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Abstract

The representative instance segmentation methods
mostly segment different object instances with a mask of
the fixed resolution, e.g., 28 × 28 grid. However, a low-
resolution mask loses rich details, while a high-resolution
mask incurs quadratic computation overhead. It is a chal-
lenging task to predict the optimal binary mask for each in-
stance. In this paper, we propose to dynamically select suit-
able masks for different object proposals. First, a dual-level
Feature Pyramid Network (FPN) with adaptive feature ag-
gregation is developed to gradually increase the mask grid
resolution, ensuring high-quality segmentation of objects.
Specifically, an efficient region-level top-down path (r-FPN)
is introduced to incorporate complementary contextual and
detailed information from different stages of image-level
FPN (i-FPN). Then, to alleviate the increase of computa-
tion and memory costs caused by using large masks, we de-
velop a Mask Switch Module (MSM) with negligible compu-
tational cost to select the most suitable mask resolution for
each instance, achieving high efficiency while maintaining
high segmentation accuracy. Without bells and whistles, the
proposed method, namely DynaMask, brings consistent and
noticeable performance improvements over other state-of-
the-arts at a moderate computation overhead. The source
code: https://github.com/lslrh/DynaMask.

1. Introduction
Instance segmentation (IS) is an important computer vi-

sion task, aiming at simultaneously predicting the class la-
bel and the binary mask for each instance of interest in an
image. It works as the cornerstone of many downstream
vision applications, such as autonomous driving, video
surveillance, and robotics, to name a few. Recent years
have witnessed the significant advances of deep convolu-
tional neural networks (CNNs) based IS methods with a rich
amount of training data as the rocket fuel [1, 10, 17, 25, 26].
Existing IS methods can be roughly divided into two ma-
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Figure 1. Dynamic mask selection results. Some “hard” sam-
ples with irregular shapes like “person” are assigned larger masks,
while the “easy” ones like “frisbee” are assigned smaller ones.

jor categories: two-stage [6, 10, 17] and single-stage meth-
ods [1, 2, 26]. The former first detect a sparse set of pro-
posals and then performs mask predictions based on them,
while the latter directly predict classification scores and
masks based on the pre-defined anchors. Generally speak-
ing, two-stage methods could produce higher segmenta-
tion accuracy but cost more computational resources than
single-stage methods.

Among the many recently developed IS methods, the
proposal-based two-stage methods [6, 10, 17], which fol-
low a detection-and-segmentation paradigm, are still the top
performers. These methods need to predict a binary grid
mask of uniform resolution for all proposals, e.g., 28× 28,
and then upsample it to the original image size. For in-
stance, Mask R-CNN [10] first generates a group of propos-
als with an object detector and then performs per pixel fore-
ground/background segmentation on the Regions of Inter-
est (RoIs) [24]. Despite achieving promising performance,
the low-resolution mask of Mask R-CNN is insufficient to
capture more detailed information, resulting in unsatisfac-
tory predictions, especially over object boundaries. An in-
tuitive solution to improve the segmentation quality is to
adopt a larger mask. Nevertheless, high-resolution masks
often generate excessive predictions on the smooth regions,
resulting in high computational complexity.

It is difficult to segment different objects in an image
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with masks of the same resolution. Objects with irregu-
lar shapes and complicated boundaries demand more fine-
grained masks to predict, referred to as “hard” samples,
such as the “person” in Fig. 1. In comparison, the “easy”
samples with regular shapes and fewer details can be effi-
ciently segmented using coarser masks, like the “frisbee”
in Fig. 1. Inspired by the above observations, we propose
to adaptively adjust the mask size for each instance for bet-
ter IS performance. Specifically, instead of using a uniform
resolution for all instances, we assign high-resolution masks
to “hard” objects and low-resolution masks to “easy” ob-
jects. In this way, the redundant computation for “easy”
samples can be reduced while the accuracy of “hard” sam-
ples can be improved, achieving a balance between accu-
racy and speed. As shown in Tab. 1, however, directly pre-
dicting a high-resolution mask by Mask R-CNN [10] unex-
pectedly degrades the mask average precision (AP). This at-
tributes to two main reasons. First, the RoI features of larger
objects are extracted from higher pyramid levels, which are
very coarse due to the downsampling operations [20]. Thus
simply increasing the mask size of these RoIs will not bring
extra useful information. Second, the mask head of Mask
R-CNN is oversimplified, so it cannot make more precise
predictions as the mask grid size increases.

To overcome the above mentioned problems, we propose
a dual-level FPN framework to gradually enlarge the mask
grid. Specifically, in addition to traditional image-level FPN
(i-FPN), a region-level FPN (r-FPN) is designed to achieve
coarse-to-fine mask prediction. Wherein we construct infor-
mation flows between i-FPN and r-FPN at different pyra-
mid levels, aiming to incorporate complementary contex-
tual and detailed information from multiple feature levels
for high-quality segmentation. With the dual-level FPN, we
present a data-dependent Mask Switch Module (MSM) with
negligible computational cost to adaptively select masks for
each instance. The overall approach, namely DynaMask, is
evaluated on benchmark instance segmentation datasets to
demonstrate its superiority over state-of-the-arts. The major
contributions of this work are summarized as follows:

• A dynamic mask selection method (DynaMask) is pro-
posed to adaptively assign appropriate masks to dif-
ferent instances. Specifically, it assigns low-resolution
masks to “easy” samples for efficiency while assigning
high-resolution masks to “hard” samples for accuracy.
• A dual-level FPN framework is developed for IS. We

construct direct information flows from i-FPN to r-
FPN at multiple levels, facilitating complementary in-
formation aggregation from multiple pyramid levels.
• Extensive experiments demonstrate that DynaMask

achieves a good trade-off between IS accuracy and effi-
ciency, outperforming many state-of-the-art two-stage
IS methods at a moderate computation overhead.

Method Resolution AP FLOPs

Mask R-CNN [10]

14×14 32.9 0.2G
28×28 34.7 0.5G
56×56 33.8 2.0G

112×112 32.5 8.0G

DynaMask

14×14 32.9 0.2G
28×28 36.1 0.6G
56×56 37.1 1.0G

112×112 37.6 1.4G

Table 1. Mask AP and FLOPs with different mask resolutions.
For Mask R-CNN, directly increasing the mask resolution will de-
crease the mask AP. While for our DynaMask, higher mask reso-
lution results in better performance.

2. Related Work

Instance Segmentation. To date, most of the top-
performing IS methods still follow the Mask R-CNN meta-
architecture [10]. These proposal-based approaches typi-
cally employ an object detector to localize each instance
in bounding boxes. Then the instance-wise features are
cropped and extracted from FPN features based on the de-
tected bounding boxes by using RoI pooling/align [10, 24].
Finally, a compact segmentation head is deployed to ob-
tain the desired object masks. Mask Scoring R-CNN [14]
aligns the mask quality and score by using a branch to ex-
plicitly learn the quality of predicted masks. BMask R-
CNN [6] leverages boundary details to improve mask lo-
calization ability. DCT-Mask [25] encodes high-resolution
binary masks into compact vectors through the discrete co-
sine transform (DCT). PANet [22] constructs two feature
pyramids for improving mask prediction.

Some works [3, 17, 30] have been proposed to improve
the mask quality by coarse-to-fine refinement. HTC [3]
performs cascaded refinement on both detection and seg-
mentation tasks and explores the reciprocal relationships
between them. PointRend [17] and RefineMask [30] ex-
tract fine-grained features in a multi-stage manner. The
former performs point-based predictions over the blurred
areas, while the latter refines the entire RoI feature. De-
spite the promising segmentation results, multiple refine-
ment stages inevitably increase the inference time and mem-
ory burden. In this paper, we dynamically select the suitable
mask for each instance so that “easy” samples are assigned
small masks (with fewer refinement stages) for efficiency,
and “hard” samples are assigned large masks (with more re-
finement stages) for accuracy, achieving a balance between
efficiency and accuracy.

Dynamic Networks. Dynamic networks, which aim
to adaptively adjust the network architecture according
to the input feature, have been widely studied in recent
years. Dynamic model compression methods either drop
blocks [12, 23, 27] or prune channels [19, 29] for speeding
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Figure 2. The overall architecture of DynaMask. We propose a dual-level FPN framework to gradually increase the mask size and achieve
higher-quality IS. The information flow is constructed between each level of image-level FPN (i-FPN) and region-level FPN (r-FPN), so that
region-wise feature hierarchies {Ltiny, Lsmall, Lmedium, Llarge} are constantly enhanced by incorporating complementary information
from {P2, P3, P4} of i-FPN, resulting in coarse-to-fine mask predictions. To reduce the computation and memory cost, a Mask Switch
Module (MSM) is developed to predict the mask resolution for each instance with budgeted resource consumption. Specifically, MSM
outputs four different switching states, corresponding to four different mask resolutions, i.e., [14× 14, 28× 28, 56× 56, 112× 112].

up the inference. For instance, SkipNet [27] skips convolu-
tional blocks through a reinforcement learning-based gating
network. Huang et al. propose a multi-scale dense network
with multiple classifiers for allocating different computa-
tions for “easy” and “hard” samples. Li et al. [18] adopt an
end-to-end dynamic routing framework to alleviate the scale
variance among inputs. DRNet [32] attempts to reduce the
redundancy on the input resolution of modern CNNs.

However, employing dynamic masks at different reso-
lutions for segmenting different instances has rarely been
explored in the field of IS. Conventional methods [6,10,17]
typically predict a fixed-size mask irrespective of the ob-
ject type. This is sufficient for “easy” samples but pro-
duces over-smoothing predictions for “hard” samples over
the fine-level details. In order to improve the segmentation
performance without introducing many additional compu-
tation burdens, we devise a dynamic mask selection frame-
work to adaptively allocate suitable masks to different ob-
jects according to their segmentation difficulties.

3. Dynamic Mask Selection
The framework of DynaMask is illustrated in Fig. 2. A

dual-level FPN architecture is first proposed for improving
IS quality, and then a Mask Switch Module (MSM) is de-
veloped to dynamically allocate appropriate masks to each
instance, so that the resource consumption can be reduced
while maintaining superior IS performance. Our DynaMask
produces high-quality segmentation with a moderate com-
putation overhead.

3.1. Dual-Level FPN

Original image-level FPN (i-FPN) [20] introduces a top-
down path to propagate contextual semantic information

from higher layers to lower ones. Actually, the lower-level
features contain more fine-grained details than higher-level
ones, which are beneficial for high-quality segmentation,
especially on boundary regions, but these information is not
fully explored in Mask R-CNN [10]. In this work, we pro-
pose a region-level FPN (r-FPN) to integrate more detailed
information from lower layers of i-FPN into region-wise
feature hierarchies. The information flows from each level
of i-FPN to r-FPN are shown in Fig. 2.

Region-Level FPN. We follow the original i-FPN to define
the layers producing feature maps of the same resolution
as one network stage corresponding to one feature level.
We use {P2, P3, P4, P5} to denote different feature levels of
i-FPN. The r-FPN starts from an RoI-Aligned region-wise
feature, and it is gradually enhanced by fusing the comple-
mentary information from {P2, P3, P4} of i-FPN, resulting
in top-down region-based feature hierarchies, denoted by
{Ltiny, Lsmall, Lmedium, Llarge}. From Ltiny to Llarge,
the spatial resolution is progressively increased by a factor
of two. We design a Feature Aggregation Module (FAM) to
integrate the r-FPN feature Lr and the i-FPN feature Pi.

Feature Aggregation Module (FAM). There exists spatial
misalignments between Lr and Pi due to the upsampling
and RoI pooling [24] operations, which may degrade the
segmentation performance on boundary areas. To overcome
this limitation, we propose the FAM to adaptively aggregate
multi-scale features. As show in Fig. 3, FAM contains two
deformable convolutions [8, 13] which play different roles.
The first one (Deform Conv1) adjusts the positions of Lr,
making it better aligned to Pi. Here we first concatenate Lr

with Pi, and then pass the concatenated features through a
3 × 3 Conv to obtain the offset map, denoted by ∆o. Fi-
nally, Lr is aligned to Pi with the learned offset ∆o. The
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Figure 3. Feature Alignment Moudule (FAM). Deform Conv1 ad-
justs the spatial positions of upsampled r-FPN feature Lr and the
cropped i-FPN feature Pi. Deform Conv2 attends to the salient
parts of objects.

second one (Deform Conv2) works like an attention mecha-
nism, which attends to the salient parts of objects. The pro-
posed FAM is plugged into different stages of r-FPN and it
plays a key role in improving the mask prediction.

3.2. Mask Switch Module (MSM)

The proposed dual-level FPN framework brings a signifi-
cant performance improvement but at the price of expensive
computation and memory burdens. Inspired by the fact that
different instances require different mask grids to achieve
accurate segmentation, we propose a novel method to adap-
tively adjust the mask grid resolution for different instances.
Specifically, an MSM is developed to perform mask resolu-
tion prediction under a budgeted computation consumption,
achieving a good trade-off between segmentation accuracy
and efficiency.
Optimal Mask Assignment. The MSM module is actu-
ally a lightweight classifier, denoted by fMSM (·), which is
illustrated in Fig. 4. It contains a channel-wise attention
module [11], followed by a few convolutional layers and
fully-connected layers. This classifier aims to find the opti-
mal mask resolution from a collection of K candidates, i.e.,
[r1, r2, · · · , rK ], so that the instance could be accurately
segmented with the minimal resource cost. Specifically,
MSM takes the cropped region-wise RoI feature as input
and outputs a probability vector P = [p1, · · · , pK ] by tak-
ing a softmax operation. Each element of this vector repre-
sents the probability that the corresponding candidate reso-
lution is selected:

pk =
exp(fkMSM (x))∑
k′ exp(fk

′
MSM (x))

, k ∈ {1, · · · ,K}, (1)

where x is the input RoI feature fed to MSM. The candi-
date resolution of the largest probability is chosen as the
switching state, which decides the resolution of mask grid
to segment an object.
Reparameterization with Gumbel-Softmax. The soft
output P of MSM should be transformed into a one-hot pre-
diction, denoted by Y = [y1, · · · , yK ], yk ∈ {0, 1}. This
process can be done by discrete sampling, which however is
non-differentiable and does not support end-to-end training.

To allow the gradient back-propagation for updating MSM,
we introduce a reparameterization method [15], called the
Gumbel-Softmax. Given a categorical distribution with
class probabilities P = [p1, · · · , pK ], we can draw a group
of masks through the rule y = one hot

(
argmaxk(logpk +

gk)
)

, where {gk}Ki=k are i.i.d. samples drawn from
the Gumbel(0, 1) distribution, which is defined by g =
−log

(
− log(u)

)
with u ∼ Uniform(0, 1). Then we

use the Gumbel-softmax function as a continuous, differ-
entiable approximation to the original softmax function:

yk =
exp

(
(logpk + gk)/τ

)∑
k′ exp

(
(logpk′ + gk′)/τ

) , (2)

where τ denotes a temperature parameter. When τ ap-
proches 0, the Gumbel-softmax is close to one-hot.

3.3. Objective Function

The proposed framework gradually enlarges the mask
resolution by a factor of two to improve the segmentation
performance. On the one hand, FAM adaptively aggregates
complementary information from multiple stages of i-FPN
and r-FPN to enhance the feature hierarchies. On the other
hand, MSM dynamically allocates masks of different res-
olutions for different instances in an image, reducing re-
source costs without sacrificing accuracy. In this subsec-
tion, we elaborate on the loss function used to train the mask
head.
Mask Loss. Given a positive instance xi, we first predict
its mask switching state Y = [y1, · · · , yK ] by MSM, and
obtain a group of mask prediction maps at K different res-
olutions {m̂1

i , · · · , m̂K
i } by passing this instance through

different stages of r-FPN. We define the mask loss function
as follows:

Lmask =

N∑
i=1

K∑
k=1

yk`(m̂k
i ,mi), (3)

where m̂k
i denotes the k-th mask prediction of xi, and mi

represents its corresponding ground truth mask grid. yk is
the indicator for whether the k-th mask resolution is se-
lected as the output resolution. ` is defined as the binary
cross-entropy loss in this paper.
Edge Loss. In Eq. 3, we assume that the mask producing
smaller loss should have higher quality, so that the most
accurate mask could be selected by minimizing the mask
loss. However, our empirical results show that the mask
loss produced on different masks is very close, making it
difficult to distinguish the mask quality. In comparison, as
shown in Fig. 5, the edge loss produced by masks of differ-
ent resolutions varies greatly, which could better reveal the
mask quality. Given the output of MSM Y = [y1, · · · , yK ]
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Figure 4. The Mask Switch Module (MSM), which is a CNN-based classifier and consists of a SE-block [11], two convolutional layers
and two fully-connected layers.

Figure 5. The predicted object edges using the masks of different
resolutions. The edge loss computed on boundary regions could
reflect the quality of mask.

and the edge maps of different resolutions, denoted by
{ê1i , · · · , êKi }, the edge loss is defined as follows:

Ledge =

N∑
i=1

K∑
k=1

yk`(êki , ei), (4)

where ei denotes the ground-truth edge, which is generated
by first applying the Laplacian operator on the ground-truth
mask mi to obtain a soft edge map, and then converting it
into a binary edge map by thresholding [6]. Fig. 5 visualizes
the object edges predicted by using masks of different res-
olutions. As can be seen, the edge loss could better reveal
the quality of masks, i.e., higher-resolution masks produce
edges closer to GT (smaller loss), while lower-resolution
masks produce edges more different from GT (larger loss).
Budget Constraint. By optimizing the edge loss in Eq. 4,
the model tends to converge to a sub-optimal solution that
all instances are segmented with the largest mask, i.e.,
112 × 112, which incorporates more detailed information
and hence has the minimal prediction loss. Actually, not
all samples require the largest mask for segmentation. The
redundant computations of segmenting the “easy” samples
can be saved for efficiency. In order to reduce the com-
putational cost and avoid the above mentioned sub-optimal
solution, we propose to train the MSM with a budget con-
straint. Specifically, let C denote the computational cost
(e.g., FLOPs) corresponding to the selected mask resolu-
tion. We add a penalty to the model when the expectation
of FLOPs computed on current batch data, denoted by E(C),
exceeds the target FLOPs, denoted by Ct. The budget con-

straint is defined as follows:

Lbudget = max(
E(C)
Ct
− 1, 0). (5)

We further introduce an information entropy loss to balance
the resolution predictions of MSM. Given a group of output
probability vectors P1, P2, · · · , PN , whereN is the number
of instances of the current batch, the frequency of the k-
th resolution is calculated by: fk = 1

N

∑
i p

k
i . Then the

information entropy loss is defined as follows:

Lentropy =
1

K

∑
k

fklogfk. (6)

The above entropy loss tends to push each element fk to
be 1

K so that MSM could select different resolutions with
similar probabilities.

Finally, the total objective function of the mask branch is
obtained as follows:

Ltotal = Lmask + λ1Ledge + λ2Lreg, (7)

where λ1 and λ2 are the trade-off hyper-parameters. Lreg

denotes the regularization term which is obtained by com-
bining the budget constraint in Eq. 5 and the information
entropy loss in Eq. 6, i.e., Lreg = Lbudget + Lentropy.

4. Experiments

We perform extensive experiments on the bench-
mark instance segmentation datasets: COCO [21] and
Cityscapes [7]. COCO [21] contains about 115k images
(train2017) with instance-level annotations of 80 cate-
gories for training. We use the val2017 set (around 5k
images) for the ablation study and the test-dev2017 set
(about 20k images) for comparison with other methods. The
Cityscapes dataset [7] contains 2975, 500, and 1525 im-
ages collected from 8 categories of urban scenes for train-
ing, validation, and testing, respectively. On both COCO
and Cityscapes datasets, we use the standard mask AP as
the evaluation metric, which computes the average preci-
sion over varying IoU thresholds (from 0.5 to 0.95).
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Figure 6. Example results of Mask R-CNN [10] (left), PointRend [17] (middle), and DynaMask (right), using ResNet-50-FPN as backbone.

4.1. Implementation Details

We adopt Mask R-CNN [10] as our baseline. The back-
bone is pre-trained on ImageNet. The hyper-parameters
and loss functions are set the same as Mask R-CNN imple-
mented in MMDetection [4] unless specified. The proposed
MSM has four switching states, which correspond to four
candidate resolutions, i.e., [14×14, 28×28, 56×56, 112×
112]. The hyper-parameter λ1 is set as 0.1. We first pre-
train the model without MSM using mask loss at all reso-
lutions for one epoch. The initial learning rate is 0.02, and
the batch size is 16 on 8 GPUs. Then we train all modules
for 12 epochs using SGD with the same initial learning rate
and batch size and reduce the learning rate by a factor of
0.1 after 8 and 11 epochs, respectively. Multi-scale train-
ing is used with the shorter side randomly sampled from
[640, 800], while for inference, the short side is resized to
800. In the ablation study, we use the standard 1× train-
ing schedule and data augmentation defined in MMDetec-
tion [4].

4.2. Main Results

Comparison with Mask R-CNN. We first compare the per-
formance of DynaMask with the baseline Mask R-CNN on
COCO by using ResNet-50 and ResNet-101 backbones. As
shown in Tab. 2, our method outperforms Mask R-CNN by
a large margin. The performance is improved by 2.9% AP
and 2.8% AP with “1×” and “2×” schedules, respectively,
when ResNet-50-FPN backbone is used. Particularly, Dy-
naMask outperforms the baseline by 3.3%, and 3.6% with
“1×” and “2×” schedules in terms of AP75, respectively.
Similar observations can be obtained when ResNet-101-
FPN is used as the backbone. This is because the pro-
posed dual-level FPN structure incorporates complemen-
tary semantic and detailed information from multiple lev-
els of FPN, resulting in more precise mask localization and
higher-quality segmentation.
Comparison with state-of-the-art methods. We then
compare the segmentation performance of DynaMask with

many other state-of-the-art methods on COCO. The results
are listed in Tab. 3. All models are trained on COCO
train2017 and evaluated on COCO test-dev2017.
Without bells and whistles, DynaMask surpasses these
methods with visible margins. Furthermore, we compare
our method with other representative two-stage IS methods
on Cityscapes val set in Tab. 4. Our method outperforms
Mask R-CNN [10] by 4.2%. Noticeably, its performance
on large objects is 5.8% AP higher than Mask R-CNN.
This is because DynaMask employs high-resolution masks
to achieve high-quality segmentation on large and difficult
objects. RefineMask [30] also produces outstanding perfor-
mance since it refines the mask prediction with fine-grained
features, but it costs many computations due to the multi-
stage refinement.
Visualizations of segmentation results. In Fig. 6, we
visualize the segmentation results of DynaMask together
with two representative methods: Mask R-CNN [10], and
PointRend [17]. One can see that our method achieves finer
and more accurate predictions around the objects’ bound-
aries. This is because Dynamask introduces an r-FPN
to fuse complementary information from multiple stages,
so that difficult instances can be segmented with large
masks which contain more fine-grained details. Mask R-
CNN [10] employs a uniform coarse mask for prediction,
while PointRend [17] makes point-wise refinement only at
the blurred regions, which is not enough to capture suffi-
cient details.

4.3. Ablation Study

Mask resolution prediction. To better understand how
DynaMask selects suitable masks for different instances,
we show the mask selection results in Fig. 7. As can be
seen, the “hard” objects with irregular shapes and complex
boundaries are assigned large masks, such as the “potted
plant”, “person”, “giraffe”, etc. On the contrary, the “easy”
samples with regular shapes and less details are assigned
small masks, such as the “skis”, “suitcase”, “dining table”
and so on. It is worth mentioning that the choice of mask
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Method Backbone Sched. AP AP50 AP75 APS APM APL

Mask R-CNN [10] ResNet-50-FPN 1× 34.7 55.7 37.2 18.3 37.4 47.2
DynaMask ResNet-50-FPN 1× 37.6 57.4 40.5 20.7 40.4 50.3

Mask R-CNN [10] ResNet-50-FPN 2× 35.4 56.4 37.9 19.1 38.6 48.4
DynaMask ResNet-50-FPN 2× 38.2 58.1 41.5 20.5 40.8 52.7

Mask R-CNN [10] ResNet-101-FPN 1× 36.1 57.5 38.6 18.8 39.7 49.5
DynaMask ResNet-101-FPN 1× 38.7 58.8 41.8 20.9 41.8 52.4

Mask R-CNN [10] ResNet-101-FPN 2× 36.6 57.9 39.1 19.2 40.2 50.5
DynaMask ResNet-101-FPN 2× 39.0 59.1 42.2 20.9 42.1 53.3

Table 2. Comparison with Mask R-CNN on COCO val2017.

Method Backbone sched. AP AP50 AP75 APS APM APL

MEInst [31] ResNet-101-FPN 3× 33.9 56.2 35.4 19.8 36.1 42.3
Mask R-CNN [10] ResNet-101-FPN 3× 38.5 60.0 41.6 19.2 41.6 55.8
BMask R-CNN [6] ResNet-101-FPN 1× 37.7 59.3 40.6 16.8 39.9 54.6
TensorMask [5] ResNet-101-FPN 6× 37.1 59.3 39.4 17.4 39.1 51.6
Mask Scoring [14] ResNet-101-FPN 18e 38.3 58.8 41.5 17.8 40.4 54.4
CondInst [26] ResNet-101-FPN 3× 39.1 60.9 42.0 21.5 41.7 50.9
BlendMask [2] ResNet-101-FPN 3× 38.4 60.7 41.3 18.2 41.5 53.3
PointRend [17] ResNeXt-101-FPN 3× 41.4 63.3 44.8 24.2 43.9 53.2
SOLOv2 [28] ResNet-101-FPN 6× 39.7 60.7 42.9 17.3 42.9 57.4
HTC [3] ResNet-101-FPN 20e 39.7 61.8 43.1 21.0 42.2 53.5
DCT-Mask† [25] ResNet-101-FPN 3× 40.1 61.2 43.6 22.7 42.7 51.8
RefineMask [30] ResNet-101-FPN 3× 39.4 - - - - -
Mask Transfiner† [16] ResNet-101-FPN 3× 40.7 - - 23.1 42.8 53.8
QueryInst† [9] ResNet-101-FPN 3× 41.7 64.4 45.3 24.2 43.9 53.9
DynaMask ResNet-101-FPN 3× 39.6 61.4 42.9 21.2 42.4 53.2
DynaMask† ResNet-101-FPN 3× 41.3 62.5 45.2 22.8 43.4 54.0
DynaMask† ResNeXt-101-FPN 3× 42.0 62.9 46.3 23.4 44.0 54.8

Table 3. Comparison with state-of-the-art methods for instance segmentation on COCO test-dev2017, † denotes multi-scale training.

size is independent of object size. For example, in the third
image, the small but hard object “potted plant” is allocated
a large mask, while the large but easy sample “suitcase” in
the fifth image can be accurately segmented with a small
mask. We provide quantitative analysis of the correlations
between the predicted mask resolutions and the class in sup-
plemental files.

Influence of the budget constraint. In Tab. 5, we explore
the influence of budget constraint on the model complex-
ity (FLOPs). The average FLOPs are calculated by tak-
ing the average over all instances of the validation set. By
tuning hyper-parameters Ct and λ2 to different values, we
get models of different computational costs. For example,
the FLOPs are reduced by about 19% without sacrificing
the segmentation performance by setting Ct and λ2 to 1.0
and 0.4, respectively. This demonstrates that there exists
much redundancy when using the large mask (112 × 112)
for all instances. Actually, many instances in COCO dataset
can be efficiently segmented with smaller masks. Thus the
redundant computation for easier samples can be reduced,
while the accuracy of harder samples can be maintained by
still using larger masks. By setting the target FLOPs Ct to a
smaller value (e.g., 0.4, 0.6, 0.8), more significant computa-
tion reduction can be achieved at a slight degradation of ac-
curacy. For instance, by setting both Ct and λ2 to 0.4, more
than half of the FLOPs (around 54%) are reduced while still

producing competitive segmentation results (36.8% AP).
Speed comparison of different methods. To validate
the efficiency of our model, we compare the model accu-
racy, FLOPs, and runtime of different two-stage IS meth-
ods in Tab. 6. Inference time is tested on one NVIDIA
TITAN RTX with the input size 800 × 1333. Compared
to these methods, our DynaMask method achieves visi-
ble performance gain at a small amount of extra compu-
tational cost. Specifically, DynaMask (Ct = 0.4) outper-
forms PointRend [17] and DCT-mask [25] by 1.2% AP and
0.3% AP, respectively, with comparable runtime. Though
HTC [3] produces a similar segmentation result (0.2%
lower AP) to DynaMask, it is two times slower than Dy-
naMask because it performs hybrid cascade refinement on
both detection and segmentation tasks, resulting in a large
amount of memory and computation overhead.
Influence of mask size. The Mask Switch Module (MSM)
outputs four different candidate mask resolutions [14 ×
14, 28 × 28, 56 × 56, 112 × 112]. We choose one of them
as the uniform output mask size and report the correspond-
ing results in Tab. 7. As can be seen, models with larger
mask resolutions could achieve higher segmentation perfor-
mance, especially on large objects, but the computational
cost also increases obviously. For example, the perfor-
mance is improved by 3.2%, 4.2%, and 4.7% AP when the
mask resolution is increased from 14×14 to 28×28, 56×56
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Figure 7. Mask selection results by DynaMask. Each color corresponds to a candidate resolution (red→large, blue→medium,
green→small, yellow→tiny).

Method AP APS APM APL

Mask R-CNN [10] 33.8 12.0 31.5 51.8
PointRend [17] 35.8 - - -

BMask R-CNN [6] 35.8 - - -
RefineMask [30] 37.6 14.6 34.0 58.1

DynaMask 38.0 14.8 35.1 57.6

Table 4. The results on Cityscapes val set with
ResNet-50-FPN backbone.

Ct λ2 FLOPs ∆ AP
1.0 0.3 1.27G -9% 37.6
1.0 0.4 1.13G -19% 37.6
1.0 0.5 1.06G -24% 37.5
0.8 0.4 0.92G -34% 37.4
0.6 0.4 0.83G -41% 37.2
0.4 0.4 0.64G -54% 36.8

Table 5. The influence of the bud-
get constraint.

Method AP FLOPs FPS
Mask R-CNN [10] 34.7 0.5G 12.4

PointRend [17] 35.6 0.9G 9.4
DCT-Mask† [25] 36.5 0.5G 11.8

HTC [3] 37.4 - 3.9
DynaMask 37.6 1.4G 8.3

DynaMask (Ct = 0.4) 36.8 0.64G 11.2

Table 6. Speed comparison of different methods
on val set, †: multi-scale training.

Mask Size FLOPs AP AP50 AP75 APS APM APL

14×14 0.23G 32.9 55.3 34.4 19.3 35.8 43.6
28×28 0.62G 36.1 57.1 38.7 20.4 39.2 48.2
56×56 1.01G 37.1 57.3 40.0 20.5 40.0 49.7

112×112 1.40G 37.6 57.4 40.5 20.7 40.4 50.3

Table 7. Performance of using different mask sizes.

Mask Size FLOPs AP Tiny Small Medium Large
28×28 0.62G 36.1 0 1 0 0

Size-based 0.56G 35.9 47% 32% 14% 8%
DynaMask (Ct = 0.4) 0.64G 36.8 35% 34% 21% 10%

DynaMask 1.4G 37.6 0 0 0 1

Table 8. Comparison with size-based mask selection method.

and 112× 112, respectively. Nevertheless, the performance
tends to saturate as the mask size increases further.
Size-based mask selection method. We compare the per-
formance and mask distributions of different mask selec-
tion methods in Tab. 8. The baseline is performed by using
a uniform mask size (28 × 28) for all objects. Size-based
method denotes assigning masks according to the size of
object. Specifically, we assign a mask m̂k

i to the instance of
width w and height h by the following rule:

k =
⌊
k0 + log2(

√
wh/
√
w0h0)

⌋
, (8)

where w0 and h0 denote the width and height of the input
image, respectively. and k0 denotes the index of the high-
est mask resolution 112 × 112, i.e., k0 = 4. Intuitively,
Eq. 8 means that the larger object will be assigned a higher-
resolution mask. This conforms to our common sense, since
the larger objects usually contain many details which need
finer-grained masks to achieve high-quality prediction.

As can be seen from Tab. 8, the size-based method at-
tains comparable performance with the baseline at a lower
cost. Our DynaMask (Ct = 0.4) outperforms the base-
line by 0.7% AP and the size-based method by 0.9% AP
at a slight extra computation cost, demonstrating that the

proposed mask selection strategy could better partition dif-
ferent objects according to their segmentation difficulties
and assign more suitable masks to achieve better perfor-
mance. More analyses about the distribution of predicted
mask scales can be found in supplemental materials.

5. Conclusion
In this work, we proposed a simple yet effective method

to improve instance segmentation performance at a small
amount of computation and memory overhead. We de-
vised a dual-level FPN structure for better exploring com-
plementary contextual and detailed information from mul-
tiple pyramid levels. Specifically, in addition to traditional
image-level FPN (i-FPN), we augmented a region-level top-
down path (r-FPN) to gradually enlarge the mask size and
incorporate more details from i-FPN. Furthermore, to re-
duce the computation and memory cost led by using large
masks, we introduced a Mask Switch Module (MSM) to
adaptively select suitable masks for each proposal so that
the redundant computation for easy samples can be reduced
by using smaller masks. Extensive experimental results
demonstrated that our method achieved significant perfor-
mance gains with moderate extra computation overhead.
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