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Abstract

Compositionality is one of the fundamental properties of
human cognition (Fodor & Pylyshyn, 1988). Compositional
generalization is critical to simulate the compositional ca-
pability of humans, and has received much attention in the
vision-and-language (V&L) community. It is essential to
understand the effect of the primitives, including words, im-
age regions, and video frames, to improve the compositional
generalization capability. In this paper, we explore the ef-
fect of primitives for compositional generalization in V&L.
Specifically, we present a self-supervised learning based
framework that equips existing V&L methods with two char-
acteristics: semantic equivariance and semantic invari-
ance. With the two characteristics, the methods understand
primitives by perceiving the effect of primitive changes on
sample semantics and ground-truth. Experimental results
on two tasks: temporal video grounding and visual question
answering, demonstrate the effectiveness of our framework.

1. Introduction
Compositionality is one of the fundamental properties of

human cognition argued by Fodor and Pylyshyn [11]. Com-
positional generalization in vision-and-language (V&L) has
received increasing attention and significant progress in re-
cent years, but has not been fully explored. Compositional
generalization requires V&L methods to generalize well to
sentences with novel combinations of seen words, which is
critical to simulate the compositional properties of human
cognition.

*Corresponding author: Chenchen Jing and Yuwei Wu

Query: A person opens the door. | |

Video:

Query: The person opens a door. | |

Query: A person closes the door. | |

Figure 1. An example in the context of temporal video grounding,
showing that primitives are the determinants of sample semantics
and ground-truth.

An indispensable premise for improving compositional
generalization is to understand the effect of the primitives,
including words, image regions, and video frames. Primi-
tives are compositional building blocks mainly involved in
V&L tasks and the determinants of sample semantics. For
example, for a sample with the query “A person opens the
door” in the context of temporal video grounding (TVG),
its semantics are changed completely when the primitive
“opens” is changed to “closed”, but are unchanged when
the primitives “A” and “the” are modified to “The” and “a”,
respectively, as shown in Fig. 1. We investigate if existing
V&L methods are sensitive to the sample semantic changes
brought by primitive changes. Our observations show that
the methods erroneously keep almost 90% of the predic-
tions unchanged when the sample semantics are corrupted
by replacing 50% critical words (e.g., nouns, verbs) in sen-
tences. This suggests that existing methods cannot correctly
establish the relationship between the primitives and the
sample semantics and thus the ground-truth, so they cannot
achieve compositional generalization.

In this paper, we explore the effect of primitives for com-
positional generalization from two aspects: semantic equiv-
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(a) An original example in the context of temporal video grounding.

Prediction r|                        |Query: A person is smiling next to a refrigerator.

(b) Equivariant samples generated by masking critical primitives.  

(c) Invariant samples generated by masking irrelevant primitives.

Query: A [MASK] is [MASK] next to a refrigerator.

Query: A person is smiling next to a refrigerator.

Prediction v|                        |
Prediction v|                        |

Query: A person is smiling [MASK] to a refrigerator.

Query: A person is smiling next to a refrigerator.

Prediction r|                        |
Prediction r|                        |

Figure 2. The samples generated in our framework by masking
different primitives.

ariance and semantic invariance. Semantic equivariance
means that the predictions of the methods should be equiv-
ariant with the sample semantics, which are determined
by the primitives. Once the semantics of the sample are
changed, the predictions of the methods should faithfully
change. To ensure semantic equivariance, methods are en-
couraged to learn which primitives have a high effect on
the sample semantics and thus the ground-truth. Seman-
tic invariance means that the methods should maintain the
same predictions when irrelevant primitives (e.g., function
words and background in visual content) are changed. This
helps the methods to learn the primitives with low richness
semantics and a low effect on ground-truth, and is comple-
mented with the semantic equivariance. With the two char-
acteristics, the methods understand the effect of primitive
changes on sample semantics and ground-truth.

We propose a self-supervised learning based framework
to equip existing methods with semantic equivariance and
semantic invariance. By masking critical and irrelevant
primitives, we generate numerous labeled training samples,
including equivariant samples and invariant samples, re-
spectively, as shown in Fig. 2. To assign labels to the gen-
erated samples, we estimate the effect of masked primitives
on ground-truth. The larger the effect of the masked prim-
itives, we assign the generated sample with a label more
different from the ground-truth of the original sample. By
training with the generated samples, the methods learn to
make equivariant and invariant predictions when the sam-
ple semantics change and do not, respectively. Extensive

experiments on two V&L tasks: temporal video grounding
[2] and visual question answering [3], demonstrate that our
framework improves the compositional generalization ca-
pability of existing methods.

In summary, our contributions are as follows:

• We explore the effect of primitives on improving
the compositional generalization capability of exist-
ing V&L methods by perceiving the effect of primitive
changes on sample semantics and ground-truth.

• We propose a self-supervised learning based frame-
work for compositional generalization, in which nu-
merous labeled samples are generated to equip existing
V&L methods with semantic equivariance and seman-
tic invariance.

2. Related Work
2.1. Compositional Generalization in V&L

Several benchmarks [4, 14, 19, 22] have been proposed
for testing the compositional generalization capability of
V&L methods. Based on these benchmarks, there have been
several recent attempts [6, 17, 32, 33, 45, 46] to boost com-
positional generalization in V&L. For instance, Saqur et al.
[32] explicitly parsed both modalities to probabilistic fac-
tor graphs, and used graph neural networks to encourage a
tighter coupling between concepts in the two modalities. Li
et al. [22] proposed to achieve compositional generaliza-
tion by learning structured semantics and performing cross-
graph reasoning. Hudson et al. [17] presented the memory
attention composition network to facilitate explicit and ex-
pressive reasoning by decomposing questions into sequen-
tial reasoning steps. Akula et al. [1] proposed a language-
guided adaptive convolution layer to capture the association
between the visual input and its neighbor context to break
the limitations of vanilla neural module networks (NMNs)
in compositional generalization. Bogin et al. [6] explicitly
grounded the meaning of sub-spans through hierarchical
computation to achieve better compositional generalization
capability. Yamada et al. [38] constructed a transformer
module network by combining the performance advantages
of transformers and the generalization advantages of NMNs
for compositional generalization.

The methods above focus on modeling the structural in-
formation of compositions and correlations between differ-
ent input modalities by decomposing the input into spe-
cialized structures, such as relational reasoning chains and
graphs. By contrast, our framework explores the effect
of primitives for compositional generalization by perceiv-
ing the effect of primitive changes on sample semantics
and ground-truth, with an emphasis on understanding the
building blocks of compositions. Our framework is model-
agnostic and can be seamlessly incorporated into existing
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methods to further improve their compositional generaliza-
tion capability.

2.2. Self-supervised Learning in V&L

Self-supervised learning (SSL) is effective for learning
robust representations by exploiting the input itself with-
out external annotations, and has been widely used in V&L
tasks as auxiliary tasks for solving different problems. For
example, Zhu et al. [47] utilized SSL to assist visual ques-
tion answering models to overcome language priors by gen-
erating question-image pairs in a random strategy. Tan et al.
[34] proposed a self-supervised method to spatially localize
activity descriptions in videos. Chen et al. [8] developed
a self-supervised multimodal clustering network for learn-
ing a common embedding space by combining the benefits
of contrastive loss and clustering loss. Jiang et al. [18]
combined SSL to optimize the cross-modal fusion for video
paragraph grounding. Different from them, we propose a
SSL based framework for compositional generalization, in
which numerous equivariant samples and invariant samples
are generated to equip existing V&L methods with semantic
equivariance and semantic invariance.

3. Self-supervised Framework
3.1. Overview

We focus on two V&L tasks, temporal video ground-
ing (TVG) and visual question answering (VQA). The TVG
task aims to localize a moment boundary in an untrimmed
video V that matches a given language query Q. The VQA
task aims to provide an answer for a natural language ques-
tion Q about an image V . For simplicity, here we use the
same notations Q and V to represent the input sentence
(i.e., the query/question) and the visual content (i.e., the
video/image), respectively. Specifically, the input sentence
can be denoted as a set of words Q = {qi}Mi=1, where qi is
the i-th word and M is the total number of words. The vi-
sual content can be represented by a set of visual primitives
V = {vi}Ni=1, where vi is the i-th visual primitive (i.e., the
video frames or image regions) and N is the total number
of the visual primitives.

The overview of the proposed framework in the context
of temporal video grounding is shown in Fig. 3. Concretely,
for a TVG model, given a training sample (V,Q) with the
ground-truth Y = (start, end), we first estimate the effect
of primitives in V and Q on Y . Based on the estimated ef-
fect, we generate invariant samples (V,Q+) and (V +, Q),
and equivariant samples (V,Q−) and (V −, Q). Afterwards,
we randomly choose an invariant sample and an equivariant
sample, which are re-denoted as (V i, Qi) and (V e, Qe), re-
spectively, for unified representation. Finally, we train the
model with three types of samples by simultaneously mini-
mizing three losses including the TVG method-specific loss

Lms for (V,Q) and (V i, Qi), and the self-supervised learn-
ing loss Lssl for (V e, Qe), and the contrastive loss Lcl.

3.2. Effect Estimation of Primitives

We estimate the effect of primitives on ground-truth, and
quantify them as numbers in the interval [0, 1].
Effect Estimation of Words. We estimate the effect of
words on ground-truth based on their part-of-speech tags,
since the words with different part-of-speech tags carry dif-
ferent richness of semantic information. We use the natural
language toolkit (NLTK) [5] to classify words into five cat-
egories: nouns, verbs, adjectives, adverbs, and other words.
Generally, nouns and verbs play a more important role than
adjectives and adverbs, since nouns and verbs demonstrate
the entity information and action information of the refer-
ents, respectively, while adjectives and adverbs are the ad-
ditional descriptions of the referents. Other words mainly
include articles, conjunctions, and prepositions, which have
no actual meaning and cannot independently assume sen-
tence components, so they have little effect on ground-truth.
As a result, we assign nouns and verbs with a quantitative
effect α, adjectives and adverbs with β, and other words
with γ, and ensure that α ≥ β ≥ γ. We set α = 1, β = 0.6
and γ = 0 for all experiments, and the parameter analysis
of them is provided in the supplementary material.
Effect Estimation of Image Regions. For the VQA task,
we compute the similarities between image regions and the
key words in questions to estimate the effect of image re-
gions. Given an image-question pair, we first extract nouns,
adjectives, and consecutive adjectives+nouns in the ques-
tion as key words by the NLTK toolkit. For example, the
extracted key words for the question “Is the material of the
green cylinder the same as the thing in front of the ball” are
“material”, “cylinder”, “thing”, “ball”, “green” and “green
cylinder”. For each image region of the image, we then
select the largest similarity among its similarities with dif-
ferent key words as the estimation of the effect for each im-
age region, the similarities are computed by the pre-trained
CLIP model [31]. The estimated effect is finally normalized
to the interval [0, 1] using min-max normalization (MMN)
to represent the final quantitative effect.
Effect Estimation of Video Frames. For the TVG task,
we estimate the effect of video frames on ground-truth fol-
lowing two criteria. Firstly, the frames within the ground-
truth boundary are assigned with a quantitative effect 1,
since they obviously have a high effect on ground-truth due
to the particularity of the TVG task. In addition, for the
frames outside the ground-truth boundary, we directly com-
pute their similarities to the input sentence based on the
visual entailment capability of the pre-trained TCL model
[39], and process the similarities into the interval [0, 1] us-
ing MMN to represent the quantitative effect.
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(b) Training TVG model with generated samples

Figure 3. Overview of the self-supervised learning framework in the context of temporal video grounding.

3.3. Sample Generation

For each sample (V,Q), we obtain two sets of primi-
tives’ effect: Sv = {evi}Ni=1 and Sq = {eqi}Mi=1, where
evi and eqi denote the effect of i-th visual primitive and i-th
word, respectively. Based on Sv and Sq , we generate nu-
merous equivariant and invariant samples by masking dif-
ferent primitives in input.

Equivariant Sample Generation. Equivariant samples are
a series of samples that have different semantics from the
original samples. We corrupt the semantics of original sam-
ples to generate equivariant samples by masking the primi-
tives with high effect in input. For an original sample (V,Q)
with effect set Sv and Sq , we select the top 50% and 70%
primitives with the highest effect in V and Q, respectively,
to form two specific high effect primitive sets

Sh
v = {evi |i ∈ Hv}, Sh

q = {eqi |i ∈ Hq}, (1)

where Hv and Hq represent the index sets of the primitives
with the top 50% and 70% effect in V and Q, respectively.
An equivariant sample is generated by random masking a
certain proportion ρv/ρq of the primitives in Sh

v /Sh
q , and

is dubbed as (V −, Q)/(V,Q−). Whereas, for TVG, the
frames within the ground-truth boundary are preferentially
masked when generating (V −, Q). For an original sample
(V,Q), we generate either (V −, Q) or (V,Q−) with equal
probability in each training epoch. For the convenience of
description, here we use the notation (V e, Qe) to represent

the equivariant sample

(V e, Qe) =

{
(V −, Q), r ≤ 0.5,

(V,Q−), r > 0.5,
(2)

where r denotes a random number in the interval [0, 1].
Invariant Sample Generation. Invariant samples have the
same semantics as the original samples, and are generated
by masking irrelevant primitives in input. Similar to the
steps in Equivariant Sample Generation, we firstly select the
bottom 50% and 30% primitives with the lowest effect in V
and Q, respectively, to form two low effect primitive sets
Sl
v and Sl

q for a given sample (V,Q). Then we generate
two types of invariant samples (V +, Q) and (V,Q+), the
former is generated by random masking a certain propor-
tion θv of the primitives in Sl

v , and another is generated by
random masking a certain proportion θq of the primitives
in Sl

q . We use the notation (V i, Qi) to denote the invariant
sample uniformly, which can be either (V +, Q) or (V,Q+)
with equal probability in each training epoch.

3.4. Optimization

We use three different losses to supervise the train-
ing process, including a method-specific loss Lms, a self-
supervised learning loss Lssl and a contrastive loss Lcl.
Method-specific Loss. The Lms is determined by the se-
lected method, since different methods use different training
losses. For an original training sample (V,Q) with ground-
truth Y , the Lms is computed by

Lms = f(P (V,Q), Y ), (3)
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where P (V,Q) represents the output of the training model
(e.g., distribution vector with size of the number of cate-
gories), and f(·, ·) denotes the loss function used in the se-
lected method, such as the cross-entropy loss used in 2D-
TAN [44] and GLT [6].

Since the invariant sample (V i, Qi) maintains the same
semantics as (V,Q), we use the same loss Lms and ground-
truth Y to train (V i, Qi). Thus, in our framework, the loss
Lms is reformulated as

Lms = f(P (V,Q), Y ) + λif(P (V i, Qi), Y ), (4)

where λi is a hyper-parameter to balance the original and
invariant samples.
Self-supervised Learning Loss. For an equivariant sample
(V e, Qe), we use a self-supervised learning loss to perform
training optimization, instead of assigning it with ground-
truth. The main idea is: the more the semantics of the sam-
ples are corrupted, the less the model can get the original
ground-truth. The self-supervised learning loss is defined
as

Lssl = u · P (V e, Qe)[g(Y )], (5)

where g(·) denotes a function that converts the ground-truth
Y to its index in all categories, u is a weight obtained auto-
matically by measuring the degree to which semantics are
corrupted. This weight is given by

u =
sum(Sm

v )

sum(Sh
v )

+
sum(Sm

q )

sum(Sh
q )

, (6)

where sum(·) represents the sum of primitives in the input
set, Sm

v and Sm
q denote the effect sets of masked primitives

in V e and Qe, respectively, Sh
v and Sh

q denote the high ef-
fect primitive sets of V and Q, respectively.
Contrastive Learning Loss. We further use a contrastive
loss Lcl to regulate the training process with two aims: (1)
Pull up the predictions of original samples and their cor-
responding invariant samples. (2) Push away the predic-
tions of original samples and their corresponding equivari-
ant samples. As a result, we formulate Lcl as

Lcl = −log(
eh(P (V,Q),P (V i,Qi))

eh(P (V,Q),P (V i,Qi)) + eh(P (V,Q),P (V e,Qe))
),

(7)
where h(·, ·) is a function that measures the distance of in-
put vectors and is computed by

h(x, y) =
x⊤ · y

||x|| · ||y||
. (8)

To sum up, the total loss can be viewed as

L = Lms + λsslLssl + λclLcl, (9)

where λssl and λcl are two hyper-parameters that balance
the loss terms.

4. Experiments
We apply the proposed framework to two tasks, TVG

and VQA, to evaluate its effectiveness. We first evalu-
ate our framework on TVG using the Charades-CG [22]
and Charades-STA [12] datasets. The recently released
Charades-CG dataset contains compositional referring ex-
pressions about real-world videos, while the Charades-STA
dataset is widely used in TVG for testing the independent
and identically distributed (IID) generalization capability
of methods. The reason for choosing Charades-STA is to
evaluate the compatibility of compositional generalization
and IID generalization. We provide the experimental results
on ActivityNet Captions [21] and ActivityNet-CG [22] in
the supplementary material. In addition, we evaluate our
framework on VQA, which is a fundamental task needing
compositional capability in V&L. We first use the CLEVR
[19] dataset to evaluate the IID capability of our framework.
Then we use the CLOSURE dataset [4], which is a synthetic
diagnostic dataset, and provides more complex questions
that require compositional capability.

4.1. Temporal Video Grounding

Datasets. The Charades-CG [22] dataset is recently re-
leased to test the compositional capability of TVG mod-
els. The dataset has a train split for training, a Novel-
Composition test split for testing compositional capability,
a Test-Trivial test split for testing the generalization capabil-
ity of seen words, and a Novel-Word test split for testing the
generalization capability of unseen words. The Charades-
STA [12] dataset is a widely used dataset in TVG, which
contains a train split for training and a test split for testing
IID generalization capability.
Implementation Details. We apply the I3D feature [7]
to encode the videos from the two datasets, and incorpo-
rate our framework into 2D-TAN and MS-2D-TAN. We
reimplemented 2D-TAN and MS-2D-TAN using the pub-
licly released code1. Whereas, for MS-2D-TAN, we encode
queries using a two-layer bidirectional LSTM [15] instead
of the original three-layer bidirectional LSTM for more sta-
ble convergence.

For a given query-video pair, we extract its word em-
beddings with the dimension of 300 using GloVe [29], and
randomly sample a fixed number of 64 consecutive clips for
each video, then obtain the I3D features with the dimension
of 1024 for each sampled clip. The mask rate ρv and ρq
for equivariant samples are set as 0.8 and 0.5, respectively.
The mask rate θv and θq for invariant samples are set as 0.5
and 0.5, respectively. The loss weights λi, λssl and λcl are
set as 0.2, 20 and 0.1, respectively. To train the two meth-
ods from scratch, we use Adam [20] with a learning rate of
0.0001 for optimization. The training epoch and batch size

1https://github.com/microsoft/VideoX
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Table 1. Performance (%) of the state-of-the-art methods on the Charades-CG dataset. The best scores are bold and the second-best scores
are underlined.

Type Method
Test-Trivial Novel-Composition Novel-Word

R1@0.5 R1@0.7 mIoU R1@0.5 R1@0.7 mIoU R1@0.5 R1@0.7 mIoU

Weakly-supervised WSSL [10] 15.33 5.46 18.31 3.61 1.21 8.26 2.79 0.73 7.92

RL-based TSP-PRL [36] 39.86 21.07 38.41 16.30 2.04 13.52 14.83 2.61 14.03

Proposal-free
VSLNet [42] 45.91 19.80 41.63 24.25 11.54 31.43 25.60 10.07 30.21
LGI [27] 49.45 23.80 45.01 29.42 12.73 30.09 26.48 12.47 27.62
VISA [22] 53.20 26.52 47.11 45.41 22.71 42.03⋆ 42.35 20.88 40.18

Proposal-based

TMN [23] 18.75 8.16 19.82 8.68 4.07 10.14 9.43 4.96 11.23

2D-TAN [44] 48.58 26.49 44.27 30.91 12.23 29.75 29.36 13.21 28.47
2D-TAN∗[44] 48.06 27.10 43.72 32.74 15.25 31.50 37.12 18.99 35.04
2D-TAN + Ours 53.91 31.82 46.84 35.42 17.95 33.07 43.60 25.32 39.32

MS-2D-TAN∗[43] 57.85 37.63 50.51 43.17 23.27 38.06 45.76 27.19 40.80
MS-2D-TAN + Ours 58.14 37.98 50.58 46.54 25.10 40.00 50.36 28.78 43.15

∗ indicates the results from our reimplementation using official released codes.
⋆ indicates that the method can be incorporated into our framework for further improvements.

Table 2. Performance (%) of the state-of-the-art methods on the
Charades-STA dataset.

Method Feature R1@0.5 R1@0.7 mIoU

MMN [35] VGG 47.31 27.28 -
IVG [28] C3D 50.24 32.88 48.02
BSP [37] I3D 53.63 29.27 50.55
FVMR [13] I3D 55.01 33.74 -
DCM [40] I3D 59.70 37.80 51.50
SSCS [9] I3D 60.75 36.19 -
CBLN [24] I3D 61.13 38.22 -

2D-TAN∗[44] I3D 49.52 27.82 43.72
2D-TAN + Ours I3D 52.04 29.52 45.67

MS-2D-TAN [43] I3D 60.08 37.39 -
MS-2D-TAN∗[43] I3D 57.58 37.34 49.36
MS-2D-TAN + Ours I3D 60.64 38.49 51.15

∗ indicates the results from our reimplementation using offi-
cial released codes.

are set as 100 and 32, respectively.

Comparisons with State-of-the-arts Methods. The re-
sults compared to state-of-the-art methods on the Charades-
CG dataset [22] are listed in Tab. 1. We can observe that: (1)
Our framework helps the MS-2D-TAN to outperform the
best-performing method VISA [22] on all three test splits,
and achieves a remarkable improvement especially on the
Test-Trivial test split (e.g., 26.52% vs. 37.98% in R1@0.7).
(2) Compared to different baseline methods, our framework
can consistently improve their performance. The improve-
ment is more significant on the Novel-Composition test

split (e.g., 2.68% and 3.37% absolute performance gains
in R1@0.5 for 2D-TAN and MS-2D-TAN, respectively).
These observations show that our framework can not only
improve the performance of existing methods, but also gen-
eralize well to different test environments. Although the
mIoU of MS-2D-TAN+Ours is lower than that of VISA
on the novel composition split, our framework is compat-
ible with VISA and can further improve it. In addition,
the experimental results on Charades-STA [12] are listed in
Tab. 2, our framework improves 2D-TAN and MS-2D-TAN
with different margins in different metrics.

Ablation Studies. To validate the effectiveness of different
components of our framework, we evaluate different vari-
ants of our framework by ablating certain components. We
use MS-2D-TAN [43] as the baseline method, and the re-
sults on the Novel-Composition test split of Charades-CG
are shown in Tab. 3. Firstly, we investigate the influence of
the equivariant samples by training MS-2D-TAN with only
equivariant samples. We observe better performance than
the baseline method, albeit worse than the method trained
with our full framework. Then, we study the influence of
the invariant samples in a similar manner. We also obtain
better performance than the baseline method, but worse than
the method trained with our full framework. Next, we train
MS-2D-TAN with equivariant and invariant samples simul-
taneously, and obtain better performance than using only ei-
ther type of sample as expected. Finally, we obtain the best
performance when adding contrastive losses to the training
process. These observations suggest that all components of
our framework are effective to improve baseline methods.

Primitive Sensitivity. We analyse the primitive sensitivity
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Table 3. Ablation studies of the proposed framework on the Novel-
Composition test split of Charades-CG. We use MS-2D-TAN [43]
as baseline method, whose performance is shown in the first line.

Equivariant Invariant Contrastive
R1@0.5 R1@0.7 mIoU

Samples Samples Loss

43.17 23.27 38.02
✓ 45.38 24.06 39.61

✓ 43.90 23.07 38.61
✓ ✓ 45.55 25.04 39.73
✓ ✓ ✓ 46.54 25.10 40.00
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Figure 4. The primitive sensitivity of state-of-the-art methods on
the Novel-Composition test split of Charades-CG. κ represents the
replacement rate of critical words when testing.

of existing methods and the improvement of our framework
on primitive sensitivity. Specifically, we count the frequen-
cies of four classes of words with different part-of-speech
tags in the training and Novel-Composition test sets, includ-
ing nouns, verbs, adjectives, and adverbs, which are dubbed
as critical words here. For each test sample, we perform the
following operation to execute for corrupting the sample se-
mantic: ramdomly replacing κ percent critical words with
others that have the same part-of-speech tags in a sampling
manner based on the counted frequencies. The degradation
in performance as κ increases is shown in Fig. 4, we can ob-
serve that: (1) The performance of methods trained with our
framework consistently outperform vanilla methods when a
small number of the critical primitives are replaced (e.g.,
κ ≤ 25%), showing a semantic complement capability of
the framework. (2) The proposed framework helps the base-
line methods decay more when most of the critical primi-
tives are replaced (e.g., κ ≥ 50%), which demonstrates the
effectiveness for improving the primitive sensitivity.
Qualitative Analysis. Fig. 5 depicts several qualitative ex-
amples in the context of TVG. The examples come from dif-
ferent test splits of Charades-CG [22]. In the first example,
though the query “Person closes the door” contains no un-
seen compositions, the baseline method localizes a wrong
segment that demonstrates “Person opens the door”. The
second example contains the query “Another person walks
behind them holding a bottle of medicine” with novel com-
positions “walks behind”, and is therefore harder than the

Q: Person closes the door.

Ground Truth               15.4s | | 22.0s

MS-2D-TAN | | 0.6s ~ 9.0s

MS-2D-TAN + Ours      15.4s | | 21.8s

(a) A Sample from the Test-Trivial Split

Q: Another person walks behind them holding a bottle of medicine.

Ground Truth     12.6s | | 22.9s | | 0.0s ~ 6.4s MS-2D-TAN 

MS-2D-TAN + Ours      12.8s | | 23.0s 

(b) A Sample from the Novel-Composition Split

Q: The person begins cooking it in a microwave.

Ground Truth                    7.8s | | 17.2s

MS-2D-TAN 20.5s ~ 30.7s | |
MS-2D-TAN + Ours        6.4s | | 16.6s

(c) A Sample from the Novel-Word Split

Figure 5. Qualitative comparisons between MS-2D-TAN+Ours
and MS-2D-TAN [43] on samples from different test splits of
Charades-CG [22]. The words in red font in (b) and (c) denote
novel compositions and novel words, respectively.

first example. The proposed framework helps the baseline
method to understand the effect of primitives on ground-
truth and thus predict the correct segment. The third exam-
ple shows that our framework helps MS-2D-TAN to gener-
alize to queries with novel words (e.g., microwave), which
is benefited from the [MASK] token that can represent mul-
tiple unseen words. We provide more qualitative examples
in the supplementary material.

4.2. Visual Question Answering

Datasets. CLEVR [19] is a synthetic diagnostic dataset
that consists of synthetic scenes with multiple objects and
automatically generated questions. There are a train split,
a validation split and a test split in the CLEVR dataset.
CLOSURE [4] is developed from CLEVR [19] for evalu-
ating the compositional capability of VQA models trained
on CLEVR. It comprises seven distinct test splits, each of
which includes synthetic images and compositional ques-
tions generated using seven unique question templates.
which are created by combining the various types of refer-
ring expressions from CLEVR in novel ways. We combine
all provided test splits into a single split for testing.
Implementation Details. We reimplemented GLT using
the publicly released code2. The max length of questions

2https://github.com/benbogin/glt-grounded-latent-trees-qa
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Table 4. Accuracies (%) of the state-of-the-art methods on the
CLEVR and CLOSURE datasets. The HM represents the har-
monic mean accuracies.

Method CLEVR CLOSURE HM

MGN-e2e¶ [32] - 80.9 -
Vector NMN† [4] 98.0 71.3 82.5
Vector NMN†‡ [4] 98.0 94.4 96.2
LG-NMN† [1] 98.9 88.0 93.1
TMN†‡ [38] 97.9 95.4 96.6
NS-VQA†§ [41] 100 77.2 87.1

FiLM [30] 97.0 60.1 74.2
MAC [16] 98.5 72.4 83.5
ViLBERT [26] 95.3 51.2 66.6

GLT [6] 99.1 96.1 97.6
GLT∗[6] 99.1 95.0 97.0
GLT + Ours 99.1 98.4 98.7
¶ for methods trained with external correspondence labels.
§ for methods using domain-knowledge for deterministically

execution.
† for methods trained with external layout annotations.
‡ for methods using external layout annotations when testing.
∗ for the results from our reimplementation using official re-

leased codes.

is set to 30, and the questions are encoded by a single bidi-
rectional LSTM [15]. For images, we use the object fea-
tures and positional embeddings provided by GLT with di-
mensions of 2048 and 6, respectively. To train GLT from
scratch, we use the AdamW [25] as the optimizer with the
batch size of 32, and use the early-stopping by validating
on the validation set of CLEVR [19] for a maximum of 40
epochs. The learning rate and the weight decay are set as
0.0005 and 0.075, respectively. We use the dropout layer
to randomly inactivate neurons with a dropout rate of 0.25.
For the hyper-parameters ρv , ρq , θv and θq , we use the same
setting as in the TVG task. The loss weights λi, λssl and λcl

are set as 0.3, 30 and 3, respectively.

Comparisons with State-of-the-arts Methods. We in-
corporate our framework into method GLT [6], which is
dubbed as GLT+Ours. Experimental results of GLT+Ours
and state-of-the-art methods on the CLEVR and CLO-
SURE datasets are listed in Tab. 4. We observe from the
table that our framework improves the baseline method
GLT with 3.4% absolute gains in the mean accuracy on
CLOSURE without performance degradation on CLEVR.
The GLT+Ours achieves a new state-of-the-art performance
(98.4% in the mean accuracy) on CLOSURE and the best
performance (98.7%) in the harmonic mean accuracies on
both datasets, which not only demonstrates the effective-
ness of our framework in improving compositional capabil-
ity of VQA methods, but also proves that our framework

Q: What is the material of the object 

that is to the right of the red cube and 

is the same size as the gray cube?

Q: What is the color of the tiny thing 

that is behind the gray thing and is the 

same material as the blue cylinder?

Q: What is the size of the shiny thing 

that is behind the blue sphere and is 

the same shape as the brown thing?

Q: What is the shape of the thing that 

is to the right of the tiny red cube and 

is the same size as the yellow block?

GLT: bluev

GLT + Ours: red r

GLT: smallv

GLT + Ours: large r

GLT: cylinderv

GLT + Ours: sphere r

GLT: rubberv

GLT + Ours: metal r

Figure 6. Qualitative comparisons between GLT+Ours and GLT
[6] on questions with novel compositions from CLOSURE [4].
The green and red boxes indicate the image regions with the high-
est attention weights of GLT+Ours and GLT for object referring,
respectively.

generalizes well to different test environments.
Qualitative Analysis. Fig. 6 depicts several qualitative ex-
amples in the context of VQA. The qualitative examples
consist of four different types of questions, including “ma-
terial”, “color”, “size”, and “shape”. These qualitative ex-
amples show that our framework can help GLT identify the
most relevant image regions and make correct predictions,
which proves that the framework is effective for learning
the effect of primitives on ground-truth. More qualitative
examples are given in the supplementary material.

5. Conclusion
In this paper, we have explored the effect of primitives

on ground-truth, which can implicitly improve the compo-
sitional generalization capability of existing V&L methods.
We have presented a self-supervised learning framework to
generate numerous labeled equivariant samples and invari-
ant samples by masking different primitives. Our frame-
work can be seamlessly incorporated into existing methods
to equip them with semantic equivariance and semantic in-
variance. Experimental results demonstrate that our frame-
work is capable of improving not only the compositional
capability of existing methods, but also the IID generaliza-
tion capability of them.
Acknowledgments This work was supported by the Natu-
ral Science Foundation of China (NSFC) under Grants No.
62176021 and No. 62172041.
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