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Abstract

Digital image authenticity has promoted research on im-
age forgery localization. Although deep learning-based
methods achieve remarkable progress, most of them usu-
ally suffer from severe feature coupling between the forged
and authentic regions. In this work, we propose a two-step
Edge-aware Regional Message Passing Controlling strat-
egy to address the above issue. Specifically, the first step
is to account for fully exploiting the edge information. It
consists of two core designs: context-enhanced graph con-
struction and threshold-adaptive differentiable binarization
edge algorithm. The former assembles the global semantic
information to distinguish the features between the forged
and authentic regions, while the latter stands on the output
of the former to provide the learnable edges. In the sec-
ond step, guided by the learnable edges, a region message
passing controller is devised to weaken the message passing
between the forged and authentic regions. In this way, our
ERMPC is capable of explicitly modeling the inconsistency
between the forged and authentic regions and enabling it
to perform well on refined forged images. Extensive exper-
iments on several challenging benchmarks show that our
method is superior to state-of-the-art image forgery local-
ization methods qualitatively and quantitatively.

1. Introduction
The forged or manipulated images pose risks in vari-

ous fields, such as removing copyright watermarks, gener-
ating fake news, and even falsifying evidence in court [32].
The growing technology of forgery will cause a crisis of
trust and affect social equity. Therefore, the detection of
image forgery is of great significance. The crucial aspect
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Figure 1. The difference between previous methods and ours. Our
method controls the message passing between the forged and au-
thentic regions, ignored by the previous method. As shown by%.

of the detection is to model the inconsistency between the
forged and authentic regions and to locate the forged re-
gions on the suspicious image, i.e., image forgery local-
ization (IFL). However, as post-processing techniques such
as GAN [16, 26, 63], VAE [27, 44] and homogeneous ma-
nipulation [7, 33] are wildly utilized, images can be eas-
ily tampered in a visually imperceptible way. These tech-
niques constantly aim to couple the forged and authentic
regions’ features, making image forgery localization chal-
lenging. Therefore, in order to accurately locate the image
forgery region, it is particularly essential to decouple the
features between forged and authentic regions.

In recent years, deep-learning techniques have attracted
more attention [23, 57, 58, 65, 66]. Due to the development
of deep learning, image forgery localization has achieved
remarkable results. For example, ManTra-Net [55] treats
the forgery localization problem as a local anomaly detec-
tion problem and proposes a novel long short-term mem-
ory solution to assess local anomalies. To discriminate
between heterologous regions, SPAN employs CNNs to
extract anomalous local noise features from noise maps.
MVSS-Net [5] learns a multiview feature with multi-scale
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supervised networks to jointly exploit the noise view and
the boundary artifacts. However, these methods do not de-
couple the features between the forged and authentic re-
gions, making it difficult to locate the tampered regions for
elaborately forged images accurately. As shown in Figure 1,
in the previous method, the features of the forged region are
coupled with some of the features of the authentic region,
resulting in wrong localization.

In this work, we propose a novel method to avoid fea-
ture coupling of the two regions (forged and authentic) for
image forgery localization. One of the keys of this method
is to construct a dynamic graph, where the edges between
the forged and authentic regions participate in its construc-
tion. We control the message passing of regions inside and
outside the edges (i.e., forged and authentic) by reconstruct-
ing the adjacency matrix of nodes inside and outside the
edges, thus achieving effective disentanglement of the fea-
tures between the forged and authentic regions. Based on its
functionality, the edge-aware dynamic graph convolution is
named the regional message passing controller (RMPC).

In order to use the proposed RMPC for image forgery
localization, it is necessary to obtain the edge information
between the forged and authentic regions, which is the other
key of this method. Therefore, an edge reconstruction (ER)
module was developed, including a context-enhanced graph
(CEG) and a threshold-adaptive differentiable binarization
module. We specially design an adjacency matrix learner in
the CEG, which encodes global information along the nodes
to assemble the global semantic information. Inspired by
the Sigmoid function, we develop the threshold-adaptive
differentiable binarization edge algorithm, which stands on
the output of the CEG to provide the learnable edges.

In summary, in this work we propose a new two-step
framework named Edge-aware Regional Message Passing
Controller (ERMPC) for Image Forgery Localization, in-
cluding RMPC and ER. The ERMPC could effectively con-
trol the message passing between the forged and authentic
regions to achieve effective disentanglement of the two re-
gions, thus boosting the performance of image forgery lo-
calization. We take edge information as the main task and
use it as a basis to explicitly model the inconsistency be-
tween two regions. To the best of our knowledge, this work
is the first attempt to explicitly weaken the message passing
between the forged and authentic regions. Our contributions
are as follows:

• We propose ERMPC, a novel two-step coarse-to-fine
framework for image forgery localization, explicitly
modeling the inconsistency between the forged and au-
thentic regions with edge information.

• We propose an edge-aware dynamic graph, also known
as RMPC, to control the message passing between two
regions (forged and authentic) in the feature map.

• We develop an edge reconstruction module containing
a context-enhanced graph and a threshold-adaptive dif-
ferentiable binarization module to obtain the desired
edge information.

• We conduct extensive experiments on multiple bench-
marks and demonstrate that our method is qualitatively
and quantitatively superior to state-of-the-art image
forgery localization methods.

2. Related Works

2.1. Image Forgery Localization

Most early works propose to localize a specific type of
forgery, including splicing [2, 3, 9, 10, 24, 28, 37, 51, 60],
copy-move [8,14,25,48,52,54], and removal [1,50,56,64].
While these methods demonstrate satisfactory performance
in detecting specific types of forgery, they exhibit limi-
tations in practical applications due to the prevalence of
unknown and diverse forgery types. Consequently, re-
cent studies have emphasized the need for an approach
to tackle multiple forgery types with one model. RGB-
N [62] proposes a dual-stream Faster R-CNN network. The
first stream is designed to extract RGB features and iden-
tify tampering artifacts, while the second stream utilizes
noise features to model the noise inconsistency between
tampered and authentic regions, thereby localizing image
forgery with enhanced accuracy. ManTra-net [55] is an
end-to-end network that performs both detection and lo-
calization, which treats the problem as anomaly detection
and introduces a long short-term memory solution to as-
sess local anomalies. SPAN [22] attempts to model the
spatial correlation by constructing a pyramid of local self-
attention blocks. MVSS-Net [5] has designed an edge-
supervised branch that uses edge residual blocks to capture
fine-grained boundary detail in a shallow to deep manner. It
is worth noting that edge information is important for image
forgery detection and localization, as the tampered regions
are commonly surrounded by unnatural artifacts. Neverthe-
less, most studies only utilize edges in a supervised strat-
egy, such as MVSS-Net [5], MFCN [41], GSR-Net [61],
and CAIFL [47]. PSCCNet [35] uses a progressive spatial-
channel correlation module that uses features at different
scales and dense cross-connections to generate operational
masks in a coarse-to-fine fashion. ObjectFormer [46] cap-
tures forgery traces by extracting high-frequency parts of
the image and combining them with RGB features. In
this work, we explicitly employ learnable edges as guid-
ing information to impede the message passing between the
forged and untouched regions and employ refined edge re-
construction to achieve inconsistent modeling of the two re-
gions to localize manipulation artifacts.
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Figure 2. An overview of the proposed framework ERMPC. The input is a suspicious image (H ×W × 3), and the output is a predicted
mask (H×W×1), which localizes the forged regions.

2.2. Graph Reasoning

Graph-based approaches have attracted growing atten-
tion from the computer vision community these days and
have shown to be an effective relational reasoning method
with a robust capacity for non-local feature aggregation.
Specifically, CDGCNet [21] utilizes a class-wise learning
strategy and designs a class-wise graph convolution, which
avoids heavy graph concatenation and facilitates feature
learning. To overcome the problem that most graph-based
approaches assign a fixed number of neighbors for each
query item, DAGL [39] proposes a dynamic attentive graph
learning model to explore the dynamic non-local property
for image restoration. CTL [34] learns a context-reinforced
topology to construct multi-scale graphs which have a ro-
bust representational capacity by considering both global
contextual information and physical connections of the hu-
man body. On other tasks in computer vision, e.g., ob-
ject detection [43], multi-label image recognition [6], and
skeleton-based action recognition [36, 59], graph convolu-
tional neural networks have also achieved impressive per-
formance. In contrast, we propose an improved edge-
guided graph attention model to obstruct the message pass-
ing between forged and untouched regions with dynamic

construction for forgery region localization. As graph con-
volution is an effective relational reasoning method that is
very suitable for detecting forgery traces, this paper ap-
plies it to the task of image forgery localization for the first
time. An improved edge-guided graph attention model is
proposed for forgery region localization, which obstructs
the message passing between forged and untouched regions
with dynamic construction.

3. Methodology

This section details the scheme of image forgery lo-
calization based on edge-aware message passing control.
Sec. 3.1 describes an overview of the framework. One of the
keys of the scheme is to control the message passing with
edge and thus model the inconsistency between the forged
and authentic regions (Sec. 3.2). Another key lies in recon-
structing accurate edges from coarse features (Sec. 3.3). In
addition, following [5, 22, 55, 62], we use the noise branch
and fuse it with RGB branch at the end of the network
(Sec. 3.4). The optimization is introduced in Sec. 3.5.
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3.1. Overview

Figure 2 is an overview of the framework. The input
image is represented as X ∈ RH×W×3, where H and W
represent the height and width of the image. First, we use
two branches to handle RGB and noise separately, obtaining
Gr ∈ RHs×Ws×Cs and Gn ∈ RHs×Ws×Cs respectively.
Then, we use ResNet-50 pretrained on ImageNet [11] as the
backbone network. Following [4], we adopt atrous spatial
pyramid pooling(ASPP) together with ResNet-50 to cap-
ture the long-range contextual information. The coarse fea-
tures extracted from RGB branches are converted into edges
through the edge reconstruction block. Meanwhile, the
coarse features are constructed as graph structures, guided
by the reconstructed edge information. Finally, the RGB
features after the graph convolutional network are fused
with noise information through dual attention [5] to output
the predicted forgery localization map.

3.2. Region Message Passing Controller

Most forged images are carefully processed to hide tam-
pering artifacts, making it challenging to model inconsis-
tencies in the RGB branch. To overcome this problem, the
edges between the forged and authentic regions are utilized
to control the message passing explicitly.

The edge feature Ge ∈ RHe×We×1 comes from the edge
reconstruction block (described in detail in the next subsec-
tion), where He = Hs and We = Ws. First, we calculate
the relationship between two node features Pi, Pj of theGE

using an algorithm similar to XNOR gate:

XN(Pi, Pj) =

{
0 Inside and outside the edges
1 On the same side of edges.

(1)

If two nodes are inside and outside the edge respectively,
then their XN is set to 0. For each of the N (N = He ×
We) nodes features, we calculate its XN, thus generating a
matrix Ae ∈ RN×N .

Next, we apply graph learning to process the Gr ∈
RHs×Ws×Cs . Following GAT [45], we calculate the sim-
ilarity between two nodes as attention coefficients:

αi,j = ψ (xi)
T
ψ′ (xj) , (2)

where ψ,ψ′ denotes two learnable linear transformations.
Specifically, we utilize ψ = Wx and ψ′ = W ′x, where
W ∈ RCs×Cs and W ′ ∈ RCs×Cs are both weight ma-
trixes. To make coefficients easier to compare across differ-
ent nodes, we normalize them using the softmax function:

Ari,j =
exp (αi,j)∑N
j=1 exp (αi,j)

, (3)

where Ar ∈ RN×N is the preliminary adjacency matrix. It
reflects the relationship between any two nodes in the fea-

ture map. Larger values represent a greater flow of informa-
tion between two nodes. In order to realize message passing
control better, a method of dynamically adjusting the adja-
cency matrix is adopted. Specifically, if two nodes are on
and off the boundary respectively, their adjacency is broken
due to the dynamic adjustment of the adjacency matrix. In
practice, the adjacency matrix is recalculated as follows:

A′
r = Ar ⊙Ae, (4)

where ⊙ is the Hadamard product. A′
r ∈ RN×N re-models

the weights between nodes in the feature map and severs the
connections between the forged and real regions.

Once the adjacency matrix is obtained, it is weighted by
the learnable attention weights. Then the original nodes are
updated with the following:

Zr = ReLU (A′
rG

′
rWz) , (5)

where Zr ∈ RN×Cs is RGB features after graph reasoning,
Wz ∈ RCs×Cs is the learnable parameter andG′

r ∈ RN×Cs

is the graph representation transformed by Gr.
It is worth noting that this work not only introduces the

idea of controlling the message passing in image forgery
localization for the first time, but also the approach imple-
mented is different from previous research [12, 20]. BFP
[12] uses directed acyclic graphs (DAG) for feature propa-
gation and introduces boundary information into the propa-
gation to control the message passing between different seg-
ments. However, it has to scan the image pixel by pixel and
requires a lot of loops, causing it difficult to implement in
real-world applications. BGC [20] emphasizes reducing the
weights of the edges and does not really focus on the mes-
sage passing between regions.

3.3. Edge Reconstruction

As described in the previous section, the Edge-aware
Message Passing Control Graph requires accurate edge in-
formation. Designing such an edge-access network is non-
trivial. The main challenge is how to learn edge information
from the coarse feature. To this end, a novel approach to
edge reconstruction is proposed. Specifically, we started by
using the Sobel layer [5] to enhance the edge-related pat-
terns in Gr ∈ RHs×Ws×Cs ,

Gc = Gr ⊙ σ (Norm (Sobel(Gr)) , (6)

where Norm is L2 Normalization, σ is Sigmoid and Sobel
is the SobelConv [5].

Then, we explore a Context-Enhanced Graph (CEG), ex-
tracting the local and global features separately for Gc ∈
RHs×Ws×Cs . Specifically, the local information is ex-
tracted by the convolutional layers [5]. For global infor-
mation, the contextual information of the feature map is en-
coded as the adjacency matrix Ac ∈ RN×N in a simple and
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efficient way. As shown in Figure 3, Ac is generated by a
specially designed adjacency matrix learner which consists
of two 1× 1 convolution layers. The process is written as

Ac = Norm (Conv (Conv (G′
c))) , (7)

where G′
c ∈ RN×Cs is reshaped by Gc. Given the node

features of G′
c, we first squeeze the feature dimensions by

a 1 × 1 convolution layer. Then, another convolution layer
with 1 × 1 kernel is used to transfer the N-dimension fea-
ture vector into the N ×N adjacency matrix. In addition,
L2 Normalization is applied to each row of Ac to facilitate
stable optimization. Next, we use this adjacency matrix to
complete the graph reasoning. In this way, we can obtain a
global feature map. The process can be written as

Global (G′
c) = AcG

′
cWc, (8)

where Wc ∈ RCs×Cs is the learnable parameter. To
match with the local information dimension, we re-
shape Global (G′

c) ∈ RN×Cs back to Global′ (G′
c) ∈

RHs×Ws×Cs . Then combining the local and global in-
formation, we can obtain the edge probability map Gp ∈
RHs×Ws×1:

Gp = σ (C (Cat (Local (Gc) ,Global′ (G′
c)))) , (9)

where σ denotes the Sigmoid, C is a 1×1 convolution layer,
and Local contains ReLU and two convolutional layers.

Furthermore, in order to determine the edges, a thresh-
old needs to be determined to binarize the probability map.
Most previous studies have used fixed thresholds, and the
process is non-differentiable. Inspired by [30], we utilize
a variable threshold map which is adaptive for each point
on the probability map Gp. Besides, we propose a variant
of the Sigmoid function to complete the binarization, which
is capable of participating in the backpropagation involved.
Binarize threshold adjustment is achieved by translating the

Sigmoid function along the x-axis. Therefore, we explore
the threshold-adaptive differentiable binarization (TDB) for
edge reconstruction. It is computed as follows:

Ge =
1

1 + e−k(Gp−τ(Gp))
, (10)

where τ denotes the learnable transformation, which in
practice is 3 × 3 convolution operators, and k is the am-
plifying factor. In particular, k is set to 500 empirically.

3.4. Branch Fusion

Following most studies [5,22,55,62], we also employ the
noise branch. However, this is not the focus of this work,
so we have used some common methods. As in Figure 2,
the noise is extracted with BayarConv [55]. For the fusion
of the two branches, we follow [5] and adopt the Dual At-
tention (DA) [15]. DA includes channel attention module
(CAM) and position attention module (PAM). It can effec-
tively fuse two branches. The process can be written as

Go = DA(Gz, Gn), (11)

where Gz ∈ RHs×Ws×Cs is reshaped by the Zr. Finally,
we transform Go ∈ RHs×Ws×1 with bilinear upsampling
into the final predicted mask Gout ∈ RH×W×1.

3.5. Optimization

As shown in Figure 2, we calculate the loss function for
three components: the final prediction Gout ∈ RH×W×1,
the binary edge prediction Ge ∈ RHe×We×1 and the edge
probability map Gp ∈ RHe×We×1. For edge loss, the
ground-truth edge E ∈ RH×W×1 is downsampled to a
smaller size E′ ∈ RHe×We×1to match Ge, Gp. This strat-
egy outperforms upsampling Ge, Gp in terms of computa-
tional cost and performance. The overall loss function can
be written as:

L = λ1L (Y,Gout)+λ2L (E′,Ge)+λ3L (E′,Gp) , (12)

where L denotes the Dice loss [5], Y ∈ RH×W×1 is the
ground-truth mask, and λ1, λ2, λ3 are the parameters to bal-
ance the three terms in loss function (λ1+λ2+λ3 = 1). In
our setting, they are set as 0.50, 0.25 and 0.25 respectively.

4. Experiments
4.1. Experimental Setup

Pre-training Data We create a sizable image tampering
dataset and use it to pre-train our model. This dataset in-
cludes three categories: 1) splicing, 2) copy-move, 3) re-
moval. For splicing, we use the MS COCO [31] to generate
spliced images, where one annotated region is randomly se-
lected per image and pasted into a different image after sev-
eral transformations. We use the same transformation as [5],
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Method Data Columbia Coverage CASIA NIST16 IMD20

ManTraNet 64K 82.4 81.9 81.7 79.5 74.8
SPAN 96k 93.6 92.2 79.7 84.0 75.0

PSCCNet 100k 98.2 84.7 82.9 85.5 80.6
ObjectFormer 62K 95.5 92.8 84.3 87.2 82.1

Ours 60K 96.8 94.4 87.6 89.5 85.6

Table 1. Comparisons of manipulation localization AUC (%)
scores of different pre-trained models.

including the scale, rotation, shift, and luminance changes.
Since the spliced region is not always an object, we create
random outlines using the Bezier curve [38] and fill them
to create splicing masks. For copy-move, the datasets from
MS COCO and [53] are adopted. For removal, we adopt the
SOTA inpainting method [29] to fill one annotated region
that is randomly removed from each chosen MS COCO im-
age. We randomly add Gaussian noise or apply the JPEG
compression algorithm to the generated data to resemble the
visual quality of images in real situations.
Testing Datasets Following [46], we evaluate our model
on CASIA [13] dataset, Coverage [49] dataset, Columbia
[19] dataset, NIST16 [17] dataset and IMD20 [40] dataset.
Specifically, CASIA [13], which contains two types of tam-
pered images (splicing and copy-move), is widely used in
the image forgery field. The database V1.0 has fixed size
tampered images, which are generated only by using crop-
and-paste operation under Adobe Photoshop. The database
v2.0 is more comprehensive and challenging, and most
tampered examples are generated with post-processing.
COVER [49] provides 100 images, and all of them are gen-
erated by copy-move tampering technique. Columbia [19]
consists of 180 splicing images, whose size ranges from
757 × 568 to 1152 × 568. In detail, the tampered images
in Columbia are all uncompressed and without any post-
processing. NIST16 [17] is a high-quality dataset. This
dataset contains three types of tampering, and some re-
gions of manipulation are difficult for humans to identify.
IMD20 [40] collects real-life manipulated images from the
Internet, and involves all three manipulations as well. We
apply the same training/testing splits as [22, 46, 62] to fine-
tune our model for fair comparisons.
Evaluation Metrics To quantify the localization perfor-
mance, following previous works [22, 46], we use pixel-
level Area Under Curve (AUC) and F1 score on manipu-
lation masks. And we adopt the Equal Error Rate (EER)
threshold to binarize masks because binary masks are nec-
essary to calculate F1 scores.
Implementation Details The input images are resized to
512 × 512. In this work, the backbone is ResNet-50 [18],
pre-trained on ImageNet [11]. Implemented by PyTorch,
our model is trained with GeForce GTX 3090. We use

Methods Coverage CASIA NIST16
AUC F1 AUC F1 AUC F1

J-LSTM 61.4 - - - 76.4 -
H-LSTM 71.2 - - - 79.4 -
RGB-N 81.7 43.7 79.5 40.8 93.7 72.2
SPAN 93.7 55.8 83.8 38.2 96.1 58.2

PSCCNet 94.1 72.3 87.5 55.4 99.1 74.2
ObjectFormer 95.7 75.8 88.2 57.9 99.6 82.4

Ours 98.4 77.3 90.4 58.6 99.7 83.6

Table 2. Comparison of manipulation localization results using
fine-tuned models.

Distortion SPAN ObjectFormer Ours

no distortion 83.95 87.18 89.49
Resize(0.78×) 83.24 87.17 89.33 0.16↓
Resize(0.25×) 80.32 86.33 87.72 1.77↓
Blur(k = 3) 83.10 85.97 89.22 0.27↓
Blur(k = 15) 79.15 80.26 87.13 2.36↓
Noise(σ = 3) 75.17 79.58 88.25 1.24↓
Noise(σ = 15) 67.28 78.15 83.40 6.09↓
Compress(q = 100) 83.59 86.37 89.42 0.07↓
Compress(q = 50) 80.68 86.24 88.82 0.67↓

Table 3. Localization performance on NIST16 dataset under vari-
ous distortions. AUC scores are reported (in %), (Blur: Gaussian-
Blur, Noise: GaussianNoise, Compress: JPEGCompress.)

Adam as the optimizer, and the learning rate decays from
10−4 to 10−7. We train 100 epochs with a batch size of 8,
and the learning rate decays by 10 times every 30 epochs.

4.2. Comparison with the State-of-the-Art Methods

Following SPAN [22] and ObjectFormer [46], our model
is compared with other state-of-the-art tampering localiza-
tion methods under two settings: 1) training on the syn-
thetic dataset and evaluating on the full test datasets, and
2) fine-tuning the pre-trained model on the training split of
test datasets and evaluating on their test split. The pre-
trained model will demonstrate each method’s generaliz-
ability, and the fine-tuned model will demonstrate how well
each method performs locally once the domain discrepancy
has been significantly reduced.
Pre-trained Model Table 1 shows the localization per-
formance of pre-trained models for different methods on
four standard datasets under pixel-level AUC. We com-
pare our model ERMPC with MantraNet [55], SPAN [22],
PSCCNet [35], and ObjectFormer [46] when evaluating
pre-trained models. The pre-trained ERMPC achieves
the best localization performance on Coverage, CASIA,
NIST16 and IMD20, and ranks second on Columbia. Es-
pecially, ERMPC achieves 94.4% on the copy-move dataset
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Figure 4. Visualization of the predicted manipulation mask by different methods. From top to bottom, we show forged images, GT masks,
predictions of ManTraNet, SPAN, PSCC-Net, and ours.

Variants CASIA NIST16
AUC F1 AUC F1

Baseline 71.6 38.3 77.1 52.6
w/o RMPC 76.9 45.6 86.4 60.7
w/o CEG 85.1 51.5 93.4 75.3
w/o TDB 88.6 57.3 98.2 81.9

Ours 90.4 58.6 99.7 83.6

Table 4. Ablation results on CASIA and NIST16 dataset using
different variants of ERMPC. AUC and F1 scores (%) are reported.

COVER, whose image forgery regions are indistinguishable
from the background. This validates our model owns the
superior ability to control message passing between two re-
gions(forged and authentic). We fail to achieve the best per-
formance on Columbia, falling behind PSCCNet 1.4% un-
der AUC. We contend that the explanation may be that the
distribution of their synthesized training data closely resem-
bles that of the Columbia dataset. This is further supported
by the results in Table 2, which show that ERMPC performs
better than PSCCNet in terms of both AUC and F1 scores.
Furthermore, it is important to note that ERMPC attains de-
cent results with less pre-training data.
Fine-tuned Model The fine-tuned models, which are initi-
ated with the network weights of the pretrained model, will
be trained on the training split of Coverage, CASIA, and

200 400 600 800 1000
Number of k

88

90

92
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98

100
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U
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CASIA
COVER
NIST16

Figure 5. The effect of parameter k in TDB

NIST16 datasets, respectively. We evaluate the fine-tuned
models of different methods in Table 2. As for AUC and
F1, our model achieves significant performance gains. This
validates that ERMPC could capture subtle tampering arti-
facts by controlling the message passing between two re-
gions (forged and authentic) in the feature map.

4.3. Robustness Evaluation

We degrade the raw manipulated images from NIST16
using the distortion settings in [46] to analyze the robust-
ness of ERMPC for forgery localization. These distor-
tions types include scaling images to various scales (Re-
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Forged Mask w/o RMPC w RMPC Prediction

Figure 6. Visualization of message passing controller. From left to
right, we display the forged images, masks, GradCAM [42] of the
feature map without (w/o) and with (w) RMPC, and predictions.

size), applying Gaussian blur with a kernel size k (Gaus-
sianBlur), adding Gaussian noise with a standard devia-
tion σ (GaussianNoise), and performing JPEG compres-
sion with a quality factor q (JPEGCompress). We com-
pare the forgery localization performance (AUC scores) of
our pre-trained models with SPAN [22] and ObjectFormer
on these corrupted data and report the results in Table 3.
ERMPC demonstrates more resistance to various distortion
techniques. It is worth noting that JPEG compression is
commonly performed when uploading images to social me-
dia. Our model ERMPC performs significantly better on
compressed images than other methods.

4.4. Ablation Analysis

The Region Message Passing Controller (RMPC) mod-
ule of our method ERMPC is designed to weaken the mes-
sage passing between the forged and authentic regions. The
Context-Enhanced Graph (CEG) encodes global informa-
tion along the node to obtain a better edge probability
map, while the Threshold-adaptive Differentiable Binariza-
tion (TDB) adaptively performs the binarization process for
learnable edges. In order to evaluate the effectiveness of
RMPC, CEG and TDB, we remove them separately from
ERMPC and evaluate the forgery localization performance
on CASIA and NIST16 datasets.

Table 4 presents the quantitative outcomes. The base-
line denotes that we just use ResNet-50. It can be seen that
without TDB, the AUC scores decrease by 2.0 % on CASIA
and 1.5 % on NIST16, while without CEG, the AUC scores
decrease by 5.9 % on CASIA and 6.3 % on NIST16. Fur-
thermore, when RMPC is discarded, serious performance
degradation in Table 4, i.e., 14.9% in terms of AUC and
22.2% in terms of F1 on CASIA can be observed.

In Figure 5, we show the different values of parameters
k in threshold-adaptive differentiable binarization to verify
its effect over three datasets. With its increasing, the curve

Forged Mask w/o ER w ER Prediction

Figure 7. Visualization of edge reconstruction. From left to right,
we display the forged images, masks, the features without (w/o)
and with (w) the edge reconstruction module, and prediction.

of binarization becomes steeper. Moreover, being smaller
is inadequate for weakening message passing, while being
larger will destroy the adaptive capacity of the network. It
is obvious that the setting of 500 is the optimal solution.

4.5. Visualization Results

Qualitative results. As shown in Figure 4, We provide pre-
dicted forgery masks of various methods. Since the source
code of ObjectFormer [46] is not available, their predictions
are not available. The results demonstrate that our method
could not only locate the tampering regions more accurately
but also develop sharp boundaries. It benefits from the ex-
plicit modeling of inconsistencies and the full exploitation
of edges by our method.
Visualization of message passing controller. To verify
the usefulness of the region message passing controller
(RMPC), we show the change of features before and after
the controller in Figure 6. It is clear that RMPC facilitates
the learning of forgery features and prevents false alarms.
Specifically, the network without RMPC will make false
judgments about objects that are similar to the forgery.
Visualization of edge reconstruction. To verify the effect
of the edge reconstruction (ER) module, the change of fea-
tures before and after EG is shown in Figure 7. The re-
sults demonstrate that the EG can effectively acquire accu-
rate edges, thus helping our model to perform well.

5. Conclusion
In this paper, we propose a novel Image Forgery Lo-

calization framework with a two-step Edge-aware Regional
Message Passing Controlling strategy. In detail, the first
step is to account for fully exploiting the edge informa-
tion. In the second step, guided by the learnable edges, an
edge-aware dynamic graph is devised to weaken the mes-
sage passing between the forged and authentic regions. Our
paper provides a new research strategy to solve the misjudg-
ment problem in the field of IFL. Extensive experimental
results on several benchmarks demonstrate the effectiveness
of the proposed algorithm.
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