, 50] usually require an additional small
clean dataset to learn a robust model, while recent studies
focus on a more challenging scenario where only a noisy
dataset is provided. However, a majority of these methods
are co-training based [17, 29, 32, 34, 47, 53], which require
high computation and memory costs. Co-teaching [17] and
Co-teaching+ [53] select a fraction of small-loss instances
as clean set to teach the other peer network. However, the
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Figure 3. (a) The framework of DISC. DISC first employs a two-view-based network with shared weight for image classification, in which
two views are obtained via two diverse augmentations. Then, a dynamic instance-specific threshold strategy is designed by considering
both the discrepancy and consistency of two views’ predictions in previous epochs, which is used to divide the noisy data into three subsets,
i.e., clean set C, hard set H and purified set P . Finally, we adopt different regularization techniques to conquer different degrees of label
noise in C, H and mix set M(C ∪ H ∪ P), respectively. (b) An intuitive illustration of subset division by our dynamic instance-specific
threshold strategy. The subsets could be regarded as the intersection of two views and the given labels.

selection ratio is hard to set, because we couldn’t obtain the
actual noise rate in advance for the dataset in the wild. Di-
videmix [29] utilizes Gaussian Mixture Model (GMM) to
divide losses, but the loss distribution is not always Gaus-
sian based which may degrade the selection accuracy and
GMM also incurs additional computation cost. Since the
performance of DivideMix is remarkable, some works such
as AugDisc [35], UNICON [24], CC [59] are recently pro-
posed based on DivideMix. However, these methods only
divide the dataset into a clean and a noisy set, where the
clean set mainly contains easy instances that cannot pro-
vide additional discriminative features to improve perfor-
mance [1]. Compared with the above methods, DISC avoids
confirmation bias and fully exploits the entire noisy data via
a dynamic instance-specific threshold strategy and a more
delicate division of the noisy dataset. Furthermore, since
these methods use a co-training framework, the computa-
tion cost is much higher than our DISC (see Fig. 6).

Augmentation Techniques for LNL. Fixmatch [39]
reached great success in SSL, which utilizes two diverse
augmentations, i.e., a weak augmentation and a strong aug-
mentation such as AutoAugment [8] or RandAugment [9],
to perform pseudo-labeling. Some works in LNL [30, 35]
commence with this technique, while such works are still
rare. Similar to Fixmatch, AugDisc [35] decouples two
augmentations with one for analyzing loss, the other for
back propagation. RRL [30] utilizes two augmentations to
perform contrastive learning. Different from these works,
DISC treats two augmentations as two equivalent views,
and utilizes both two views to select reliable instances and
correct noisy labels.

3. Method
The overall framework of DISC is shown in Fig. 3 (a),

and the pseudo-code is presented in the Appendix. DISC
begins by applying weak and strong augmentations to a
noisy labeled image x, resulting in two augmented images

xw, xs. These two images are then fed into a two-view
learning network with shared weight (fθ) to obtain two pre-
diction confidences pw(c;x) and ps(c;x), where c is the
predicted class. DISC then utilizes the two-view confi-
dences to select reliable instances and correct noisy labels,
and group the noisy data into three delicate subsets, i.e.,
clean set, hard set, and purified set. Note that these subsets
are divided using the confidences of the previous training
epoch to better alleviate confirmation bias. Finally, different
regularization techniques are utilized to conquer individual
subsets. In this section, we first explain the memorization
strength of DNNs, and then introduce the dynamic thresh-
old strategy. Finally, we present our dynamic selection and
correction in detail.

3.1. Memorization Strength of DNNs

In a single-label image classification task, the memoriza-
tion of an instance by DNN refers to the maximum predic-
tion confidence of a given class or a confidence value larger
than a certain threshold. The confidence value is closely
related to DNNs’ memorization strength, i.e., as the con-
fidence increases, the strength for DNNs to memorize one
instance also increases. Therefore, we can define DNNs’
memorization strength for one instance as the confidence
value of a given class. We also notice that the memorization
strength of DNNs for given labels (even the noisy ones) gets
higher with increased training epochs (see Fig. 4).

Before diving into the explanations behind this phe-
nomenon, we need to make some definitions. Assume that
the feature extracted from an image by an encoder could
be denoted as f ∈ RD, where D indicates the dimension of
the feature. Let W ∈ RD×K denote the weights of a single-
layer linear classifier, where K indicates the total number of
classes. We can also regard W as class prototypes, and then
the prototype of the c-th class is W c ∈ RD. Therefore, the
similarity between feature fi = fθ(xi) ∈ RD and c-th class
prototype W c can be expressed as p(c;xi) = (W c)T fi,
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Figure 4. The prediction confidence distributions for given labels during training. The baseline model is PresNet-18 trained on CIFAR-10
with 40% asymmetric noise (actual noise rate 20%) for 200 epochs. It can be seen that the ratio of instances with high confidence increases
in the training process, which indicates that the memorization strength of DNNs to each instance gets stronger and stronger.

which also indicates the output logit of a linear classifier.
For softmax activation, the confidence of class c can be de-
noted as:

softmax(p(c;xi)) =
ep(c;xi)

K∑
c=1

ep(c;xi)

. (1)

Eq. (1) indicates that the confidence actually reflects the
similarity between a feature and a class prototype. As
mentioned above, confidence represents the memorization
strength of DNNs. Thus, the memorization strength of
DNNs towards all instances de facto reflects the density
of the class cluster. As the training progresses, the mem-
orization strength of DNNs for each instance gets higher
and each class cluster gets denser even for the noisy labeled
instances. Moreover, different clusters become more dis-
persed. We visualize the features using t-SNE in Appendix.

The overall training objective of DISC is:

L = LC + λhLH + LM, (2)

where λh is the hyper-parameter of LH to balance loss. We
will give the formation of each loss function in detail in the
following subsections.

3.2. Dynamic Instance-Specific Threshold

Given the classification confidences by the two-view net-
work, it is intuitive to separate the reliable data from the
noisy ones. As analyzed in Section 1, selection or correc-
tion methods based on a global-fixed threshold or class-wise
threshold can be sub-optimum. Therefore, we propose a
dynamic instance-specific threshold (DIST) strategy, which
can not only select reliable labels but also correct noisy la-
bels. Since the memorization strength of DNNs for indi-
vidual instances towards different labels gets stronger with
the increase of learning epochs, just like human beings, we
argue the curriculum for testing DNNs’ memorization for
given labels should increase accordingly. Therefore, we de-
fine the DIST as τ(t) for each instance xi:

τ(t) = λτ(t− 1) + (1− λ)p(t), τ(0) = 0, (3)

where t is the epoch index, p(t) = max(p(c;x)), c =
0, 1, ...,K−1, and λ is the layback ratio which controls the

delaying degree and threshold stability. Note that we cal-
culate τw(t) and τs(t) of both two views according to Eq.
(3). The basic rationale of τ(t) is that with the increasing
of historical confidences, the thresholds should also be in-
creased. However, the confidence of a single epoch may be
not stable, especially in the early training epochs. Thus, we
use the momentum maximum confidence of each instance,
computed based on all previous epochs, as the threshold
value.

To correct the noisy labels, we choose to use a higher
threshold for each instance. So, we add offset to τ(t):

τ ′(t) = max(τws(t) + σ, 0.99), (4)

where σ is a positive offset value. We set an upper bound of
0.99 to limit τ ′(t) value. τws(t) indicates the average value
of τw(t) and τs(t).

3.3. Dynamic Selection and Correction

Recent research has found that DNNs have a shortcut
learning effect [14, 15], i.e., DNNs may learn biased pat-
terns (such as background, texture and position, etc.) that
are not intrinsic cues for classifying images. This effect
can cause the model to overfit to the training set, especially
to noisy labeled data. To solve this problem, we propose to
use weak and strong augmentations to produce two different
views, which could provide diverse evidence for the model
to memorize data. In this paper, we assume both views have
the same importance, and treat them equally. Then we use
the confidences of two views and DIST (Sec. 3.2) to finely
divide the noisy data into three subsets (see Fig. 3 (b)), i.e.,
a clean set C and a hard set H which are obtained through
selecting reliable labels from noisy data, and a purified set
P based on the prediction consistency of two views. The
noise degrees in three subsets are different. As a result, we
can employ different regularization techniques (detailed be-
low) to conquer these subsets, which can better capitalize
on the information in them. This way, the model is expected
to memorize the labels with more essential image features.
Results show that DISC could suppress the label noise ef-
fectively via selection and correction (see Fig. 5).

Dynamic Instance Selection. Assume that the confi-
dence for the i-th instance on its given label could be de-
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Figure 5. The effect of DISC for noise suppression on CIFAR with 40 % instance noise. The size ratio of different subsets on (a) CIFAR-10
and (b) CIFAR-100. The overall training instances always keep at a high ratio. (c) The correction accuracy of pesudo-labels. DISC can
correct a vast majority of the noisy labels. (d) Label noise rate in M. DISC could progressively reduce the noise rate to a low ratio.

noted as p(yi;xi), where yi ∈ Y = {0, ...,K − 1}. Thus,
the confidences from weak and strong views for image xi

given label yi could be denoted as pw(yi;xi) and ps(yi;xi),
respectively. For an instance, if both confidences in two
views are both greater than τ(t), we can put it into C, i.e.,

C = {xi, yi|pw(yi;xi) > τw(t)}
∩ {xi, yi|ps(yi;xi) > τs(t)}. (5)

It means if an instance can be consistently memorized by
two views with high confidence, we regard it as clean.

Similarly, if only one of the two views’ confidences for
given classes is greater than τ(t), we can group the in-
stances into the hard set H:

H ={xi, yi|pw(yi;xi) > τw(t)}∪
{xi, yi|ps(yi;xi) > τs(t)} − C. (6)

We think the instances in H may be close to the decision
boundary, thus have the potential to improve DNN’s gener-
alization ability.

After obtaining C and H, we adopt different regulariza-
tion techniques when calculating the loss. For clean set C,
we utilize the conventional cross-entropy (CE) loss Lc for
both views:

LC = − 1

N

Nc∑
i=1

(log pw(yi;xi) + log ps(yi;xi)), (7)

where Nc denotes the size of C and N denotes the size of
the entire dataset. We use a scalar 1

N to resize the learning
rate, and give the basis of such a setting in the Appendix.

While mean absolute error (MAE) has been theoreti-
cally proved as a noise-robust loss under certain assump-
tions [16]. However, using MAE loss can cause hard op-
timization. CE loss is easy to optimize, but it is sen-
sitive to label noise. Theretofore, for H (size Nh), we
use a more robust regularization technique, i.e., general-
ized cross-entropy (GCE) loss [58] to handle its label noise.
GCE could be regarded as a general loss combining the ad-
vantages of MAE and CE:

LH =
1

N

Nh∑
i=1

(
1− pw(yi;xi)

q

q
+

1− ps(yi;xi)
q

q
), (8)

where q ∈ (0, 1]. Following [58], we also set q = 0.7. It can
be proved that GCE is equivalent to CE using L’Hôpital’s
rule when q → 0, and becomes MAE when q = 1 [58].

Dynamic Instance Correction. In order to exploit use-
ful information from the remaining noisy data after the se-
lection of C and H, we perform dynamic instance correc-
tion, which can also be regarded as pseudo-labeling. We
fuse the confidences from two views as follows:

pws(c;xi) = γ ·pw(c;xi)+(1−γ) ·ps(c;xi),∀c ∈ Y, (9)

where γ is fusion coefficient, and we set γ = 0.5. Then,
we use the maximum value of pws(c;xi) rather than the
confidence of given classes to obtain a purified set P ,

P = {xi, ŷc = argmax
c

pws(c;xi)|max
c

pws(c;xi) > τ ′(t),

∀c ∈ Y} − {C ∪ H}, (10)

where τ ′(t), which is computed with Eq. 4, gives the dy-
namic threshold used for correction.

It is prone to induce confirmation bias if we directly
use loss using purified set P for supervision. Inspired by
Mixup [56] which is an effective regularization technique
dealing with label noise, we perform Mixup on the mix set
M consisting of C, H, P:

M = {C ∪ H ∪ P}. (11)

Then, the Mixup for image and label in M can be denoted
as x̃i = λxi+(1−λ)xm(i), ỹi = λyi+(1−λ)ym(i), λ ∼
Beta(α, α), where x̃i and ỹi are linearly interpolated image
and label (one-hot encoding) between index i and another
random index m(i) in M (size Nm). Then, (xi, yi) ∈ M
are included in the network training with a binary cross-
entropy loss (BCE):

Lbce(p(c;xi),yi) = −
C∑

c=1

[yic log p(c;xi)+

(1− yic) log(1− p(c;xi))]. (12)

Then, we can perform Mixup on the mix set M:

LM =
1

N

Nm∑
i=1

[Lbce(pw(c; x̃
w
i ), ỹ

w
i )+Lbce(ps(c; x̃

s
i ), ỹ

s
i )].

(13)
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Table 1. Comparison with the SOTA methods on CIFAR-10 and CIFAR-100 with IDN. The results with * are implemented by us, and all
the other results are directly from [59].

Dataset CIFAR-10 CIFAR-100
Noise type Inst. 20% Inst. 40% Inst. 60% Inst. 20% Inst. 40% Inst. 60%

CE* 83.93 ± 0.15 67.64 ± 0.26 43.83 ± 0.33 57.35 ± 0.08 43.17 ± 0.15 24.42 ± 0.16
Forward T [36] 87.22 ± 1.60 79.37 ± 2.72 66.56 ± 4.90 58.19 ± 1.37 42.80 ± 1.01 27.91 ± 3.35
DMI [36] 88.57 ± 0.60 82.82 ± 1.49 69.94 ± 1.34 57.90 ± 1.21 42.70 ± 0.92 26.96 ± 2.08
Mixup* [56] 87.71 ± 0.66 82.65 ± 0.38 58.59 ± 0.58 46.31 ± 0.25 45.14 ± 0.31 23.77 ± 0.26
GCE* [58] 89.80 ± 0.12 78.95 ± 0.15 60.76 ± 3.08 58.01 ± 0.26 45.69 ± 0.14 35.08 ± 0.23
Co-teaching [17] 88.87 ± 0.24 73.00 ± 1.24 62.51 ± 1.98 43.30 ± 0.39 23.21 ± 0.57 12.58 ± 0.58
Co-teaching+ [53] 89.80 ± 0.28 73.78 ± 1.39 59.22 ± 6.34 41.71 ± 0.78 24.45 ± 0.71 12.58 ± 0.58
JoCoR [47] 88.78 ± 0.15 71.64 ± 3.09 63.46 ± 1.58 43.66 ± 1.32 23.95 ± 0.44 13.16 ± 0.91
Reweight-R [49] 90.04 ± 0.46 84.11 ± 2.47 72.18 ± 2.47 58.00 ± 0.36 43.83 ± 8.42 36.07 ± 9.73
Peer Loss [33] 89.12 ± 0.76 83.26 ± 0.42 74.53 ± 1.22 61.16 ± 0.64 47.23 ± 1.23 31.71 ± 2.06
DivideMix [29] 93.33 ± 0.14 95.07 ± 0.11 85.50 ± 0.71 79.04 ± 0.21 76.08 ± 0.35 46.72 ± 1.32
CORSES2 [7] 91.14 ± 0.46 83.67 ± 1.29 77.68 ± 2.24 66.47 ± 0.45 58.99 ± 1.49 38.55 ± 3.25
CAL [62] 92.01 ± 0.12 84.96 ± 1.25 79.82 ± 2.56 69.11 ± 0.46 63.17 ± 1.40 43.58 ± 3.30
CC [59] 93.68 ± 0.12 94.97 ± 0.09 94.95 ± 0.11 79.61 ± 0.19 76.58 ± 0.25 59.40 ± 0.46
DISC (ours) 96.48 ± 0.04 95.94 ± 0.04 95.05 ± 0.05 80.12 ± 0.13 78.44 ± 0.19 69.57 ± 0.14

Table 2. Comparison with the SOTA methods on Tiny ImageNet
with sym. and asym. noise with the highest (Best) and the average
(Avg.) test accuracy (%) over the last 10 epochs. The results of all
SOTA methods are directly from [37].

Noise Sym. 0% Sym. 20% Sym. 50% Asym. 45%

Methods Avg. Best Avg. Best Avg. Best Avg. Best

Standard 56.7 57.4 35.6 35.8 19.6 19.8 26.2 26.3
Decoupling [34] - - 36.3 37.0 22.6 22.8 26.1 26.6
F-Correction [36] - - - - 32.8 33.1 0.6 0.67
MentorNet [23] - - - - 35.5 35.8 26.2 26.6
Co-teaching+ [53] 52.1 52.4 47.7 48.2 41.2 41.8 26.5 26.9
M-Correction [1] 57.2 57.7 56.6 57.2 51.3 51.6 24.1 24.8
NCT [37] 61.5 62.4 57.2 58.2 47.4 47.8 42.4 43.0
UNICON [24] 62.7 63.1 58.4 59.2 52.4 52.7 - -
DISC (Ours) 68.2 68.5 67.5 67.9 63.9 64.3 52.8 53.6

4. Experiments
In this section, we evaluate the effectiveness of DISC

on benchmarks with controllable label noise, including dif-
ferent levels of noises. Then, we perform experiments on
benchmarks with real-world label noise. Finally, we delin-
eate ablation studies to verify each component. All the ex-
periments are implemented on one GeForce RTX3090 GPU
and PyTorch 1.8.0.

4.1. Controllable Noise Benchmarks

Dataset. We validate the proposed DISC on CIFAR-
10/100 [25] with instance-dependent noise (IDN) [48], and
Tiny-ImageNet [26] with two commonly used label noise:
symmetric (sym.) noise and asymmetric (asym.) noise. Ex-
isting controllable label noise contain two types according
to the dependency of data features and class labels [13, 41],
i.e., instance-independent noise (including sym. and asym.
noise) and IDN. IDN [48] is obtained by setting a random
noise rate for each instance following truncated Gaussian
distribution, and the noise rate of each class is set randomly
(see the Appendix for more details). Following [59,62], we
also adopt noise rates between 20% and 60% on CIFAR-10

and CIFAR-100. Sym. (or uniform noise) noise is gen-
erated by uniformly flipping a percentage of the original
labels into all possible labels [29]. Asym. noise is gen-
erated by only flipping a pair of neighbor classes or con-
fusing classes with a fixed probability. Following previous
methods [24, 37], we perform experiments on three differ-
ent noise rates ρ ∈ {0%, 20%, 50%} for sym. noise and
ρ = 45% for asym. noise on Tiny-ImageNet. We also pro-
vide experiments on CIFAR-10/100 with sym. and asym.
noise in Appendix.

Experimental setup. We use PresNet-34 [19] and
PresNet-18 as a backbone, and train the model for 200
epochs on CIFAR and Tiny-ImageNet, respectively. We use
an SGD optimizer with a momentum of 0.9, a weight decay
of 0.001, and a batch size of 128. The initial learning rate
is set as 0.1 with decaying by a factor of 0.1 in epochs 80
and 160, respectively. We use random cropping and hori-
zontal flipping as weak augmentation, and adopt RandAug-
ment [9] (n = 2,m = 10) as strong augmentation. Other
training details about hyper-parameters settings of DISC are
detailed in Appendix.

Comparison with SOTA methods. Tables 1 and 2 show
the results on CIFAR and Tiny-ImageNet, respectively, in
which DISC is compared with several baselines.

From Table 1, we can see that DISC outperforms other
methods across all the label noise settings on CIFAR. Re-
sults show that DISC can handle more challenging noise
rates. For instance, DISC improves over 10% on CIFAR-
100 with 60% instance noises compared with CC. More-
over, since regularization-based methods (DMI, GCE, Peer
loss, Mixup) utilize all the instances during training, they
are more susceptible to heavy label noise.

Results of Table 2 show that DISC outperforms all the
other methods by a large margin. Although some methods
show some robustness to label noise, they may harm the per-
formance without label noise (0%). By contrast, our method
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Table 3. Comparison with the SOTA methods on Animals-10N.
The results with * are implemented by us, and other results are
directly from their original papers.

Method Accuracy (%)

CE [11] 79.4 ± 0.14
GCE* (2018) [58] 81.5± 0.08
SELFIE (2019) [40] 81.8 ± 0.09
Mixup* (2017) [56] 82.7 ± 0.03
Co-learning (2021) [43] 83.0
PLC (2021) [57] 83.4 ± 0.43
Nested Co-teaching (2021) [6] 84.1 ± 0.1
GJS (2021) [11] 84.2 ± 0.07
DISC (ours) 87.1 ± 0.15

Table 4. Comparison with the SOTA methods on Food-101. The
results with * are implemented by us, and the other results are
directly from their original papers.

Method Accuracy (%)

CE [11] 81.67
CleanNet (2018) [28] 83.95
GCE* (2018) [58] 85.83
PLC (2021) [57] 83.4
GJS (2021) [11] 86.56
Mixup* (2017) [56] 87.34
Co-learning (2021) [43] 87.57
DISC (ours) 89.02

still performs well when the noise rate is 0. In addition,
DISC is more robust to label noise compared with other
methods such as UNICON. DISC’s test accuracy drops less
than 5% when adding 50% sym. noise, while UNICON
drops more than 10% in the same situation.

4.2. Real-world Noise Benchmarks

Dataset. WebVision1.0 [31] is an in-the-wild bench-
mark with more than 2.4 million instances where images
and annotations are obtained through Google and Flickr
using 1000 classes from ImageNet ILSVRC2012 as query
words [10]. Following [5], we also use a subset of We-
bVision which contains the first 50 classes as the training
set, and test on both WebVision and ILSVRC2012 vali-
dation set. Food-101 [4] is a benchmark containing 101
food categories. It consists of 75,000 noisy labeled train-
ing images and 25,000 manually annotated testing images.
Animal-10N [40] is a web-crawled benchmark with 5 pairs
of confusing animals, containing 50,000 training images
and 5,000 testing images. Clothing1M [50] is a large-scale
crawled clothing noisy dataset with 1 million training im-
ages and 10,000 testing images, which are obtained from
several online shopping websites. There are 14 classes in
Clothing1M and the noise rate is about 38.5%.

Experimental setup. Following [5, 40], for Animals-
10N and WebVision, we use VGG-19 [38] (not pretrained
using ImageNet) and Inception-ResNetV2 [42] (not pre-
trained using ImageNet) as the backbone. Following [29,
57], for Food101N and Clothing1M, we use ResNet-50 [18]
(pretrained on ImageNet) as the backbone. The training
epochs for Animal-10N are 120, and the epochs are 100

Table 5. Comparison with the SOTA methods on WebVision. The
results of all SOTA methods are directly from their original papers.

Dataset WebVision ILSVRC12

Accuracy (%) top1 top5 top1 top5

F-correction (2017) [36] 61.12 82.68 57.36 82.36
Decoupling (2017) [34] 62.54 84.74 58.26 82.26
D2L (2019) [27] 62.68 84.00 57.80 81.36
MentorNet [23] 63.00 81.40 57.80 79.92
Co-teaching (2018) [17] 63.58 85.20 61.48 84.70
INCV (2019) [5] 65.24 85.34 61.60 84.98
MentorMix (2020) [22] 76.0 90.2 72.9 91.1
ELR (2020) [32] 76.26 91.26 68.7 87.8
DivideMix (2020) [29] 77.32 91.64 75.20 90.84
ELR+ (2020) [32] 77.78 91.68 70.29 89.76
RRL (2021) [30] 77.8 91.3 74.4 90.9
GJS (2021) [11] 77.99 90.62 74.33 90.33
CC (2022) [59] 79.36 93.64 76.08 93.86
DISC (ours) 80.28 92.28 77.44 92.28

for the others. SGD optimizer is used with initial learning
rates of 0.05, 0.01, 0.2, 0.1 for Animals-10N (weight decay
5e-4), Food-101 (weight decay 5e-4), WebVision (weight
decay 1e-4) and Clothing1M (weight decay 1e-3), respec-
tively. The batch size is set to 64 for Animals-10N, and 32
for the others. More training details are given in Appendix.

Comparison with SOTA methods. The results on
Animals-10N, Food-101, WebVision and Clothing1M are
presented on Tables 3, 4, 5 and 6, respectively. For Cloth-
ing1M, we run the open-sourced codes, i.e., DivideMix
[29], ELR+ [32], AugDesc [35] and CC [59], using the
same random seed as our method. Since all these meth-
ods are based on DivideMix, we also use our DIST on the
standard DivideMix to replace the GMM division for fair
comparison.

The results in Tables 3, 4, 5 show that DISC outper-
forms the baseline methods on Animals-10N, Food-101N
and WebVision. Note that DISC only requires a single net-
work, while some of these methods need two networks, e.g.,
Decoupling, Co-teaching, nested Co-teaching, ELR+, Di-
videMix and CC, which indicates that DISC is superior in
computation cost (the time comparison with several SOTA
methods could be found in Fig. 6). From Table 5, we can
see that the performance of DISC on ILSVRC12 is similar
to that on WebVision, because the two views from weak and
strong augmentations could reduce the shortcut learning ef-
fect that leads to overfitting. These results also reflect the
strong robustness and generalization ability of DISC.

The results in Table 6 show that DIST can improve per-
formance when combined with DivideMix. However, we
notice there exist label noise in the test set of Clothing1M
which means the results of individual methods on the test
sets of Clothing1M may be not reliable enough, and we pro-
vide a detailed analysis of the failed cases on Clothing1M
test set, which can support our argument to some extent (see
the details in Appendix).
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Table 6. Comparison with the SOTA methods on Clothing1M. The
results with * are reimplemented by us, and the others are directly
from the original paper.

Method Accuracy (%)

CE 68.94
Co-teaching (2018) [17] 69.21
JoCoR (2018) [47] 70.30
DMI (2019) [51] 72.46
DivideMix* (2019) [29] 74.45
ELR+* (2020) [32] 74.39
GJS (2021) [11] 71.64
CAL (2021) [62] 74.17
AugDesc* (2021) [35] 74.33
CC* (2022) [59] 74.54

DISC (ours) 73.72
DIST+DivideMix 74.79

Table 7. Ablation study on CIFAR-10/100 under IDN 20%, 40%
and 60%.

Modules CIFAR-10 CIFAR-100
Two views DIST H M Inst. 20% Inst. 40% Inst. 20% Inst. 40%

83.93 67.63 53.35 43.16
✓ 85.62 70.09 66.87 52.42

✓ 92.81 88.85 74.11 70.11
✓ ✓ 94.44 92.80 76.39 72.41
✓ ✓ ✓ 94.52 92.82 76.45 72.51
✓ ✓ ✓ 96.31 95.74 79.88 78.29
✓ ✓ ✓ ✓ 96.48 95.94 80.12 78.44

Table 8. Classification accuracies (%) on CIFAR-10 and CIFAR-
100 using different selection methods over the last 10 epochs.

Dataset CIFAR-10 CIFAR-100
Noise type Inst. 20% Inst. 40% Inst. 60% Inst. 20% Inst. 40% Inst. 60%

Small-losses [17] 90.83 84.81 21.47 71.82 63.89 22.56
GMM [29] 92.78 85.12 48.81 72.91 30.73 11.19
Fixed thres. 0.5 [30] 84.25 60.53 20.85 61.37 45.40 14.78
DIST 92.81 88.85 80.66 74.11 70.11 60.07

Table 9. Classification accuracies (%) on CIFAR-10 and CIFAR-
100 using one or two augmented views over the last 10 epochs. W
and S denote weak and strong augmentation, respectively.

Dataset CIFAR-10 CIFAR-100
Noise type Inst. 20% Inst. 40% Inst. 60% Inst. 20% Inst. 40% Inst. 60%

DISC-W 95.73 94.32 88.37 78.18 75.21 66.88
DISC-WW 96.20 94.47 93.65 79.24 77.67 68.85
DISC-WS 96.48 95.94 94.86 80.12 78.44 69.57

4.3. Ablation Study

We add the key modules of our DISC to the baseline
model one by one to investigate their effectiveness. The
results are shown in Tables 7, 8 and 9. Additional compar-
isons can be found in Appendix.

The effect of DIST. Experiments in Table 7 demonstrate
that the performance of the baseline model improves by a
large margin after adding DIST τ(t), especially for CIFAR-
100. We also provide the comparison of DIST and other
instance selection methods in Table 8, where all the results
are reimplemented using original selection methods with-
out other techniques. The small-losses method [17] is not
robust enough when facing extreme label noise. GMM [29]
performs well on CIFAR-10, but not on CIFAR-100 with
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Figure 6. Training and testing time profiling with PresNet-34
backbone and RTX 3090 GPU on CIFAR-10 with 20% inst. noise
in one epoch.

a large noise ratio. Fixed threshold method is suscepti-
ble to label noise. The success of DIST attributes to three
folds. First, it sets a dynamic threshold according to the
memorization strength of DNN. Second, it sets a reason-
able threshold for each instance. Third, it uses the confi-
dence from the previous epoch rather than the current one,
which could better reduce confirmation bias.

The effect of two views. Two views could provide dif-
ferent clues for dividing the noisy set, and prevent overfit-
ting (see Table 7). We also probe into the effect of different
views in Table 9. Results show that using two-view is nec-
essary especially when label noise is heavy, and the results
will be improved further if two views are diverse.

The effect of different subsets. To better exploit the
useful information in noisy labeled data, we select and cor-
rect noisy data to obtain clean set C, hard set H and purified
set P . From Table 7, we can see that the hard set H is ben-
eficial since the hard instances mainly lie in the decision
boundary which could enhance the representative ability of
DNNs. Since the mix set is much cleaner compared with the
original noise set (see Fig. 5 (c)), the mixup regularization
could handle these instances better.

4.4. Limitations

DISC corrects the noisy labels based on the confidences
of both two views, which may also induce confirmation
bias, since high-confidence instances may be the easy ones
with noisy labels rather than the clean ones. Moreover, al-
though DIST could lessen the class imbalanced problem
to some extent, extremely imbalanced data distribution re-
mains a big challenge.

5. Conclusion
In this paper, we reveal that the memorization strength

of DNNs towards individual instances (no matter clean or
noisy one) could be reflected by confidences, which usually
become higher along with training. Based on this, we pro-
pose a Dynamic Instance-specific Selection and Correction
method (DISC) for LNL. DISC is able to set a reasonable
threshold for each instance and delicately divide the noisy
data into different subsets, which can more effectively sup-
press the label noise during classification model learning.
Experiments verify the effectiveness of our method.
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