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Abstract

The aim of this paper is to propose a mechanism to
efficiently and explicitly model image hierarchies in the
global, regional, and local range for image restoration. To
achieve that, we start by analyzing two important prop-
erties of natural images including cross-scale similarity
and anisotropic image features. Inspired by that, we pro-
pose the anchored stripe self-attention which achieves a
good balance between the space and time complexity of
self-attention and the modelling capacity beyond the re-
gional range. Then we propose a new network architec-
ture dubbed GRL to explicitly model image hierarchies in
the Global, Regional, and Local range via anchored stripe
self-attention, window self-attention, and channel attention
enhanced convolution. Finally, the proposed network is ap-
plied to 7 image restoration types, covering both real and
synthetic settings. The proposed method sets the new state-
of-the-art for several of those. Code will be available at
https://github.com/ofsoundof/GRL-Image-
Restoration.git.

1. Introduction
Image restoration aims at recovering high-quality images

from low-quality ones, resulting from an image degrada-
tion processes such as blurring, sub-sampling, noise cor-
ruption, and JPEG compression. Image restoration is an ill-
posed inverse problem since important content information
about the image is missing during the image degradation
processes. Thus, in order to recover a high-quality image,
the rich information exhibited in the degraded image should
be fully exploited.

Natural images contain a hierarchy of features at global,
regional, and local ranges which could be used by deep neu-
ral networks for image restoration. First, the local range
covers a span of several pixels and typical features are edges
and local colors. To model such local features, convo-
lutional neural networks (CNNs) with small kernels (e.g.
3 × 3) are utilized. Second, the regional range is charac-
terized by a window with tens of pixels. This range of pix-

(a) bridge from ICB, 2749 × 4049

(b) 0848x4 from DIV2K, 1020 × 768

(c) 073 from Urban100, 1024 × 765

Figure 1. Natural images show a hierarchy of features in a global,
regional, and local range. The local (edges, colors) and regional
features (the pink squares) could be well modelled by CNNs and
window self-attention. By contrast, it is difficult to efficiently and
explicitly model the rich global features (cyan rectangles).

els can cover small objects and components of large objects
(pink squares in Fig. 1). Due to the larger range, modelling
the regional features (consistency, similarity) explicitly with
large-kernel CNNs would be inefficient in both parameters
and computation. Instead, transformers with a window at-
tention mechanism are well suited for this task. Third, be-
yond local and regional, some features have a global span
(cyan rectangles in Fig. 1), incl. but not limited to symme-
try, multi-scale pattern repetition (Fig. 1a), same scale tex-
ture similarity (Fig. 1b), and structural similarity and con-
sistency in large objects and content (Fig. 1c). To model
features at this range, global image understanding is needed.

Different from the local and regional range features,
there are two major challenges to model the global range
features. Firstly, existing image restoration networks based
on convolutions and window attention could not capture
long-range dependencies explicitly by using a single com-
putational module. Although non-local operations are used
in some works, they are either used sparsely in the network
or applied to small image crops. Thus, global image under-
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Figure 2. The proposed GRL achieves state-of-the-art performances on various image restoration tasks. Details provided in Sec. 5.

standing still mainly happens via progressive propagation
of features through repeated computational modules. Sec-
ondly, the increasing resolution of today’s images poses a
challenge for long-range dependency modelling. High im-
age resolution leads to a computational burden associated
with pairwise pixel comparisons and similarity searches.

The aforementioned discussion leads to a series of re-
search questions: 1) how to efficiently model global range
features in high-dimensional images for image restora-
tion; 2) how to model image hierarchies (local, regional,
global) explicitly by a single computational module for
high-dimensional image restoration; 3) and how can this
joint modelling lead to a uniform performance improvement
for different image restoration tasks. The paper tries to an-
swer these questions in Sec. 3, Sec. 4, and Sec. 5, resp.

First, we propose anchored stripe self-attention for effi-
cient dependency modelling beyond the regional range. The
proposed self-attention is inspired by two properties of nat-
ural images including cross-scale similarity and anisotropic
image features. Cross-scale similarity means that struc-
tures in a natural image are replicated at different scales.
Inspired by that, we propose to use anchors as an inter-
mediate to approximate the exact attention map between
queries and keys in self-attention. Since the anchors sum-
marize image information into a lower-dimensional space,
the space and time complexity of self-attention can be sig-
nificantly reduced. In addition, based on the observation
of anisotropic image features, we propose to conduct an-
chored self-attention within vertical and horizontal stripes.
Due to the anisotropic shrinkage of the attention range, a
further reduction of complexity is achieved. And the com-
bination of axial stripes also ensures a global view of the
image content. When equipped with the stripe shift oper-
ation, the four stripe self-attention modes (horizontal, ver-
tical, shifted horizontal, shifted vertical) achieves a good
balance between computational complexity and the capac-
ity of global range dependency modelling. Furthermore, the
proposed anchored stripe self-attention is analyzed from the
perspective of low-rankness and similarity propagation.

Secondly, a new transformer network is proposed to ex-
plicitly model global, regional, and local range dependen-
cies in a single computational module. The hierarchical
modelling of images is achieved by the parallel computa-
tion of the proposed anchored stripe self-attention, window
self-attention, and channel-attention enhanced convolution.
And the transformer architecture is dubbed GRL.

Thirdly, the proposed GRL transformer is applied to var-
ious image restoration tasks. Those tasks could be classi-
fied into three settings based on the availability of data in-
cluding real image restoration, synthetic image restoration,
and data synthesis based real image restoration. In total,
seven tasks are explored for the proposed network includ-
ing image super-resolution, image denoising, JPEG com-
pression artifacts removal, demosaicking, real image super-
resolution, single image motion deblurring, and defocus de-
blurring. As shown in Fig. 2, the proposed network shows
promising results on the investigated tasks.

2. Related Works

Convolution for local range modelling. One of the
basic assumptions for example and learning-based image
restoration is that repetitive patterns could exist in either the
same or different images [17] and that the redundant infor-
mation they carry could help to restore the local patches.
Thus, it helps if repetitive patterns could be detected and
modelled [13, 33, 44, 61]. This intuition matches the com-
putational procedure of convolution well, which slides the
kernel across the image and detects local patterns similar to
the learnable kernels. By stacking multiple convolutional
layers, the receptive field of a CNN gets progressively en-
larged and rich image features are captured. Since the ad-
vent of deep learning, great efforts have been made to de-
sign CNNs for image restoration [26, 39, 71, 72, 86].

Non-local and global priors. Besides the local features,
it is also important to model the non-local and global image
priors. The early work of non-local means serves this pur-
pose, which computes an output pixel as the weighted sum
of all the pixels within the image [4]. Inspired by that, later
works have been developed to utilize the repetitive patterns
in a non-local range for image denoising [10] and super-
resolution [22]. Apart from the traditional methods, non-
local operations are also introduced into deep neural net-
works for video classification [70] and image SR [45, 85].

Besides the non-local operations, self-attention has been
developed to model the global range dependencies [12, 68].
However, the computational complexity of global self-
attention grows quadratically with the number of tokens.
Thus, the increase in efficiency of global self-attention is
investigated by several works [7, 9, 31, 35, 69].

Regional self-attention. Among the methods for ac-
celerating transformers, regional self-attention appears to
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be promising. The idea is proposed in the pioneering
works [54, 56] and improved as shifted window atten-
tion [47, 48]. Inspired by the success of shifted window
attention for visual recognition and perception, this method
is also used for image restoration [6, 42, 43]. Despite the
good performance of the window attention mechanism, it
is pointed out in recent works that a wider range of pixel
involvement could lead to better image restoration [6, 23].
Thus, in this paper, we try to propose a method that effi-
ciently brings the modelling capacity of self-attention be-
yond the regional range.

3. Motivation
3.1. Self-attention for dependency modelling

Self-attention is good at modelling long-range depen-
dencies explicitly and it facilitates the propagation of infor-
mation across the modelled dependencies. This operation
allows a token to be compared with all the other tokens.
The output token is computed as a weighted sum of all the
tokens based on a similarity comparison, i.e. ,

Y = Softmax
(
Q ·KT /

√
d
)
·V, (1)

where Q = X · WQ, K = X · WK , V = X · WV ,
WQ,WK ,WV ∈ Rd×d, and X,Y ∈ RN×d. N and d de-
note the number of tokens and the dimension of one token,
respectively. Additionally, M denotes the attention map,
i.e. M = Softmax(Q ·KT /

√
d).

The time complexity of self-attention is O(N2d) and the
space complexity is dominated by the term O(N2) of the at-
tention map M. The computational complexity and mem-
ory footprint of self-attention grow quadratically with the
number of tokens. Thus, self-attention can easily become
a computation bottleneck for images where the number of
tokens is the multiplication of the two dimensions of the
feature map. To overcome this problem, it is proposed to
apply self-attention within a window. In this way, the num-
ber of tokens that participate in self-attention is significantly
reduced and the computational burden is also lifted.

The problem of window self-attention is that the mod-
elling capacity of the operation is limited to a regional range
due to the small window size (8×8 [43]). On the other hand,
it is shown in recent works [6,23] that even a slight increase
in window size can lead to better image restoration. Thus,
it can be conjectured that modelling dependencies beyond
the regional range is still important for image restoration.
Hence, it remained to be investigated how to maintain the
ability for long-range dependency modelling under a con-
trolled computational budget.

3.2. Motivation I: cross-scale similarity

The attention map M plays an essential role in self-
attention as it captures the similarity between every paired

Figure 3. Cross-scale similarity. (c) and (d) shows the attention
map between the selected pixels and the example high-resolution
image. Although the cyan pixel in (a) and the red pixel in (b) are
from images with different resolutions, their attention map with
respect to the high-resolution image shows very similar structures.

pixels in the image. Thus, improving the efficiency of the
self-attention in Eq. (1) needs one to analyze the property
of the attention map. And we are inspired by a property of
images, i.e. cross-scale similarity. That is, the basic struc-
ture such as lines and edges of an image is kept in the dif-
ferent versions of the image with different scaling factors.
In Fig. 3, the attention map between pixels in an image is
shown. Particularly, the attention map between a pixel and
the whole image is visualized as a gray-scale heat map. As
shown, no matter whether the pixel comes from the high-
resolution image or the down-scaled version, the heat map
between the pixel and the high-resolution image shows the
basic structure of the image. And the heat maps in Fig. 3(c)
and Fig. 3(d) are very similar to each other.

Anchored self-attention. Inspired by the cross-scale
similarity shown in Fig. 3, we try to reduce the complexity
of the global self-attention in Eq. (1) by operating on images
with different resolutions and manipulating the number of
tokens, i.e. the N2 term in O(N2d). To achieve that, we
introduce an additional concept named anchors besides the
triplets of queries, keys, and values. The set of anchors is a
summary of the information in the image feature map and
has a lower dimensionality. Instead of conducting the simi-
larity comparison between the queries and keys directly, the
anchors act as an intermediate for the similarity compari-
son. Formally, the anchored self-attention is proposed as in
the following equation

Y = Me · Z = Me · (Md ·V) , (2)

Md = Softmax(A ·KT /
√
d), (3)

Me = Softmax(Q ·AT /
√
d), (4)

where M ≪ N , A ∈ RM×d is the anchor, Me ∈ RN×M

and Md ∈ RM×N denotes the attention map between the
query-anchor pair and anchor-key pair. The choice of the
operations to derive the anchors is investigated in the im-
plementation details of the ablation study of the paper.

Since the number of anchors is much smaller than the
number of the other tokens, the size of the resulting two
attention maps Me and Md are much smaller than the orig-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The image features in natural images are anisotropic.
Thus, it is not always necessary to employ the uniform global
range attention in all parts of the image.

inal attention map M in Eq. (1). Then the matrix multi-
plication in Eq. (2) is computed from the right hand. The
self-attention is first done for the anchors and keys. The
attention map Md distills the tokens V into an intermedi-
ate feature Z. Then the self-attention is done between the
queries and the anchors. The second attention map Me ex-
pands the size of the feature Z and recovers the information
in V. The computational complexity of the anchored self-
attention is reduced to O(NMd). And the space complex-
ity is reduced to O(NM).

3.3. Motivation II: anisotropic image features

The anchored self-attention could reduce the space and
time complexity of the self-attention in Eq. (1) significantly
by removing the quadratic term N2. Yet, for image restora-
tion tasks, the remaining term N is the multiplication of the
width and height of the image. Thus, the complexity of the
anchored self-attention in Eq. (2) could still be unafford-
able due to the large term N . Thus, it is desirable to further
reduce the complexity of the anchored self-attention.

To achieve that goal, we resort to another characteris-
tic of natural images, i.e. , the anisotropic image features.
As shown in Fig. 4, the natural image features such as the
single object in Fig. 4(c)&(d), the multi-scale similarity in
Fig. 4(h), symmetry in Fig. 4(e)&(g) span in an anisotropic
manner. Thus, isotropic global range attention across the
entire image is redundant to capture the anisotropic image
features. And in response to that, we propose to conduct
attention within the anisotropic stripes shown in Fig. 4.

Stripe attention mechanism. The proposed stripe atten-
tion mechanism consists of four modes including the hori-
zontal stripe, the vertical stripe, the shifted horizontal stripe,
and the shifted vertical stripe. The horizontal and vertical
stripe attention mechanisms could be employed alternately
across a transformer network. In this way, a trade-off is
made between maintaining the global range modelling ca-
pacity and controlling the computation complexity of global
self-attention. Thus, in combination with the concept of
anchors, we propose the anchored stripe self-attention.

Figure 5. The visualization of the (a) queries, (b) anchors, and (c)
keys from the different layers of the proposed network. (d) shows
the attention map approximated by Eq. (2), i.e. Me·Md. (e) shows
the exact attention map M computed in Eq. (1).

For this attention mechanism, efficient self-attention is con-
ducted inside the vertical and horizontal stripes with the
help of the introduced anchors.

3.4. Discussion

The proposed anchored stripe self-attention mechanism
is closely related to two other concepts including low-
rankness and similarity propagation. And we detail the re-
lationship in this subsection as follows.

Low-rankness of attention map. By comparing the
self-attention mechanisms in Eq. (1) and Eq. (2), we can
easily found out that the original attention map M is de-
composed into small attention maps Md and Me whose
rank is no larger than M . And the essence here is to provide
the low-rank approximation without calculating the original
attention map first. For the success of the anchored self-
attention, it is important to ensure that with the anchors as
the intermediate, the approximated attention map is similar
to the original attention map. Thus, an additional analysis
is provided in Fig. 5.

First, by observing the queries, anchors, and keys, we
can conclude that the anchors have a very similar structure
to the query and key. Thus, the anchors are a good summary
of the information in the queries and keys. And approxi-
mating self-attention with anchors as intermediate seems to
be plausible. Additionally, the approximate attention map
Me ·Md and the exact attention map M are also compared
in Fig. 5. As shown, the approximate attention map keeps
the major structure in the exact attention map, which is con-
firmed by the large Pearson correlation coefficients (0.9505)
between the two attention maps. Thus, the quality of the an-
chored self-attention is guaranteed.

Metric and similarity propagation. From another
perspective, in the proposed anchored self-attention, the
queries and keys are first compared with the anchors and

18281



Figure 6. Network architecture. (a) The representation learning module contains stages of transformer layers. (b) The transformer layer is
equipped with global, regional, and local modelling blocks. (c) The anchored stripe attention helps to attend beyond regional ranges.

then the query-key similarity is computed. Thus, this com-
putation procedure needs to propagate the query-anchor and
key-anchor similarity to the query-key pair. And similarity
propagation is related to the triangle inequality in a metric
space [19, 27, 73]. A mathematical metric needs to satisfy
several conditions including the essential triangle inequal-
ity, d(q,k) ≤ d(a,q) + d(a,k), where d(·, ·) defines a
metric between two entities. Thus, the q / k distance is
upper-bounded by the sum of the a / q distance and the
a / k distance. This implies that if a is similar (close) to
both q and k, then q and k should also be similar (close)
to each other. Yet, the similarity measure in Eq. (1) and
Eq. (2) is defined by the dot product instead of the dis-
tance between tokens, which does not satisfy the triangle
inequality. Thus, similarity propagation could not be theo-
retically guaranteed. To study the influence of the similarity
measure, an ablation study is conducted and the results are
shown in Sec. 5. Dot product and distance are compared as
a similarity measure. According to the results, although the
dot product does not strictly obey the triangle inequality, it
still guarantees better image restoration results. Thus, we
can conclude empirically that the dot product is enough for
similarity propagation.

4. Modelling Image Hierarchies
In this section, we answer the second research ques-

tion described in the introduction, that is, how to explicitly
model image hierarchies by a single computational module.

In response to that, we propose the GRL network architec-
ture that incorporates global range, regional range, and local
range image modelling capacities.

Network architecture. The overall architecture of the
proposed network is shown in Fig. 6. The network takes
a degraded low-quality image as input, processes the im-
age inside the network, and outputs a recovered high-quality
image. In detail, the network contains three parts. 1) The
feature extraction layer is implemented as a simple convo-
lution and converts the input image into feature maps. 2)
The representation learning component enriches the infor-
mation extracted in the previous operation. The transformer
stage consists of several transformer layers and ends with
a convolution layer. The dimension of the feature map is
maintained across the whole representation learning mod-
ule. Skip connection is applied to both the transformer stage
and the representation learning module. 3) The image re-
construction module takes the rich features calculated by
the previous operations and estimates a recovered image.

Transformer Layer. This layer in Fig. 6b is the key
component that provides the hierarchical image modelling
capacity in the global, regional, and local range. This layer
first processes the input feature map by the parallel self-
attention module and channel attention enhanced convolu-
tions. The convolution branch serves to capture local struc-
tures in the input feature map. On the other hand, the self-
attention module contains the window attention proposed
in Swin transformer V2 [47] and the anchored stripe atten-
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Table 1. Defocus deblurring results. S: single-image defocus deblurring. D: dual-pixel defocus deblurring.

Method Indoor Scenes Outdoor Scenes Combined
PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓

EBDBS [30] 25.77 0.772 0.040 0.297 21.25 0.599 0.058 0.373 23.45 0.683 0.049 0.336
DMENetS [40] 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349
JNBS [60] 26.73 0.828 0.031 0.273 21.10 0.608 0.064 0.355 23.84 0.715 0.048 0.315
DPDNetS [1] 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277
KPACS [62] 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227
IFANS [41] 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217
RestormerS [76] 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178
GRLS-B 29.06 0.886 0.024 0.139 23.45 0.761 0.049 0.196 26.18 0.822 0.037 0.168

DPDNetD [1] 27.48 0.849 0.029 0.189 22.90 0.726 0.052 0.255 25.13 0.786 0.041 0.223
RDPDD [2] 28.10 0.843 0.027 0.210 22.82 0.704 0.053 0.298 25.39 0.772 0.040 0.255
UformerD [74] 28.23 0.860 0.026 0.199 23.10 0.728 0.051 0.285 25.65 0.795 0.039 0.243
IFAND [41] 28.66 0.868 0.025 0.172 23.46 0.743 0.049 0.240 25.99 0.804 0.037 0.207
RestormerD [76] 29.48 0.895 0.023 0.134 23.97 0.773 0.047 0.175 26.66 0.833 0.035 0.155
GRLD-B 29.83 0.903 0.022 0.114 24.39 0.795 0.045 0.150 27.04 0.847 0.034 0.133

Table 2. Single-image motion deblurring results. GoPro dataset
[51] is used for training.

GoPro [51] HIDE [59] Average
Method PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑

DeblurGAN [37] 28.70 / 0.858 24.51 / 0.871 26.61 / 0.865
Nah et al. [51] 29.08 / 0.914 25.73 / 0.874 27.41 / 0.894
DeblurGAN-v2 [38] 29.55 / 0.934 26.61 / 0.875 28.08 / 0.905
SRN [64] 30.26 / 0.934 28.36 / 0.915 29.31 / 0.925
Gao et al. [20] 30.90 / 0.935 29.11 / 0.913 30.01 / 0.924
DBGAN [81] 31.10 / 0.942 28.94 / 0.915 30.02 / 0.929
MT-RNN [53] 31.15 / 0.945 29.15 / 0.918 30.15 / 0.932
DMPHN [79] 31.20 / 0.940 29.09 / 0.924 30.15 / 0.932
Suin et al. [63] 31.85 / 0.948 29.98 / 0.930 30.92 / 0.939
SPAIR [55] 32.06 / 0.953 30.29 / 0.931 31.18 / 0.942
MIMO-UNet+ [8] 32.45 / 0.957 29.99 / 0.930 31.22 / 0.944
IPT [5] 32.52 / - - / - - / -
MPRNet [77] 32.66 / 0.959 30.96 / 0.939 31.81 / 0.949
Restormer [76] 32.92 / 0.961 31.22 / 0.942 32.07 / 0.952
GRL-B (ours) 33.93 / 0.968 31.65 / 0.947 32.79 / 0.958

Table 3. Single-image motion deblurring results on RealBlur [57]
dataset. The networks are trained and tested on RealBlur dataset.

RealBlur-R [57] RealBlur-J [57] Average
Method PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑

DeblurGAN-v2 [38] 36.44 / 0.935 29.69 / 0.870 33.07 / 0.903
SRN [64] 38.65 / 0.965 31.38 / 0.909 35.02 / 0.937
MPRNet [77] 39.31 / 0.972 31.76 / 0.922 35.54 / 0.947
MIMO-UNet+ [8] - / - 32.05 / 0.921 - / -
MAXIM-3S [67] 39.45 / 0.962 32.84 / 0.935 36.15 / 0.949
BANet [66] 39.55 / 0.971 32.00 / 0.923 35.78 / 0.947
MSSNet [34] 39.76 / 0.972 32.10 / 0.928 35.93 / 0.950
Stripformer [65] 39.84 / 0.974 32.48 / 0.929 36.16 / 0.952
GRL-B (ours) 40.20 / 0.974 32.82 / 0.932 36.51 / 0.953

tion proposed in this paper. The feature map is split equally
along the channel dimension and concatenated along the
channel dimension again after the parallel processing within
the two attention modules. The window attention provides
the mechanism to capture the regional range dependencies.
Then the feature maps outputted by the convolution module
and the attention module are added to the input feature map,
which is processed by the following MLP module.

Anchored stripe self-attention. The operation of the
proposed anchored stripe attention is conducted according
to Eq. (2) and visualized in Fig. 6c. The dimension of differ-
ent features is also shown. The triplet of Q, K, V is derived
by plain linear projections. To summarize the information
into anchors, the anchor projection is implemented as an

average pooling layer followed by a linear projection. After
the anchor projection, the resolution of the image feature
map is down-scaled by a factor of s along both directions.
As shown in Fig. 6, the two attention maps Md and Me

play a similar role as the original attention map M but with
less space and time complexity.

5. Experimental Results
The experimental results are shown in this section. We

answer the third research question raised in the introduc-
tion by investigating the performance of the proposed net-
work on different image restoration tasks. Based on the
data type, the investigated tasks are classified into three
commonly used settings including 1) real image restora-
tion (single-image motion deblurring, defocus deblurring),
2) image restoration based on synthetic data (image denois-
ing, single image SR, JPEG compression artifact removal,
demosaicking), and 3) real image restoration based on data
synthesis. We provide three networks with different model
sizes including the tiny, small, and base versions (GRL-T,
GRL-S, GRL-B). For real and synthetic image restoration,
Adam optimizer and L1 loss are used to train the network
with an initial learning rate 2 × 10−4. More details about
the training dataset, training protocols, and additional visual
results are shown in the supplementary material.

5.1. Image deblurring

We first investigate the performance of the proposed net-
work on two real image restoration tasks including single-
image motion deblurring, and motion deblurring.
Single image motion deblurring. Tab. 2 and Tab. 3 shows
the experimental results for single image motion deblur-
ring on synthetic datasets (GoPro [51], HIDE [59]) and
real dataset (RealBlur-R [57]), respectively. Compared with
the previous state-of-the-art Restormer [76], the proposed
GRL achieves significant PSNR improvement of 1.01 dB
on the GoPro dataset. On the HIDE dataset, the PSNR im-
provement is 0.43 dB. Please note that the improvement is
achieved under fewer parameter budget. As shown in Tab. 4,
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Table 4. Color and grayscale image denoising results. Model complexity and prediction accuracy are shown for better comparison.

Method # Params [M]
Color Grayscale

CBSD68 [49] Kodak24 [16] McMaster [83] Urban100 [28] Set12 [82] BSD68 [49] Urban100 [28]
σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

DnCNN [32] 0.56 33.90 31.24 27.95 34.60 32.14 28.95 33.45 31.52 28.62 32.98 30.81 27.59 32.86 30.44 27.18 31.73 29.23 26.23 32.64 29.95 26.26
RNAN [85] 8.96 - - 28.27 - - 29.58 - - 29.72 - - 29.08 - - 27.70 - - 26.48 - - 27.65
IPT [5] 115.33 - - 28.39 - - 29.64 - - 29.98 - - 29.71 - - - - - - - - -
EDT-B [42] 11.48 34.39 31.76 28.56 35.37 32.94 29.87 35.61 33.34 30.25 35.22 33.07 30.16 - - - - - - - - -
DRUNet [80] 32.64 34.30 31.69 28.51 35.31 32.89 29.86 35.40 33.14 30.08 34.81 32.60 29.61 33.25 30.94 27.90 31.91 29.48 26.59 33.44 31.11 27.96
SwinIR [43] 11.75 34.42 31.78 28.56 35.34 32.89 29.79 35.61 33.20 30.22 35.13 32.90 29.82 33.36 31.01 27.91 31.97 29.50 26.58 33.70 31.30 27.98
Restormer [76] 26.13 34.40 31.79 28.60 35.47 33.04 30.01 35.61 33.34 30.30 35.13 32.96 30.02 33.42 31.08 28.00 31.96 29.52 26.62 33.79 31.46 28.29
GRL-T 0.88 34.30 31.66 28.45 35.24 32.78 29.67 35.49 33.18 30.06 35.08 32.84 29.78 33.29 30.92 27.78 31.90 29.43 26.49 33.66 31.23 27.89
GRL-S 3.12 34.36 31.72 28.51 35.32 32.88 29.77 35.59 33.29 30.18 35.24 33.07 30.09 33.36 31.02 27.91 31.93 29.47 26.54 33.84 31.49 28.24
GRL-B 19.81 34.45 31.82 28.62 35.43 33.02 29.93 35.73 33.46 30.36 35.54 33.35 30.46 33.47 31.12 28.03 32.00 29.54 26.60 34.09 31.80 28.59

Table 5. Classical image SR results. Results of both lightweight models and accurate models are summarized.

Method Scale # Params [M] Set5 [3] Set14 [78] BSD100 [49] Urban100 [28] Manga109 [50]
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

RCAN [84] ×2 15.44 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN [11] ×2 15.71 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
HAN [52] ×2 63.61 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
IPT [5] ×2 115.48 38.37 - 34.43 - 32.48 - 33.76 - - -
SwinIR [43] ×2 0.88 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
SwinIR [43] ×2 11.75 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
EDT [42] ×2 0.92 38.23 0.9615 33.99 0.9209 32.37 0.9021 32.98 0.9362 39.45 0.9789
EDT [42] ×2 11.48 38.63 0.9632 34.80 0.9273 32.62 0.9052 34.27 0.9456 40.37 0.9811
GRL-T (ours) ×2 0.89 38.27 0.9627 34.21 0.9258 32.42 0.9056 33.60 0.9411 39.61 0.9790
GRL-S (ours) ×2 3.34 38.37 0.9632 34.64 0.9280 32.52 0.9069 34.36 0.9463 39.84 0.9793
GRL-B (ours) ×2 20.05 38.67 0.9647 35.08 0.9303 32.67 0.9087 35.06 0.9505 40.67 0.9818

RCAN [84] ×4 15.59 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN [11] ×4 15.86 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
HAN [52] ×4 64.20 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
IPT [5] ×4 115.63 32.64 - 29.01 - 27.82 - 27.26 - - -
SwinIR [43] ×4 0.90 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
SwinIR [43] ×4 11.90 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
EDT [42] ×4 0.92 32.53 0.8991 28.88 0.7882 27.76 0.7433 26.71 0.8051 31.35 0.9180
EDT [42] ×4 11.63 33.06 0.9055 29.23 0.7971 27.99 0.7510 27.75 0.8317 32.39 0.9283
GRL-T (ours) ×4 0.91 32.56 0.9029 28.93 0.7961 27.77 0.7523 27.15 0.8185 31.57 0.9219
GRL-S (ours) ×4 3.49 32.76 0.9058 29.10 0.8007 27.90 0.7568 27.90 0.8357 32.11 0.9267
GRL-B (ours) ×4 20.20 33.10 0.9094 29.37 0.8058 28.01 0.7611 28.53 0.8504 32.77 0.9325

GRL-B saves 24% parameters compared with Restormer.
As shown in Tab. 3, GRL-B sets the new state-of-the-art
performance of 40.20 PSNR on RealBlur-R dataset.
Defocus deblurring. Tab. 1 shows the experimental re-
sults for defocus deblurring using single image and dual-
pixel images. Our GRL outperforms the previous meth-
ods for all three scene types. Compared with Restormer
on the combined scenes, our GRL achieves an elegant per-
formance boost of 0.20 dB and 0.38 dB for single and dual-
pixel defocus deblurring. Compared with Uformer [74] and
IFAN [41], GRL achieves PSNR gain of 1.39 dB and 1.05
dB for the dual-pixel setting.

5.2. Image restoration based on synthetic data

Investigating image restoration with synthetic data is
also valuable to reveal the network capacity of restoration
methods. Besides the experiments on the real data, we also
study the performance of the network on synthetic data.
Image denoising. First, the experimental results on Gaus-
sian image denoising are shown in Tab. 4. For a fair compar-
ison between different models, both the network complexity
and accuracy are shown in the table. And several key find-

ings are observed. I. The tiny version GRL-T is extremely
efficient, reducing model complexity by two orders of mag-
nitude (only 0.76% of [5] and 2.7% of DRUNet [80]) while
not sacrificing network accuracy. II. The small version
GRL-S performs competitive with the previous state-of-the-
art SwinIR [43] and Restormer [76]. II. On Urban100, the
base version outperforms Restormer by a large margin (e.g.
0.44dB PSNR gain for color image and noise level 50).

Image SR. Experimental results for classical images are
shown in Tab. 5. Both lightweight models and accurate
SR models are summarized. A similar conclusion could be
drawn from the results. I. Among the lightweight networks,
GRL-T outperforms both convolution and self-attention-
based networks including DBPN [25], SwinIR [43] and
EDT [42]. Compared with EDT, Significant improvements
are obtained on Urban100 and Manga109 datasets (0.44 dB
and 0.22 dB for ×4 SR). II. GRL-B sets the new state-of-
the-art for accurate image SR. III. GRL-S achieves a good
balance between network complexity and SR image quality.

JPEG compression artifact removal. The experimental
results for color and grayscale images are shown in Tab. 6.
Four image quality factors ranging from 10 to 40 for JPEG
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Table 6. Grayscale image JPEG compression artifact removal results. As a compar-
ison metric, the parameter count of FBCNN [29] GRL-S are 71.92M and 3.12M.

Set QF JPEG DnCNN [82] DCSC [18] QGAC [14] MWCNN [46] FBCNN [29] GRL-S
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

C
la

ss
ic

5
[1

5]

10 27.82 0.760 29.40 0.803 29.62 0.810 29.84 0.812 30.01 0.820 30.12 0.822 30.20 0.829
20 30.12 0.834 31.63 0.861 31.81 0.864 31.98 0.869 32.16 0.870 32.31 0.872 32.49 0.878
30 31.48 0.867 32.91 0.886 33.06 0.888 33.22 0.892 33.43 0.893 33.54 0.894 33.72 0.899
40 32.43 0.885 33.77 0.900 33.87 0.902 34.05 0.905 34.27 0.906 34.35 0.907 34.53 0.911

B
SD

50
0

[4
9]

10 27.80 0.768 29.21 0.809 29.32 0.813 29.46 0.821 29.61 0.820 29.67 0.821 29.74 0.823
20 30.05 0.849 31.53 0.878 31.63 0.880 31.73 0.884 31.92 0.885 32.00 0.885 32.05 0.885
30 31.37 0.884 32.90 0.907 32.99 0.908 33.07 0.912 33.30 0.912 33.37 0.913 33.43 0.912
40 32.30 0.903 33.85 0.923 33.92 0.924 34.01 0.927 34.27 0.928 34.33 0.928 34.38 0.928

Table 7. Color image JPEG compression artifact
removal results.

Set QF JPEG QGAC [14] FBCNN [29] GRL-S
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

L
IV

E
1

[5
8]

10 25.69 0.743 27.62 0.804 27.77 0.803 28.13 0.814
20 28.06 0.826 29.88 0.868 30.11 0.868 30.49 0.878
30 29.37 0.861 31.17 0.896 31.43 0.897 31.85 0.905
40 30.28 0.882 32.05 0.912 32.34 0.913 32.79 0.920

B
SD

50
0

[4
9]

10 25.84 0.741 27.74 0.802 27.85 0.799 28.26 0.808
20 28.21 0.827 30.01 0.869 30.14 0.867 30.57 0.875
30 29.57 0.865 31.33 0.898 31.45 0.897 31.92 0.903
40 30.52 0.887 32.25 0.915 32.36 0.913 32.86 0.919

Table 8. Image demosaicking results.

Datasets Matlab
DDR
[75]

DeepJoint
[21]

MMNet
[36]

RLDD
[24]

RNAN
[85]

DRUNet
[80]

GRL-S
(ours)

Kodak [16] 35.78 41.11 42.00 40.19 42.49 43.16 42.68 43.57
McMaster [83] 34.43 37.12 39.14 37.09 39.25 39.70 39.39 40.22

BSRGAN Real ESRGAN SwinIR GRL

Figure 7. Visual results for real-world image SR.

compression are studied. As shown in the table, the pro-
posed GRL-S network outperforms the previous state-of-
the-art method elegantly across different datasets and qual-
ity factors. Notably, GRL-S has a much smaller model com-
plexity than FBCNN.
Demosaicking. Results for image demosaicking is shown
in Tab. 8. The proposed method outperforms the previous
methods RNAN [85] and DRUNet [80] significantly.

5.3. Real image restoration based on data synthesis

Finally, we also investigate the performance of the net-
work for real-world image restoration. The aim is to super-
resolve a low-quality image by an upscaling factor of 4.
Since there are no ground-truth images for this task, only
the visual comparison is given in Fig. 7. Compared with the
other methods, the proposed GRL is able to remove more
artifacts in the low-resolution images.

5.4. Ablation study

Influence of the similarity comparison method. As men-
tioned in Sec. 3.4, for theoretical guarantee of similarity
propagation, a mathematical metric rather than a dot prod-
uct should be used. To study the difference between, image
restoration with the two operations are compared and the re-
sults are shown in Tab. 9. As revealed by the table, the dot

Table 9. Ablation study on similarity comparison operation.

Test set Metric Color DN Gray DN Image SR
σ15 σ25 σ50 σ15 σ25 σ50 ×2 ×3 ×4

BSD68 or
BSD100

Euclidean 35.02 32.56 29.42 31.84 29.36 26.43 32.30 29.19 27.67
Dot product 35.10 32.64 29.54 31.85 29.39 26.44 32.33 29.22 27.70

Urban100 Euclidean 34.63 32.28 28.94 33.25 30.64 27.17 32.76 28.62 26.50
Dot product 34.77 32.41 29.19 33.28 30.75 27.26 32.88 28.78 26.67

Table 10. Ablation study on anchor projection operation.

Anchor projection operation # Params [m] PSNR on Set 5

Depthwise Conv 3.17 35.03
Conv 4.19 35.03
Patch merging 3.53 34.98
Maxpool + Linear Projection 3.12 35.02
Avgpool + Linear Projection 3.12 35.03

product is very competitive compared with a metric and it
outperforms a distance metric for a couple of settings. Con-
sidering this, the dot product is still used.
Influence of the anchor projections. The anchor projec-
tion operation helps to summarize the information in the
feature map. The ablation study is shown in Tab. 10. Con-
sidering both the accuracy performance and parameter bud-
get, Avgpool followed by linear projection is finally used.

6. Conclusion

In this paper, we proposed GRL, a network with effi-
cient and explicit hierarchical modelling capacities for im-
age restoration. The proposed network was mainly in-
spired by two image properties including cross-scale sim-
ilarity and anisotropic image features. Based on that, we
proposed the efficient anchored stripe self-attention mod-
ule for long-range dependency modelling. Then a versatile
network architecture was proposed for image restoration.
The proposed network can model image hierarchies in the
global, regional, and local ranges. Owing to the advanced
computational mechanism, the proposed network architec-
ture achieves state-of-the-art performances for various im-
age restoration tasks.
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