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Abstract

Automatic radiology reporting has great clinical poten-
tial to relieve radiologists from heavy workloads and im-
prove diagnosis interpretation. Recently, researchers have
enhanced data-driven neural networks with medical knowl-
edge graphs to eliminate the severe visual and textual bias
in this task. The structures of such graphs are exploited
by using the clinical dependencies formed by the disease
topic tags via general knowledge and usually do not up-
date during the training process. Consequently, the fixed
graphs can not guarantee the most appropriate scope of
knowledge and limit the effectiveness. To address the limi-
tation, we propose a knowledge graph with Dynamic struc-
ture and nodes to facilitate chest X-ray report generation
with Contrastive Learning, named DCL. In detail, the fun-
damental structure of our graph is pre-constructed from
general knowledge. Then we explore specific knowledge ex-
tracted from the retrieved reports to add additional nodes
or redefine their relations in a bottom-up manner. Each im-
age feature is integrated with its very own updated graph
before being fed into the decoder module for report gen-
eration. Finally, this paper introduces Image-Report Con-
trastive and Image-Report Matching losses to better repre-
sent visual features and textual information. Evaluated on
IU-Xray and MIMIC-CXR datasets, our DCL outperforms
previous state-of-the-art models on these two benchmarks.

1. Introduction

Recently, automatic report generation has received grow-
ing attentions from both machine learning and automatic
medicine fields. It aims to generate semantically coher-
ent and informative reports to describe the referring ex-
amination images, such as Chest X-Ray [8, 18], Lung CT
Scan [26] or funds angiography [23]. Such techniques have
great clinical potential in relieving junior radiologists from
heavy workloads and reducing diagnosis errors by improv-
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Figure 1. An illustration of one sample from MIMIC-CXR [18]
and the pre-constructed graph in [46], where the blue circle, or-
ange boxes and black boxes refer to the global node, organ-level
entities and key findings, respectively. The red dash line here rep-
resents the unconnected relation.
ing the interpretation [7, 30].

Witnessed the great progress in artificial intelligence, es-
pecially deep learning methods [12,25,39], researchers have
proposed various data-driven neural networks for radiology
reporting and achieved promising performances in metrics
that measure descriptive accuracy [7, 44] and clinical cor-
rectness [11, 46]. Compared with the similar task generic
image captioning [14], the key challenges in chest X-ray
report generation (CRG) task are the severe visual and tex-
tual data bias [19, 26]. On the one hand, medical images
are highly similar to each other due to the imaging methods
and human tissues themselves. However, abnormal regions
or lesions that should acquire more attentions usually lo-
cate at a small part and lack detailed annotations in existing
CRG benchmarks. On the other hand, sentences that de-
scribe normal regions are likely to appear repeatedly among
each dataset which disables the model to describe specific
crucial abnormalities. Two concepts have been proved ef-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3334



fective in eliminating those bias.
The first one is to integrate medical knowledge with

ORG systems [24,30,44,46]. Zhang et al. [46] constructed a
universal graph comprised of a global node, 7 organs/tissues
and 20 findings (normal or disease keywords). Disease key-
word nodes linked to the same organ are connected to each
other and the root in the graph. This graph can enhance
the relationships among findings and emphasize the dis-
ease keywords. Thus, it is also adopted in the following
works [30, 44]. However, this graph is built from general
knowledge and may be inappropriate in some cases. As the
shown report in Fig. 1, it is observed that effusion should be
suggestive of edema, however, such relationship is not mod-
elled in the graph. Furthermore, some nodes like ‘cicatrix’
or ‘hypoinflation’ only appear very few times in two ORG
benchmarks [8, 18]. Therefore, it is necessary to update the
scope of knowledge for each case; In addition to the medical
knowledge, recent works [5,11,31,38,43] utilize contrastive
learning to improve the visual and textual representations by
contrasting positive and negative pairs. They proposed var-
ious contrastive learning objectives to capture the abnormal
regions from a chest X-Ray image. Since normal images
usually dominate the dataset over abnormal ones [37], it is
also crucial to recognize the normal or abnormal cases in
the meantime.

In this paper, we propose a novel framework, named
DCL, which exploits a dynamic graph integrating spe-
cific knowledge with general knowledge to enhance vi-
sual representations learned in a contrastive manner. We
adopt the general knowledge with 28 entities from [46]
as the fundamental structure of our graph, and the rela-
tionships are modelled in an adjacency matrix. Given a
medical image, we first retrieve its semantically similar re-
ports from the training set. Specific knowledge is extracted
from those reports via RadGraph [17] and stored in triplets
(<subjective entity, relation, objective entity>). And we in-
tegrate those triplets with the pre-constructed graph by dy-
namically adding additional nodes or linking two entities.
We utilize a graph encoder to propagate information over
the updated graph for refining the node features, which are
initialized by a pretrained SciBert [4]. Then the dedicated
node features are attended to visual representations for re-
port generation via a Transformer [39] decoder. Based on
the dynamic graph, we introduce a contrastive learning ob-
jective, image-report contrastive loss to well represent the
visual features and textual information. In addition, con-
trastive learning can help ensure the accuracy of the report
retrieval procedure in the dynamic graph construction pro-
cess. Image-report matching loss is also employed to fur-
ther improve the performances.

We evaluate our method on two benchmarks, IU-
Xray [8] and MIMIC-CXR [18]. Experimental results
demonstrate that our approach can either outperform or

match previous state-of-the-art (SOTA) methods in metrics
that measure descriptive accuracy and clinical correctness.
It indicates that leveraging dynamic graphs to enhance con-
trastive learning is helpful to generate high-quality reports.

In summary, our main contributions are as follows:

• We propose a novel framework that leverages a dy-
namic graph to enhance visual representations with
contrastive learning paradigms for radiology reporting.

• Our proposed dynamic graph integrates both general
and specific knowledge; The contrastive learning ob-
jective can improve visual and textual representations
and dynamic graph accuracy.

• We conduct extensive experiments on two popular
benchmarks to show the effectiveness of our approach,
which achieves the SOTA performance on both lan-
guage generation and clinical efficacy metrics.

2. Related Work
2.1. Medical Report Generation Meets Knowledge

Graph

When radiologists write reports, they will make infer-
ences with their expert knowledge. Typically, a report con-
tains many sections, e.g., impressions, finding, comparison
and indication. Following the previous works, we combine
the impressions and finding sections as the target for re-
port generation. To endow the medical report generation
systems with the capability to incorporate medical knowl-
edge, various kinds of knowledge graphs have been ex-
plored and can be roughly divided into three groups. The
first kind is proposed to emphasize the abnormal termi-
nologies or disease keywords. Li et al. [20] collected ab-
normalities from MIMIC-CXR dataset, and utilized them
as the node of their proposed abnormality graph. Edges
here are the attention weights from source nodes to target
nodes in the graph. Such graph is adopted in the following
works [26, 48] as prior medical knowledge to enhance the
generation procedure and can even facilitate the unsuper-
vised learning framework [32]. Secondly, Zhang et al. [46]
and Liu et al. [30] adopted a universal graph with 20 enti-
ties. Entities linked to the same organ are connected to each
other in the graph. Such relationships are modelled into an
adjacency matrix and utilized to propagate messages in a
graph encoding module. Since this graph is pre-constructed
with prior knowledge in a fixed structure, we found that it
can not guarantee the appropriate scope of knowledge for
some cases (e.g. missing or unconnected common entities).
To tackle this challenge, Liu et al. [30] utilized the global
representations from pre-retrieved reports from the train-
ing corpus to model domain-specific knowledge. In con-
trast, we aim to directly update the pre-constructed graph to
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Figure 2. Illustration of our proposed Dynamic graph enhanced Contrastive Learning approach (DCL). DCL contains two unimodal
encoders, a multimodal encoder, a report decoder and three dynamic graph modules for construction, encoding and cross-modal attention,
respectively. In addition to Report Generation (RG) loss, Image-Report Contrastive (IRC) loss and Image-Report Matching (IRM) loss are
adopted for training DCL.

model the appropriate knowledge. In the last, Li et al. [24]
constructed a clinical graph by extracting structural infor-
mation from the training corpus via a NLP-rule-based algo-
rithm. They restored a set of triplets for each case to model
the domain-specific knowledge and replace the visual rep-
resentations.

Our approach is based on the second category. Instead
of using the fixed graph in [46], we dynamically update the
graph by injecting new knowledge extracted from the re-
trieved reports for each case. As a result, the appropriate
scope of knowledge for different cases can be activated to
generate more high-quality reports.

2.2. Contrastive Learning

The goal of contrastive learning is to improve rep-
resentation learning by contrasting positive/negative or
similar/dissimilar pairs. Inspired by the recent success
of contrastive learning in vision-and-language pretraining
tasks [21], some works have introduced it in the CRG sys-
tems. Yan et al. [43] developed a weakly supervised method
to contrast target reports with incorrect ones by identify-
ing “hard” negative samples. To detect the abnormal re-
gions, Liu et al. [31] compared the referring image with
known normal images via a contrastive attention mecha-
nism. Other works [5, 42, 45] employed contrastive learn-
ing during the pretraining process to better represent visual
features and textual information. All those works aimed to
improve the expressiveness of both visual and textual rep-
resentations and then facilitate radiology reporting. In our

work, contrastive learning can also improve the accuracy of
the dynamic graph by training the model to retrieve the most
semantically similar reports.

3. Methodology
In this section, we will introduce the detailed im-

plementations of our proposed Dynamic graph enhanced
Contrastive Learning approach (DCL). The overall struc-
ture of DCL is illustrated in Fig. 2, which contains four ba-
sic modules and three dynamic graph modules with three
training objectives. We first describe the background of
DCL and then introduce the dynamic graph modules and
contrastive learning objectives, respectively.

3.1. Background

Notation In this work, we aim to leverage dynamic graphs
to enhance contrastive learning for radiology reporting.
In the CRG task, the computer is asked to describe a
given medical image I with a free-text report T =
{y1, y2, . . . , yn}. We denote the target report by T̂ =
{ŷ1, ŷ2, . . . , ŷn̂}. n and n̂ represent the numbers of tokens
in a report. Our dynamic graph, denoted by G = {V,E},
where V and E are the sets of nodes and edges, respectively,
is built on a pre-constructed graph Gpre proposed in [46]
and updated with specific knowledge KI = {k1I , ..., k

nK

I }
extracted from retrieved reports {T ∗

i }
nT
i=1. Each k is stored

in a triplet format, which consists of a subjective entity es,
an objective entity eo and their relation r. nT and nK are
the numbers of reports and triplets, respectively. All the
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triplets are acquired from the RadGraph [17].
Typical CRG systems are encoder-decoder frameworks.

The encoder is usually a CNN, e.g., ResNet [12] or
DenseNet [15], encodes the given image I to dense visual
vectors fI . The decoder is usually a RNN (e.g., LSTM [13])
or a Transformer [39], which decodes fI to a report T . In
this work, we adopt the Transformer [39] as the backbone
to generate the long and robust reports.
Image Encoder Recently, visual Transformers have shown
superior capabilities to represent images than CNNs. Thus,
we only employ a ViT [10] pretrained on the ImageNet [9]
as the image encoder to simplify the architecture. The input
image will be divided into 196 patches, and a [CLS] to-
ken is further appended to the beginning of sequence before
being fed into the encoder layers. The whole process of an
encoder layer fe(·) can be written as follows:

fe(x) = LN(FFN(eattn) + eattn), (1)
eattn = LN(MHA(x) + x), (2)

where FFN and LN denote the Feed Forward Network [39]
and Layer Normalization operation [2], respectively. x is
the input of each encoder layer. MHA [39] (multi-head at-
tention) divides a scaled dot-product attention into n par-
allel heads and each head Att(·) can be written as follows:

Att(x) = softmax(
Qx(Kx)⊤√

d
)Vx, (3)

where d = 768 is the dimension of the embedding space
and {Q,K∗,V∗} are the packed d-dimensional Query, Key,
Value vectors, respectively. The final output is the encoded
visual vectors fI , which will be used for report generation.
Report Decoder Our report decoder consists of two Trans-
former decoder layers. The whole process of a decoder
layer fd(·) can be written as follows:

fd(y) = LN(FFN(eca) + eca), (4)
eca = LN(CA(eattn, fI) + eattn), (5)

eattn = LN(MMHA(y) + y)), (6)

where MMHA and CA represent the masked multi-head
self-attention and cross attention mechanism in [39]. y is
the input of decoder. A [Decode] token is added to the
beginning of y to signal the start while a [EOS] token is
to signal its end. In Cross-attention sublayer, for each head,
{Q,K∗,V∗} comes from Q = Wq ∗ eattn, K = Wk ∗ fI ,
and V = Wv ∗ fI , where W∗ are the learnable parameters.
The fd(y) will be sent to a Linear & Log-Softmax layer
to get the output of target sentences. Notably, only token
embedding is adopted during the decoding procedure. The
entire auto-regressive generation process can be written as
follows:

p(T |I) =
∏
t=1

p(yt|y1, . . . , yt−1, I). (7)

where yt is the input token in time step t.
Typically, the report generation objective is the cross-

entropy loss to compare the predicted token index sequence
with the ground truth. Given the ground truth report T̂ , all
the underlying modules are trained to maximize p(y|I) by
minimizing the following:

LRG = −
n̂∑

t=1

log p(ŷt|ŷ1, · · · , ŷt−1, I). (8)

3.2. Dynamic Graph

The chest knowledge graph Gpre proposed in [46] has
been widely integrated with CRG systems to emphasize the
disease keywords and enhance their relationships. Gpre

consists of 27 entities and a root node referring to the global
feature and an adjacency matrix A = {eij} to represent the
edges V . Each node is a disease keyword and we set eij to 1
when source node ni connects target node nj . Nodes linked
to the same organ or tissue are connected to each other and
the root. This graph is not updated during the training, and
we found that it limits the effectiveness from two aspects.
Firstly, those entities can not cover the most common dis-
ease keywords for all datasets because of the dataset bias;
Secondly, entities linked to different organs can also affect
each other clinically. To tackle those limitations, we pro-
pose a dynamic graph G with dynamic structure and nodes
and integrate it with visual features to generate high-quality
reports. This process is illustrated in Fig. 3, and we will
introduce the three key modules, i.e., dynamic graph con-
struction, dynamic graph encoder, and graph attention in
this section, respectively.
Dynamic Graph Construction We construct our graph in
a bottom-up manner, in which we first construct the fun-
damental structure from general knowledge and then add
nodes or redefine their relationships according to specific
knowledge. We extend Gpre to our fundamental structure
with 28 entities consisting of a global node represented by a
[CLS] token, 7 organs or tissues, and 20 disease keywords.
In addition to link criteria in Gpre, every organ will connect
to each other organ or tissue.

To get the specific knowledge for each given image I , we
first retrieve the top-nT similar reports {T ∗

i }
nT
i=1 by calcu-

lating the similarity between the visual feature fI and rep-
resentations of reports in queue {f iT∗}nQ

i=1, where nQ is the
length of the report queue. For each retrieved report, we
extract anatomy and observation entities by Stanza [47].
Those entities are further utilized to quote the specific
knowledge KI from RadGraph [17]. Each triplet k in KI

aims to depict the relationship between source and target
entities. There are three kinds of relations in RadGraph,
namely ‘suggestive of’, ‘modify’ and ‘located at’. For a
triplet whose only source entity es or target entity eo is in
the graph, we will add another entity in the triplet as an ad-
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ditional node, and set their relation to 1 in the adjacency
matrix A. Note that if the relation is ‘located at’ and the
entity needed to be added is the target entity eo, eo will be
treated as an organ/tissue node. In this bottom-up manner,
our dynamic graph is capable to exploit both general and
specific knowledge.
Dynamic Graph Encoder We propose a dynamic graph
encoder to propagate information and learn dedicated node
features in our dynamic graph. To this end, this module is
built upon the standard Transformer encoder layer fG and
conducted as (see Figure 3):

fG = LN(FFN(ersa) + ersa), (9)
ersa = LN(RSA(fN , A) + fN ), (10)

where RSA is an MMHA-like relational self-attention mod-
ule to encode the structural information of a graph to the
model. Concretely, we utilize adjacency matrix A as a visi-
ble mask [24,33] to control the original MMHA. It promises
that each node can only impact its linked nodes and enhance
their relationships. fN is the initialized nodes representa-
tions and consists of entity embedding and level encoding.
Previous works initialized representations randomly, which
limits the effectiveness seriously [49]. Moreover, some ad-
ditional nodes appear a few times during the training and
hard to find the best embeddings. Therefore, we first adopt
word embeddings ϵsci from well-trained SciBert [4] to ini-
tialize each entity. For those entities consisting of one more
word, e.g., ‘foreign object’, we calculate the average. Fur-
thermore, we add level encoding ϵl to demonstrate each
node is the root, organ, or disease keyword. Thus, the struc-
tural information of our graph is well represented and en-
coded during message passing and propagation.
Graph Attention Graph attention aims to integrate knowl-
edge from dynamic graphs with visual features. Follow-
ing [30], we utilize cross attention to achieve this goal. The
whole process can be written as follows:

fÎ = LN(FFN(ega) + ega), (11)
ega = LN(CA(fI , fG)) + fI). (12)

In each head, Query comes from visual features fI while
Key and Value come from the learned graph representations
fG. Finally, we get the dynamic graph enhanced visual fea-
tures fÎ . Notably, the first token in both fÎ and fG is [CLS]
to aggregate visual and graph information.

3.3. Contrastive Learning

Collecting paired image and text data is prohibitively
expensive leading to a smaller size of CRG datasets com-
pared with captioning datasets, like COCO [28]. It hin-
ders the potential of existing data-driven CRG systems. In
this section, we introduce the image-report contrastive loss
used in our DCL, which can effectively improve the visual

Figure 3. illustration of our proposed dynamic graph construction,
dynamic graph encoder (DGE), and graph attention (GA) modules.
The structure of the pre-constructed graph can be found in Fig. 1.

and textual representations as well as ensure the report re-
trieval accuracy in the dynamic graph construction process.
Moreover, inspired by recent vision-language pretraining
works [21,22], we also adopt an image-report matching loss
in the proposed method for further enhancing the represen-
tations to improve the performance.
Image-Report Contrastive Loss (IRC) can activate radi-
ology reporting by encouraging the positive image-report
pairs to have similar representations in contrast to the neg-
ative pairs. A report encoder with the same architecture
as an image encoder is utilized to extract textual repre-
sentations fT referring to the positive or negative report.
Then we calculate the similar between two [CLS] repre-
sentations by s = WI(Vcls)

tWT (Tcls), where WI and WT

are two learnable matrices. we also maintain two queues
to store the most recent M image-report representations
from the momentum image and report encoders. After a
Softmax activation, we can get the image-report similarity
f i2r
m (I) = exp s(I,Tm)/τ∑M

m=1 exp s(I,Tm)/τ
and the report-image simi-

larity fr2i
m (T ), where τ is a learnable temperature parame-

ter. The IRC can be written as follows:

LIRC =
1

2
(Lce(g(T ), f(T )) + Lce(g(I), f(I))), (13)

where Lce is the cross entropy loss and g(I) is the ground
truth of image-report similarity.
Image-Report Matching Loss (IRM) is a binary classifi-
cation task to predict whether the given image-report pair is
positive (matched) or negative (unmatched). Different from
IRC, we utilize a multimodal encoder to capture the multi-
modal representations via cross attention mechanism. Then
[Encode] vector is projected to d = 2 with a linear layer
to predict the probability pitm. The IRM is conducted as:

LIRM = Lce(g
itm, pitm). (14)
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Finally, we calculate the sum of LRG, LIRC and LIRM as
our total loss function. Notably, the multimodal encoder is
only used during the training process to improve represen-
tation learning.

4. Experiments
4.1. Datasets, Evaluation Metrics and Settings

We evaluate our proposed DCL on two widely-used ra-
diology reporting benchmarks, IU-Xray [8] and MIMIC-
CXR [18]. We adopt the settings in [7,30] to split those two
datasets and preprocess the reports for a fair comparison.
IU-Xray [8] has been widely used to evaluate the perfor-
mance of radiology reporting systems. It contains 3,955 ra-
diology reports and 7,470 chest xray images. Either frontal
or frontal and lateral view images are associated with each
report. Following [7, 20], we exclude those cases with only
one image and finally get 2069/296/590 cases for train-
ing/validation/testing. By Stanza [47], 739 unique entities
are extracted and utilized as dynamic node candidates.
MIMIC-CXR [18] is the largest radiology dataset to date,
consisting of 368,960 chest X-ray images and 222,758 ra-
diology reports and is splitted officially. Recently, var-
ious MIMIC-child datasets have been proposed by ex-
ploring structural radiology information, e.g., Chest Im-
aGenome [41] and RadGraph [17]. In this work, we adopt
RadGraph to update our dynamic structure. Classified by
relation, RadGraph consists of 2,895,725 (suggestive of ),
6,115,264 (located at) and 4,010,875 (modify) triplets.
Natural Language Generation Metrics (NLG) are used
to measure the descriptive accuracy of predicted reports.
CIDEr [40] and BLEU [36] are two main NLG metrics used
to measure the quality of predicted reports. BLEU is pro-
posed for machine translation tasks and measures the word
n-gram overlap between predictions and reports. Due to the
textual bias in CRG datasets, CRG systems can achieve con-
siderable BLEU values even when they just repeat the most
frequent sentences. In contrast, CIDEr is tailored to eval-
uate captioning systems by rewarding topic terms (termi-
nologies in CRG task) and penalizing frequent terms. Ad-
ditionally, values of ROUGE-L [27] and METEOR [3] are
also reported for comparison.
Clinical Efficacy Metrics are recently proposed to capture
and evaluate the clinical correctness of predicted reports. It
first employs the CheXPert labeling tool proposed in [16]
to label predicted reports and the ground truth reports in 14
different medical terminologies. Then classification mea-
surements, i.e., F1-Score, Precision and Recall are calcu-
lated to evaluate how well the generated report describes the
abnormalities. Since the provider of IU-Xray does not use
CheXPert to build the labels, CE metrics are only reported
on the MIMIC-CXR dataset [38, 44].
Experimental Settings We use the same image encoder for
different views images and concatenate visual tokens via

Figure 4. Micro-average of receiver operating characteristic curve
for clinical abnormalities predictions from the generated reports.

fusion operation for further process. Considering the do-
main gap between medical and generic texts, we employ a
pretrained SciBert [4] to serve as a tokenizer and report en-
coder. The model is trained on 4 NVIDIA 2080 Ti GPUs
with batch sizes 8 and 30 epochs. The checkpoint acquires
the highest CIEDr metric is used for testing. The learning
rate is set as 1e-4 and the optimizer is AdamW [34] with a
weight decay of 0.02. The top 3 similar reports from the text
queue Q are retrieved. And the size of Q is set as 65,536
and 1,380 for MIMIC-CXR and IU-Xray. The max length
of specific knowledge is set as 90. For batch operation, the
nodes in G are padded to 50 with a [PAD] token. Note
that, we project all encoded vectors by a linear transforma-
tion layer into the dimension of d = 768.

4.2. Main Results

Descriptive Accuracy In Tab. 1, we compare our DCL
with a wide range of existing state-of-the-art CRG systems
on two benchmarks. R2Gen [7] and CMN [6] have been
widely used as baseline CRG models recently. KERP [20],
MKG [46], PPKED [30] and MGSK [44] are proposed
to integrate medical knowledge with typical CRG back-
bones. CA [31] and CMCL [29] employ contrastive learn-
ing and curriculum learning to improve performance. The
performances of other baseline models, such as HRGP [19],
M2TR [35] and TopDown [1] are also reported. Since we
follow the same settings, we directly cite the results from
original papers. As shown in Tab. 1, our DCL achieves
the SOTA descriptive accuracy, which outperforms others
in CIDEr and ROUGE-L metrics and matches their perfor-
mances in BLEU-4 and METEOR metrics. Higher CIDEr
values demonstrate that our model does not repeat frequent
sentences in training set but generates reports with more ac-
curate topics.
Clinical Correctness We also evaluate our method by clin-
ical efficacy (CE) metrics on the MIMIC-CXR dataset and
compare the performances with other baseline models. Fol-
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IU-Xray [8] MIMIC-CXR [18]

Methods CIDEr BLEU-4 ROUGE-L METEOR Methods CIDEr BLEU-4 ROUGE-L METEOR

R2Gen [7] 0.398 0.165 0.371 0.187 R2Gen [7] 0.253 0.103 0.277 0.142
KERP [20] 0.280 0.162 0.339 - CMN [6] - 0.106 0.278 0.142
HRGP [19] 0.343 0.151 0.322 - TopDown [1] 0.073 0.092 0.267 0.129
MKG [46] 0.304 0.147 0.367 - M2TR [35] - 0.107 0.272 0.145
PPKED [30] 0.351 0.168 0.376 0.190 PPKED [30] 0.237 0.106 0.284 0.149
MGSK [44] 0.382 0.178 0.381 - MGSK [44] 0.203 0.115 0.284 -
CA [31] - 0.169 0.381 0.193 CA [31] - 0.109 0.283 0.151
CMCL [29] - 0.162 0.378 0.186 CMCL [29] - 0.097 0.281 0.133

Ours 0.586 0.163 0.383 0.193 Ours 0.281 0.109 0.284 0.150

Table 1. The performances of our proposed DCL compared with other state-of-the-art systems on IU-Xray and MIMIC-CXR dataset. The
best results in each column are highlighted in bold. CIDEr [40] is proposed to evaluate captioning systems.

Methods Precision Recall F1-score

TopDown [1] 0.166 0.121 0.133
M2TR [35] 0.240 0.428 0.308
R2Gen [7] 0.333 0.273 0.276
MKSG [44] 0.458 0.348 0.371

Ours w/o G 0.275 0.185 0.194
Ours w/o LIRC 0.463 0.337 0.359
Ours w/o LIRM 0.469 0.353 0.372
Ours 0.471 0.352 0.373

Table 2. The comparison of the clinical efficacy metrics on
MIMIC-CXR dataset. The w/o is the abbreviation of without.

lowing official splitting, we directly cite the results from
[44] for comparison. In Fig. 4, we show the micro-average
of ROC for 14 chesty terminologies prediction and present
the AUC scores. ‘Pleural Effusion’ and ‘Pleural Other’
achieve the highest AUCs (0.82). The experimental re-
sults in Tab. 2 reveal that our DCL significantly outper-
forms the previous models on three CE metrics. Compared
with the current SOTA method MGSK [44] that also lever-
ages general prior knowledge and specific knowledge from
RadGraph [17], we make a performance-boosting. The im-
provement verifies the importance of our dynamic graph
concepts and also demonstrates that our system can predict
more accurate clinical information.
4.3. Ablation Study

In this section, we conduct ablation studies on IU-Xray
and MIMIC-CXR datasets to investigate the contribution of
each component in our proposed DCL. Tab. 3 presents the
quantitative analysis of DCL on IU-Xray with measuring
descriptive accuracy. And clinical correctness evaluation is
reported in Tab. 2. Our base model only keeps the image
encoder and report decoder and employs LRG.
Effect of Dynamic Graph Our dynamic graph is con-
structed in a bottom-up manner, that exploits general knowl-
edge from Gpre and specific knowledge KI extracted from

retrieved Top-3 similar reports. Comparing the base model
with settings (a) and (b), our dynamic graph can boost the
performance of base model, substantially. More specifi-
cally, leveraging the general knowledge only lead to an in-
crease on all NLG metrics by 15.2% on CIDEr and 1.1% on
BLEU-4. By integrating specific knowledge, our dynamic
graph can further boost the performances, e.g. 0.535 →
0.557 on CIDEr. It demonstrates the effectiveness and ne-
cessity of constructing dynamic graphs for each image. We
hypothesize that this performance improvement may be due
to that the dynamic knowledge can emphasize keywords
when generating reports since dynamic nodes are from re-
trieved reports. It has been proved in Tab. 2, leveraging dy-
namic graph significantly improve the performances on all
CE metrics, which means the generated reports can provide
more accurate medical terminologies.
Effect of Contrastive Learning Sequentially, we evaluate
the effectiveness of two introduced learning objectives, i.e.,
image report contrastive loss (IRC) and image report match-
ing loss (IRM). The performances of settings (b,c) in Tab. 2
show that both IRC and IRM can boost the base model
performances. It proves the importance of visual and tex-
tual representation qualities since severe data bias in CRG
datasets will degenerate the representation capabilities seri-
ously. However, comparing (c) and (d), it is observed that
IRC brings more improvement than IRM. We speculate the
reason is that IRC can straightly improve visual and tex-
tual representations by aligning similar pairs. In contrast,
IRM works on multimodal representations and represents
unimodal in an indirect manner.
Choice of Parameter Initialization We employ a pre-
trained ViT [10] and SciBert [4] as image and report en-
coder in our implementation. It is worth noting that Trans-
formers lack some of the inductive biases inherent to CNNs
and therefore generalize bad with insufficient and unbal-
anced data [10]. Not surprisingly, comparing setting (f) and
the full model, the performances drop steeply without pre-
trained ViT parameters. The performances of setting (e)
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Settings Gpre KI IRC IRM ViT [10] SciBert [4] CIDEr BLEU-4 ROUGE-L METEOR

Base ✓ ✓ 0.383 0.133 0.277 0.163

(a) ✓ ✓ ✓ 0.535 0.144 0.349 0.180
(b) ✓ ✓ ✓ ✓ 0.557 0.150 0.361 0.182

(c) ✓ ✓ ✓ ✓ ✓ 0.580 0.161 0.385 0.188
(d) ✓ ✓ ✓ ✓ ✓ 0.564 0.155 0.370 0.188

(e) ✓ ✓ ✓ ✓ ✓ 0.580 0.158 0.374 0.190
(f) ✓ ✓ ✓ ✓ ✓ 0.527 0.158 0.356 0.179

DCL ✓ ✓ ✓ ✓ ✓ ✓ 0.586 0.163 0.383 0.193

Table 3. Quantitative analysis of proposed method on IU-Xray dataset. The base model consists of an image encoder and a report decoder
with report generation loss only.

Figure 5. Illustrations of reports from ground truth, ours and R2Gen [7] and retrieved specific knowledge for one sample from MIMIC-
CXR [18]. For better visualization, different colors highlight different medical entities.

demonstrate the effectiveness of pretrained SciBert. The
improvement comes from two aspects. Firstly, it provides
well pretrained parameters; Secondly, its tokenizer encodes
each token (medical terminology) with a well pretrained
embedding, which avoids Graph Transformers to propagate
similar hidden states [49].

4.4. Case Study
To further investigate the effectiveness of our method,

we perform qualitative analysis on MIMIC-CXR [18]
with their retrieved specific knowledge, and reports from
ground truth, our model and R2Gen [7]. Entities ex-
tracted by Stanza [47] from the ground truth report have
been highlighted with different colors. It is observed
that some entities, e.g. cabg, consolidation, and ster-
notomy) are not included in the pre-constructed graph
node lists. This observation proves our motivation for
constructing knowledge graphs dynamically. We con-
duct the same operation on retrieved reports and use
extracted entities to quote related triplets from Rad-
Graph [17]. Those triplets are known as specific knowl-
edge in this paper and shown in Fig. 5. Retrieved specific
knowledge triplets <sternotomy,suggestive of,cabg> and
<consolidation,suggestive of,effusion> demonstrate that
the retrieved reports contain similar medical terminologies
and clinical information. We speculate that IRC and IRM
objectives bring such capabilities. Then the entities in our
dynamic graph emphasize disease/organ keywords when
generating reports and it is why our DCL can predict sen-

tence “airspace consolidation is noted within the left upper
lobe compatible with pneumonia.”, but R2Gen can not.

5. Conclusion and Discussion
In this paper, we present a practical approach to leverage

dynamic graph to enhance contrastive learning for radiol-
ogy report generation. In which the dynamic graph is con-
structed in a bottom-up manner to integrate retrieved spe-
cific knowledge with general knowledge. Then contrastive
learning is employed to improve visual and textual repre-
sentations, which also promises the accuracy of our dy-
namic graph. Experiments on two popular benchmarks ver-
ify the effectiveness of our method in generating accurate
and meaningful reports. More encouragingly, our approach
can outperform or match existing SOTA methods in lan-
guage generation and clinical efficacy metrics.
Limitation and Future Work Retrieved reports can not be
exactly the same as ground truth, and knowledge noises are
involved during the dynamic graph construction process. It
may guide the model to generate inaccurate sentences. In
the future, we plan to propose a specific objective for the
dynamic graph construction process to further improve the
accuracy of dynamic graphs and the quality of predicted re-
ports.
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