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Figure 1. Recent methods for synthesizing novel views from monocular videos of dynamic scenes–like HyperNeRF [50] and NSFF [35]–

struggle to render high-quality views from long videos featuring complex camera and scene motion. We present a new approach that

addresses these limitations, illustrated above via an application to 6DoF video stabilization, where we apply our approach and prior methods

on a 30-second, shaky video clip, and compare novel views rendered along a smoothed camera path (left). On a dynamic scenes dataset

(right) [75], our approach significantly improves rendering fidelity, as indicated by synthesized images and LPIPS errors computed on pixels

corresponding to moving objects (yellow numbers). Please see the supplementary video for full results.

Abstract

We address the problem of synthesizing novel views from

a monocular video depicting a complex dynamic scene. State-

of-the-art methods based on temporally varying Neural Ra-

diance Fields (aka dynamic NeRFs) have shown impressive

results on this task. However, for long videos with com-

plex object motions and uncontrolled camera trajectories,

these methods can produce blurry or inaccurate renderings,

hampering their use in real-world applications. Instead of

encoding the entire dynamic scene within the weights of

MLPs, we present a new approach that addresses these lim-

itations by adopting a volumetric image-based rendering

framework that synthesizes new viewpoints by aggregating

features from nearby views in a scene motion–aware manner.

Our system retains the advantages of prior methods in its

ability to model complex scenes and view-dependent effects,

but also enables synthesizing photo-realistic novel views

from long videos featuring complex scene dynamics with

unconstrained camera trajectories. We demonstrate signifi-

cant improvements over state-of-the-art methods on dynamic

scene datasets, and also apply our approach to in-the-wild

videos with challenging camera and object motion, where

prior methods fail to produce high-quality renderings.

1. Introduction

Computer vision methods can now produce free-

viewpoint renderings of static 3D scenes with spectacular

quality. What about moving scenes, like those featuring peo-

ple or pets? Novel view synthesis from a monocular video of

a dynamic scene is a much more challenging dynamic scene

reconstruction problem. Recent work has made progress

towards synthesizing novel views in both space and time,

thanks to new time-varying neural volumetric representa-

tions like HyperNeRF [50] and Neural Scene Flow Fields

(NSFF) [35], which encode spatiotemporally varying scene

content volumetrically within a coordinate-based multi-layer

perceptron (MLP).

However, these dynamic NeRF methods have limitations
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that prevent their application to casual, in-the-wild videos.

Local scene flow–based methods like NSFF struggle to

scale to longer input videos captured with unconstrained

camera motions: the NSFF paper only claims good perfor-

mance for 1-second, forward-facing videos [35]. Methods

like HyperNeRF that construct a canonical model are mostly

constrained to object-centric scenes with controlled camera

paths, and can fail on scenes with complex object motion.

In this work, we present a new approach that is scalable to

dynamic videos captured with 1) long time duration, 2) un-

bounded scenes, 3) uncontrolled camera trajectories, and 4)

fast and complex object motion. Our approach retains the ad-

vantages of volumetric scene representations that can model

intricate scene geometry with view-dependent effects, while

significantly improving rendering fidelity for both static and

dynamic scene content compared to recent methods [35, 50],

as illustrated in Fig. 1.

We take inspiration from recent methods for rendering

static scenes that synthesize novel images by aggregating

local image features from nearby views along epipolar

lines [39, 64, 70]. However, scenes that are in motion vi-

olate the epipolar constraints assumed by those methods. We

instead propose to aggregate multi-view image features in

scene motion–adjusted ray space, which allows us to cor-

rectly reason about spatio-temporally varying geometry and

appearance.

We also encountered many efficiency and robustness chal-

lenges in scaling up aggregation-based methods to dynamic

scenes. To efficiently model scene motion across multiple

views, we model this motion using motion trajectory fields

that span multiple frames, represented with learned basis

functions. Furthermore, to achieve temporal coherence in

our dynamic scene reconstruction, we introduce a new tem-

poral photometric loss that operates in motion-adjusted ray

space. Finally, to improve the quality of novel views, we pro-

pose to factor the scene into static and dynamic components

through a new IBR-based motion segmentation technique

within a Bayesian learning framework.

On two dynamic scene benchmarks, we show that our

approach can render highly detailed scene content and sig-

nificantly improves upon the state-of-the-art, leading to an

average reduction in LPIPS errors by over 50% both across

entire scenes, as well as on regions corresponding to dynamic

objects. We also show that our method can be applied to in-

the-wild videos with long duration, complex scene motion,

and uncontrolled camera trajectories, where prior state-of-

the-art methods fail to produce high quality renderings. We

hope that our work advances the applicability of dynamic

view synthesis methods to real-world videos.

2. Related Work

Novel view synthesis. Classic image-based rendering

(IBR) methods synthesize novel views by integrating pixel

information from input images [58], and can be categorized

according to their dependence on explicit geometry. Light

field or lumigraph rendering methods [9, 21, 26, 32] generate

new views by filtering and interpolating sampled rays, with-

out use of explicit geometric models. To handle sparser input

views, many approaches [7, 14, 18, 23, 24, 26, 30, 52, 54, 55]

leverage pre-computed proxy geometry such as depth maps

or meshes to render novel views.

Recently, neural representations have demonstrated high-

quality novel view synthesis [12, 17, 38, 40, 46, 48, 59–62,

72, 81]. In particular, Neural Radiance Fields (NeRF) [46]

achieves an unprecedented level of fidelity by encoding con-

tinuous scene radiance fields within multi-layer perceptrons

(MLPs). Among all methods building on NeRF, IBRNet [70]

is the most relevant to our work. IBRNet combines classical

IBR techniques with volume rendering to produce a general-

ized IBR module that can render high-quality views without

per-scene optimization. Our work extends this kind of volu-

metric IBR framework designed for static scenes [11, 64, 70]

to more challenging dynamic scenes. Note that our focus is

on synthesizing higher-quality novel views for long videos

with complex camera and object motion, rather than on gen-

eralization across scenes.

Dynamic scene view synthesis. Our work is related to ge-

ometric reconstruction of dynamic scenes from RGBD [5,

15, 25, 47, 68, 83] or monocular videos [31, 44, 78, 80]. How-

ever, depth- or mesh-based representations struggle to model

complex geometry and view-dependent effects.

Most prior work on novel view synthesis for dynamic

scenes requires multiple synchronized input videos [1, 3,

6, 27, 33, 63, 69, 76, 82], limiting their real-world applica-

bility. Some methods [8, 13, 22, 51, 71] use domain knowl-

edge such as template models to achieve high-quality re-

sults, but are restricted to specific categories [41, 56]. More

recently, many works propose to synthesize novel views

of dynamic scenes from a single camera. Yoon et al. [75]

render novel views through explicit warping using depth

maps obtained via single-view depth and multi-view stereo.

However, this method fails to model complex scene geom-

etry and to fill in realistic and consistent content at disoc-

clusions. With advances in neural rendering, NeRF-based

dynamic view synthesis methods have shown state-of-the-

art results [16, 35, 53, 66, 74]. Some approaches, such as

Nerfies [49] and HyperNeRF [50], represent scenes using a

deformation field mapping each local observation to a canoni-

cal scene representation. These deformations are conditioned

on time [53] or a per-frame latent code [49, 50, 66], and are

parameterized as translations [53, 66] or rigid body motion

fields [49,50]. These methods can handle long videos, but are

mostly limited to object-centric scenes with relatively small

object motion and controlled camera paths. Other methods

represent scenes as time-varying NeRFs [19, 20, 35, 67, 74].

In particular, NSFF uses neural scene flow fields that can
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Figure 2. Rendering via motion-adjusted multi-view feature ag-

gregation. Given a sampled location x at time i along a target ray

r, we estimate its motion trajectory, which determines the 3D cor-

respondence of x at nearby time j ∈ N (i), denoted xi→j . Each

warped point is then projected into its corresponding source view.

Image features fj extracted along the projected curves are aggre-

gated and fed to the ray transformer with time embedding γ(i),
producing per-sample color and density (ci, σi). The final pixel

color Ĉi is then synthesized by volume rendering (ci, σi) along r.

capture fast and complex 3D scene motion for in-the-wild

videos [35]. However, this method only works well for short

(1-2 second), forward-facing videos.

3. Dynamic Image-Based Rendering

Given a monocular video of a dynamic scene with

frames (I1, I2, . . . , IN ) and known camera parameters

(P1,P2, . . . ,PN ), our goal is to synthesize a novel view-

point at any desired time within the video. Like many other

approaches, we train per-video, first optimizing a model to

reconstruct the input frames, then using this model to render

novel views.

Rather than encoding 3D color and density directly in

the weights of an MLP as in recent dynamic NeRF methods,

we integrate classical IBR ideas into a volumetric rendering

framework. Compared to explicit surfaces, volumetric repre-

sentations can more readily model complex scene geometry

with view-dependent effects.

The following sections introduce our methods for scene-

motion-adjusted multi-view feature aggregation (Sec. 3.1),

and enforcing temporal consistency via cross-time rendering

in motion-adjusted ray space (Sec. 3.2). Our full system

combines a static model and a dynamic model to produce a

color at each pixel. Accurate scene factorization is achieved

via segmentation masks derived from a separately trained

motion segmentation module within a Bayesian learning

framework (Sec. 3.3).

3.1. Motionadjusted feature aggregation

We synthesize new views by aggregating features ex-

tracted from temporally nearby source views. To render an

image at time i, we first identify source views Ij within a

temporal radius r frames of i, j ∈ N (i) = [i− r, i+ r]. For

each source view, we extract a 2D feature map Fi through a

shared convolutional encoder network to form an input tuple

{Ij ,Pj , Fj}.

To predict the color and density of each point sampled

along a target ray r, we must aggregate source view features

while accounting for scene motion. For a static scene, points

along a target ray will lie along a corresponding epipolar

line in a neighboring source view, hence we can aggregate

potential correspondences by simply sampling along neigh-

boring epipolar lines [64, 70]. However, moving scene ele-

ments violate epipolar constraints, leading to inconsistent

feature aggregation if motion is not accounted for. Hence,

we perform motion-adjusted feature aggregation, as shown

in Fig. 3. To determine correspondence in dynamic scenes,

one straightforward idea is to estimate a scene flow field via

an MLP [35] to determine a given point’s motion-adjusted

3D location at a nearby time. However, this strategy is com-

putational infeasible in a volumetric IBR framework due to

recursive unrolling of the MLPs.

Motion trajectory fields. Instead, we represent scene mo-

tion using motion trajectory fields described in terms of

learned basis functions. For a given 3D point x along target

ray r at time i, we encode its trajectory coefficients with an

MLP GMT:

{φl
i(x)}

L
l=1 = GMT (γ(x), γ(i)) , (1)

where φl
i ∈ R3 are basis coefficients (with separate coef-

ficients for x, y, and z, using the motion basis described

below) and γ denotes positional encoding. We choose L = 6
bases and 16 linearly increasing frequencies for the encoding

γ, based on the assumption that scene motion tends to be

low frequency [80].

We also introduce a global learnable motion basis

{hl
i}

L
l=1, h

l
i ∈ R, spanning every time step i of the input

video, which is optimized jointly with the MLP. The motion

trajectory of x is then defined as Γx,i(j) =
∑L

l=1 h
l
jφ

l
i(x),

and thus, the relative displacement between x and its 3D

correspondence xi→j at time j is computed as

∆x,i(j) = Γx,i(j)− Γx,i(i). (2)

With this motion trajectory representation, finding 3D corre-

spondences for a query point x in neighboring views requires

just a single MLP query, allowing efficient multi-view fea-

ture aggregation within our volume rendering framework.

We initialize the basis {hl
i}

L
l=1 with the DCT basis as pro-

posed by Wang et al. [67], but fine-tune it along with other

components during optimization, since we observe that a

fixed DCT basis can fail to model a wide range of real-world

motions (see third column of Fig. 4).

Using the estimated motion trajectory of x at time i, we

denote x’s corresponding 3D point at time j as xi→j =
x + ∆x,i(j). We project each warped point xi→j into its

source view Ij using camera parameters Pj , and extract

color and feature vector fj at the projected 2D pixel location.
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Figure 3. Temporal consistency via cross-time rendering. To en-

force temporal consistency in a dynamic reconstruction, we render

each frame Ii using the scene model from a nearby time j, which

we call cross-time rendering. A ray r from image i is instead ren-

dered using a curved ray ri→j , i.e., r warped to time j. That is,

having computed the motion-adjusted point xi→j = x+∆x,i(j) at

nearby time j from every sampled location along r, we query xi→j

and time j via the MLP to predict its motion trajectory Γxi→j ,j ,

along which we aggregate image features fk extracted from source

views within time k ∈ N (j). The aggregated features along ri→j

are fed to the ray transformer with time embedding γ(j) to produce

per-sample color and density (cj , σj) at time j. A pixel color Ĉj→i

is computed by volume rendering (cj , σj), and then compared to

the ground truth color Ci to form a reconstruction loss Lpho.

The resulting set of source features across neighbor views j

is fed to a shared MLP whose output features are aggregated

through weighted average pooling [70] to produce a single

feature vector at each 3D sample point along ray r. A ray

transformer network with time embedding γ(i) then pro-

cesses the sequence of aggregated features along the ray to

predict per-sample colors and densities (ci, σi) (see Fig. 2).

We then use standard NeRF volume rendering [4] to obtain

a final pixel color Ĉi(r) for the ray from this sequence of

colors and densities.

3.2. Crosstime rendering for temporal consistency

If we optimize our dynamic scene representation by com-

paring Ĉi with Ci alone, the representation might overfit

to the input images: it might perfectly reconstruct those

views, but fail to render correct novel views. This can hap-

pen because the representation has the capacity to recon-

struct completely separate models for each time instance,

without utilizing or accurately reconstructing scene motion.

Therefore, to recover a consistent scene with physically plau-

sible motion, we enforce temporal coherence of the scene

representation. One way to define temporal coherence in

this context is that the scene at two neighboring times i

and j should be consistent when taking scene motion into

account [19, 35, 67].

In particular, we enforce temporal photometric consis-

tency in our optimized representation via cross-time render-

ing in motion-adjusted ray space, as shown in Fig. 3. The

idea is to render a view at time i but via some nearby time j,

which we refer to as cross-time rendering. For each nearby

time j ∈ N (i), rather than directly using points x along ray

r, we consider the points xi→j along motion-adjusted ray

ri→j and treat them as if they lie along a ray at time j.

Specifically, having computed the motion-adjusted points

xi→j , we query the MLP to predict the coefficients of new

trajectories {φl
j(xi→j}

L
l=1 = GMT(xi→j , γ(j)), and use

these to compute corresponding 3D points (xi→j)j→k for

images k in the temporal window N (j), using Eq. 2. These

new 3D correspondences are then used to render a pixel color

exactly as described for a “straight” ray ri in Sec. 3.1, except

now along the curved, motion-adjusted ray ri→j . That is,

each point (xi→j)j→k is projected into its source view Ik
and feature maps Fk with camera parameters Pk to extract

an RGB color and image feature fk, and then these features

are aggregated and input to the ray transformer with the time

embedding γ(j). The result is a sequence of colors and densi-

ties (cj , σj) along ri→j at time j, which can be composited

through volume rendering to form a color Ĉj→i.

We can then compare Ĉj→i(r) with the target pixel Ci(r)
via a motion-disocclusion-aware RGB reconstruction loss:

Lpho =
∑

r

∑

j∈N (i)

Ŵj→i(r)ρ(Ci(r), Ĉj→i(r)). (3)

We use a generalized Charbonnier loss [10] for the RGB

loss ρ. Ŵj→i(r) is a motion disocclusion weight computed

by the difference of accumulated alpha weights between

time i and j to address the motion disocclusion ambiguity

described by NSFF [35] (see supplement for more details).

Note that when j = i, there is no scene motion–induced

displacement, meaning Ĉj→i = Ĉi and no disocclusion

weights are involved (Ŵj→i = 1). We show a comparison

between our method with and without enforcing temporal

consistency in the first column of Fig. 4.

3.3. Combining static and dynamic models

As observed in NSFF, synthesizing novel views using a

small temporal window is insufficient to recover complete

and high-quality content for static scene regions, since the

contents may only be observed in spatially distant frames due

to uncontrolled camera paths. Therefore, we follow the ideas

of NSFF [35], and model the entire scene using two sepa-

rate representations. Dynamic content (ci, σi) is represented

with a time-varying model as above (used for cross-time

rendering during optimization). Static content (c, σ) is rep-

resented with a time-invariant model, which renders in the

same way as the time-varying model, but aggregates multi-

view features without scene motion adjustment (i.e., along

epipolar lines).

The dynamic and static predictions are combined and

rendered to a single output color Ĉfull
i (or Ĉfull

j→i during cross-

time rendering) using the method for combining static and
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Figure 4. Qualitative ablations. From left to right, we show ren-

dered novel views (top) and depths (bottom) from our system (a)

without enforcing temporal consistency, (b) aggregating image

features with scene flow fields instead of motion trajectories, (c)

representing motion trajectory with a fixed DCT basis instead of

a learned one, and (d) with full configuration. Simpler configura-

tions significantly degrade rendering quality as indicated by PSNR

calculated over the regions of moving objects.

transient models of NeRF-W [45]. Each model’s color and

density estimates can also be rendered separately, giving

color Ĉst for static content and Ĉ
dy
i for dynamic content.

When combining the two representations, we rewrite the

photometric consistency term in Eq. 3 as a loss comparing

Ĉ
full
j→i(r) with target pixel Ci(r):

Lpho =
∑

r

∑

j∈N (i)

Ŵj→i(r)ρ(Ci(r), Ĉ
full
j→i(r)) (4)

Image-based motion segmentation. In our framework,

we observed that without any initialization, scene factor-

ization tends to be dominated by either the time-invariant

or the time-varying representation, a phenomena also ob-

served in recent methods [28, 42]. To facilitate factoriza-

tion, Gao et al. [19] initialize their system using masks

from semantic segmentation, relying on the assumption that

all moving objects are captured by a set of candidate se-

mantic segmentation labels, and segmentation masks are

temporally accurate. However, these assumptions do not

hold in many real-world scenarios, as observed by Zhang et

al. [79]. Instead, we propose a new motion segmentation

module that produces segmentation masks for supervising

our main two-component scene representation. Our idea is

inspired by the Bayesian learning techniques proposed in

recent work [45, 79], but integrated into a volumetric IBR

representation for dynamic videos.

In particular, before training our main two-component

scene representation, we jointly train two lightweight mod-

els to obtain a motion segmentation mask Mi for each in-

put frame Ii. We model static scene content with an IBR-

Net [70] that renders a pixel color B̂st using volume render-

ing along each ray via feature aggregation along epipolar

lines from nearby source views without considering scene

Figure 5. Motion segmentation. We show full rendering B̂
full
i (top)

and motion segmentation overlaid with rendered dynamic content

α
dy
i � B̂

dy
i (bottom). Our approach segments challenging dynamic

elements such as the moving shadow, swing, and swaying bushes.

motion; we model dynamic scene content with a 2D convo-

lutional encoder-decoder network D, which predicts a 2D

opacity map α
dy
i , confidence map β

dy
i , and RGB image B̂

dy
i

from an input frame:

B̂
dy
i ,α

dy
i ,β

dy
i = D(Ii). (5)

The full reconstructed image is then composited pixelwise

from the outputs of the two models:

B̂
full
i (r) = α

dy
i (r)B̂dy

i (r) + (1−α
dy
i (r))B̂st(r). (6)

To segment moving objects, we assume the observed

pixel color is uncertain in a heteroscedastic aleatoric manner,

and model the observations in the video with a Cauchy dis-

tribution with time dependent confidence β
dy
i . By taking the

negative log-likelihood of the observations, our segmentation

loss is written as a weighted reconstruction loss:

Lseg =
∑

r

log

(

β
dy
i (r) +

||B̂full
i (r)−Ci(r)||

2

β
dy
i (r)

)

. (7)

By optimizing the two models using Eq. 7, we obtain a

motion segmentation mask Mi by thresholding α
dy
i at 0.5.

We do not require an alpha regularization loss as in NeRF-

W [45] to avoid degeneracies, since we naturally include

such an inductive basis by excluding skip connections from

network D, which leads D to converge more slowly than the

static IBR model. We show our estimated motion segmenta-

tion masks overlaid on input images in Fig. 5.

Supervision with segmentation masks. We initialize our

main time-varying and time-invariant models with masks Mi

as in Omnimatte [43], by applying a reconstruction loss to

renderings from the time-varying model in dynamic regions,

and to renderings from the time-invariant model in static

regions:

Lmask =
∑

r

(1−Mi)(r)ρ(Ĉ
st(r),Ci(r))

+
∑

r

Mi(r)ρ(Ĉ
dy
i (r),Ci(r)) (8)

We perform morphological erosion and dilation on Mi to

obtain masks of dynamic and static regions respectively in

order to turn off the loss near mask boundaries. We supervise

the system with Lmask and decay the weights by a factor of 5

for dynamic regions every 50K optimization steps.
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3.4. Regularization

As noted in prior work, monocular reconstruction of com-

plex dynamic scenes is highly ill-posed, and using photo-

metric consistency alone is insufficient to avoid bad local

minima during optimization [19, 35]. Therefore, we adopt

regularization schemes used in prior work [2, 35, 73, 75],

which consist of three main parts Lreg = Ldata +LMT +Lcpt.

Ldata is a data-driven term consisting of `1 monocular depth

and optical flow consistency priors using the estimates from

Zhang et al. [80] and RAFT [65]. LMT is a motion trajec-

tory regularization term that encourages estimated trajectory

fields to be cycle-consistent and spatial-temporally smooth.

Lcpt is a compactness prior that encourages the scene de-

composition to be binary via an entropy loss, and mitigates

floaters through distortion losses [2]. We refer readers to the

supplement for more details.

In summary, the final combined loss used to optimize our

main representation for space-time view synthesis is:

L = Lpho + Lmask + Lreg. (9)

4. Implementation details

Data. We conduct numerical evaluations on the Nvidia

Dynamic Scene Dataset [75] and UCSD Dynamic Scenes

Dataset [37]. Each dataset consists of eight forward-facing

dynamic scenes recorded by synchronized multi-view cam-

eras. We follow prior work [35] to derive a monocular video

from each sequence, where each video contains 100∼250

frames. We removed frames that lack large regions of mov-

ing objects. We follow the protocol from prior work [35] that

uses held-out images per time instance for evaluation. We

also tested the methods on in-the-wild monocular videos,

which feature more challenging camera and object mo-

tions [20].

View selection. For the time-varying, dynamic model we

use a frame window radius of r = 3 for all experiments. For

the time-invariant model representing static scene content,

we use separate strategies for the dynamic scenes bench-

marks and for in-the-wild videos. For the benchmarks, where

camera viewpoints are located at discrete camera rig lo-

cations, we choose all nearby distinct viewpoints whose

timestep is within 12 frames of the target time. For in-the-

wild videos, naively choosing the nearest source views can

lead to poor reconstruction due to insufficient camera base-

line. Thus, to ensure that for any rendered pixel we have

sufficient source views for computing its color, we select

source views from distant frames. If we wish to select N vs

source views for the time-invariant model, we sub-sample

every 2rmax

N vs frames from the input video to build a candidate

pool, where for a given target time i, we only search source

views within [i − rmax, i + rmax] frames. We estimate rmax

using the method of Li et al. [34] based on SfM point co-

visibility and camera relative baseline. We then construct a

Methods
Full Dynamic Only

SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Nerfies [49] 0.609 20.64 0.204 0.455 17.35 0.258

HyperNeRF [50] 0.654 20.90 0.182 0.446 17.56 0.242

DVS [19] 0.921 27.44 0.070 0.778 22.63 0.144

NSFF [35] 0.927 28.90 0.062 0.783 23.08 0.159

Ours 0.957 30.91 0.027 0.826 24.31 0.062

Table 1. Quantitative evaluation on the Nvidia dataset [75].

final set of source views for the model by choosing the top

N vs frames in the candidate pool that are the closest to the

target view in terms of camera baseline. We set N vs = 16.

Global spatial coordinate embedding With local image

feature aggregation alone, it is hard to determine density ac-

curately on non-surface or occluded surface points due to in-

consistent features from different source views, as described

in NeuRay [39]. Therefore, to improve global reasoning for

density prediction, we append a global spatial coordinate

embedding as an input to the ray transformer, in addition to

the time embedding, similar to the ideas from [64]. Please

see supplement for more details.

Handling degeneracy through virtual views. Prior

work [35] observed that optimization can converge to bad

local minimal if camera and object motions are close to colin-

ear, or object motions are too fast to track. Inspired by [36],

we synthesize images at eight randomly sampled nearby

viewpoints for every input via depths estimated by [80].

During rendering, we randomly sample a virtual view as

additional source image. We only apply this technique to

in-the-wild videos since it improves optimization stability

and rendering quality for such inputs, whereas we don’t ob-

serve improvement on the benchmarks due to disentangled

camera-object motions as described by [20].

Time interpolation. Our approach also allows for time

interpolation by performing scene motion–based splatting,

as introduced by NSFF [35]. To render at a specified target

fractional time, we predict the volumetric density and color

at two nearby input times by aggregating local image features

from their corresponding set of source views. The predicted

color and density are then splatted and linearly blended via

the scene flow derived from our motion trajectories, and

weighted according to the target fractional time index.

Setup. We estimate camera poses using COLMAP [57].

For each ray, we use a coarse-to-fine sampling strategy with

128 per-ray samples as in Wang et al. [70]. A separate model

is trained from scratch for each scene using the Adam opti-

mizer [29]. The network architecture for two main represen-

tations is a variant of that of IBRNet [70]. We reconstruct

the entire scene in Euclidean space without special scene

parameterization. Optimizing a full system on a 10 second

video takes around two days using 8 Nvidia A100s, and ren-

dering takes roughly 20 seconds for a 768× 432 frame. We

4278



Our rendered views DVS HyperNeRF NSFF Ours GT

Figure 6. Qualitative comparisons on the Nvidia dataset [75].

Methods
Full Dynamic Only

SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Nerfies [49] 0.823 24.32 0.096 0.595 18.45 0.234

HyperNeRF [50] 0.859 25.10 0.095 0.618 19.26 0.212

DVS [19] 0.943 30.64 0.075 0.866 26.57 0.096

NSFF [35] 0.952 31.75 0.034 0.851 25.83 0.115

Ours 0.983 36.47 0.014 0.909 28.01 0.042

Table 2. Quantitative evaluation on the UCSD dataset [37].

refer readers to the supplemental material for network archi-

tectures, hyper-parameters setting, and additional details.

5. Evaluation

5.1. Baselines and error metrics

We compare our approach to state-of-the-art monocu-

lar view synthesis methods. Specifically, we compare to

three recent canonical space–based methods, Nerfies [49],

and HyperNeRF [50], and to two scene flow–based meth-

ods, NSFF [35] and Dynamic View Synthesis (DVS) from

Gao et al. [19]. For fair comparisons, we use the same depth,

optical flow and motion segmentation masks used for our

approach as inputs to other methods.

Following prior work [35], we report the rendering qual-

ity of each method with three standard error metrics: peak

signal-to-noise ratio (PSNR), structural similarity (SSIM),

and perceptual similarity via LPIPS [77], and calculate errors

both over the entire scene (Full) and restricted to moving

regions (Dynamic Only).

5.2. Quantitative evaluation

Quantitative results on the two benchmark datasets are

shown in Table 1 and Table 2. Our approach significantly

improves over prior state-of-the-art methods in terms of all

error metrics. Notably, our approach improves PSNR over en-

tire scene upon the second best methods by 2dB and 4dB on

each of the two datasets. Our approach also reduces LPIPS

error, a major indicator of perceptual quality compared with

real images [77], by over 50%. These results suggest that

our framework is much more effective at recovering highly

detailed scene contents.

Our rendered views DVS HyperNeRF NSFF Ours GT

Figure 7. Qualitative comparisons on the UCSD dataset [37].

Ablation study. We conduct an ablation study on the

Nvidia Dynamic Scene Dataset to validate the effectiveness

of our various proposed system components. We show com-

parisons between our full system and variants in Tab. 3: A)

baseline IBRNet [70] with extra time embedding; B) without

enforcing temporal consistency via cross-time rendering; C)

using scene flow fields to aggregate image features within

one time step; D) predicting multiple 3D scene flow vectors

pointing to 2r nearby times at each sample; E) without using

a time-invariant static scene model; F) without masked re-

construction loss via estimated motion segmentation masks;

and G) without regularization loss. For this ablation study,

we train each model with 64 samples per ray. Without our

motion trajectory representation and temporal consistency,

view synthesis quality degrades significantly as shown in

the first three rows of Tab. 3. Integrating a global spatial

coordinate embedding further improves rendering quality.

Combining static and dynamic models improves quality for

static elements, as seen in metrics over full scenes. Finally,

removing supervision from motion segmentation or regu-

larization reduces overall rendering quality, demonstrating

the value of proposed losses for avoiding bad local minimal

during optimization.

5.3. Qualitative evaluation

Dynamic scenes dataset. We provide qualitative compar-

isons between our approach and three prior state-of-the-art

methods [19, 35, 50] on the test views from two datasets in

Fig. 6 and Fig.7. Prior dynamic-NeRF methods have dif-

ficulty rendering details of moving objects, as seen in the

excessively blurred dynamic content including the texture

of balloons, human faces, and clothing. In contrast, our ap-

proach synthesizes photo-realistic novel views of both static

and dynamic scene content and which are closest to the

ground truth images.

In-the-wild videos. We show qualitative comparisons on

in-the-wild footage of complex dynamic scenes. We show

comparisons with Dynamic-NeRF based methods in Fig. 8,

and Fig. 9 shows comparisons with point cloud rendering

using depths [80] . Our approach synthesizes photo-realistic
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DVS HyperNeRF NSFF OursInput

Figure 8. Qualitative comparisons on in-the-wild videos. We show results on 10-second videos of complex dynamic scenes. The leftmost

column shows the start and end frames of each video; on the right we show novel views at intermediate times rendered from our approach

and prior state-of-the-art methods [19, 35, 50].

Figure 9. From left to right, We show inputs and corresponding

novel views rendered from explicit depth warping with Zhang et

al. [80], and from our approach.

Methods Full Dynamic Only

SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

A) [70]+time 0.905 25.33 0.081 0.683 20.09 0.122

B) w/o TC 0.911 27.57 0.074 0.751 22.16 0.104

C) w/ SF 0.935 29.42 0.035 0.797 22.41 0.095

D) w/ M-SF 0.947 29.59 0.033 0.814 22.97 0.084

E) w/o static rep. 0.919 28.19 0.047 0.840 24.01 0.071

F) w/o Lmask 0.930 29.95 0.036 0.835 24.30 0.063

G) w/o Lreg 0.921 29.46 0.042 0.795 22.19 0.080

Full 0.957 30.77 0.028 0.837 24.27 0.066

Table 3. Ablation study on the Nvidia Dataset. See Sec. 5.2 for

detailed descriptions of each configuration.

novel views, whereas prior dynamic-Nerf methods fail to

recover high-quality details of both static and moving scene

contents, such as the shirt wrinkles and the dog’s fur in Fig. 8.

On the other hand, explicit depth warping produces holes at

regions near disocculusions and out of field of view. We refer

readers to the supplementary video for full comparisons.

6. Discussion and conclusion

Limitations. Our method is limited to relatively small

viewpoint changes compared with methods designed for

static or quasi-static scene; Our method is not able to handle

small fast moving object due to incorrect initial depth and op-

tical flow estimates (left, Fig. 10). In addition, compared to

Figure 10. Limitations. Our method might fail to model moving

thin objects such as moving leash (left). Our method can fail to

render dynamic contents only visible in distant frames (middle).

The rendered static content can be unrealistic or blank if insufficient

source views feature are aggregated for a given pixel (right).

prior dynamic NeRF methods, the synthesized views are not

strictly multi-view consistent, and rendering quality of static

content depends on which source views are selected (middle,

Fig. 10). Our approach is also sensitive to degenerate motion

patterns from in-the-wild videos, in which object and camera

motion is mostly colinear, but we show heuristics to han-

dle such cases in the supplemental. Moreover, our method

is able to synthesize dynamic contents only appearing at

distant time (right, Fig. 10)

Conclusion. We presented a new approach for space-time

view synthesis from a monocular video depicting a complex

dynamic scene. By representing a dynamic scene within a

volumetric IBR framework, our approach overcomes lim-

itations of recent methods that cannot model long videos

with complex camera and object motion. We have shown

that our method can synthesize photo-realistic novel views

from in-the-wild dynamic videos, and can achieve signifi-

cant improvements over prior state-of-the-art methods on the

dynamic scene benchmarks.
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