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Figure 1. Overview of LAVENDER (LAnguage-VidEo uNDERstanding) model. LAVENDER unifies both pre-training and downstream
finetuning as Masked Language Modeling.

Abstract

Unified vision-language frameworks have greatly ad-
vanced in recent years, most of which adopt an encoder-
decoder architecture to unify image-text tasks as sequence-
to-sequence generation. However, existing video-language
(VidL) models still require task-specific designs in model
architecture and training objectives for each task. In this
work, we explore a unified VidL framework LAVENDER,
where Masked Language Modeling [13] (MLM) is used as
the common interface for all pre-training and downstream
tasks. Such unification leads to a simplified model archi-
tecture, where only a lightweight MLM head, instead of
a decoder with much more parameters, is needed on top
of the multimodal encoder. Surprisingly, experimental re-
sults show that this unified framework achieves competi-
tive performance on 14 VidL benchmarks, covering video
question answering, text-to-video retrieval and video cap-
tioning. Extensive analyses further demonstrate LAVEN-
DER can (i) seamlessly support all downstream tasks with
just a single set of parameter values when multi-task fine-
tuned; (ii) generalize to various downstream tasks with lim-
ited training samples; and (iii) enable zero-shot evaluation
on video question answering tasks. Code is available at
https://github.com/microsoft/LAVENDER.

1. Introduction
Large-scale transformer-based pre-training is now the de

facto practice for NLP and vision-language research [13,
25, 37, 49, 50]. Together with the great success of image-
text pre-training [10, 35, 40, 59], video-language (VidL) pre-
training [29, 33, 58, 80, 83] has also received an increasing
amount of attention. By pre-training an end-to-end multi-
modal transformer on a large number of video-text pairs,
state-of-the-art performance has been achieved across a wide
range of VidL tasks, including video question answering
(QA) [24, 68], text-to-video retrieval [22, 51], and video
captioning [64, 71]. These advances are encouraging; how-
ever, on the other hand, all existing VidL works require
designing task-specific heads on top of the transformer en-
coder for each pre-training or downstream task. For example,
during pre-training, separate Masked Language Modeling
[13] (MLM) and Video Text Matching (VTM) heads are
used, while a new, separately parameterized head needs to
be added for each downstream adaptation. Furthermore, due
to the particular nature of different tasks, they are typically
modeled using different training objectives. For example,
multiple-choice video QA is formulated as a classification
problem, while video captioning is inherently a generation
task. A natural but challenging question arises: can we have
a unified architecture that supports all the popular VidL tasks
simultaneously without introducing task-specific heads?

To answer this, we present LAVENDER, a unified VidL
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TGIF MSRVTT LSMDC MSVD Captioning Retrieval
Action Transition Frame MC QA MC FiB QA MSVD DiDeMo

Published
SOTA

94.0 96.2 69.5 90.9 43.1 81.7 52.9 46.3 120.6 65.1
[80] [80] [80] [80] [80] [80] [80] [73] [36] [5]

LAVENDER 94.8 98.7 73.5 97.2 45.0 85.9 57.1 55.6 150.3 72.4
∆ 0.8↑ 2.5↑ 4.0↑ 6.3↑ 1.9↑ 4.2↑ 4.2↑ 9.3↑ 29.7↑ 7.3↑

Table 1. New state-of-the-art performance with LAVENDER (14M+16M pre-train, single-task finetune) across 10 VidL tasks. Accuracy,
average(R1, R5, R10) and CIDEr scores are reported for video QA, retrieval and captioning.

framework where all pre-training and downstream tasks are
formulated as simple MLM. As shown in Figure 1, we use
two pre-training tasks: MLM and VTM. However, for VTM,
instead of adding a head on top of the output of the com-
monly used [CLS] token, as used in all existing works, we
propose to append the same [MASK] token that is used for
MLM at the end of the video-text input, and use the same
MLM head to predict whether the video-text pair matches
or not. Note that VTM is typically formulated as a binary
classification problem; here, we simply treat the output of
true or false from VTM as natural language tokens di-
rectly predicted from the whole vocabulary, so that the same
set of parameters can be used for both MLM and VTM.

During downstream adaptation, instead of following stan-
dard practice in VidL literature to replace the MLM head in
pre-training with new heads, we use the same MLM head
used in pre-training for all downstream tasks. Specifically,

• For text-to-video retrieval, we train the model in the same
way as in the VTM pre-training task. During inference,
for each text query, we concatenate it with each candidate
video, and calculate the corresponding probability of the
[MASK] token being predicted as true, and then rank
all candidate videos based on that score.

• For multiple-choice video QA, we concatenate the ques-
tion and each answer candidate sequentially, and add a
[MASK] token at the end of the sequence, and use the
same MLM head to predict the answer as “n” (assuming
the ground-truth choice is the n-th answer).

• For open-ended video QA, since most of the ground-truth
answers in our tested datasets only contain one word, we
simply append a [MASK] token to the end of the video-
question input, and let the model predict the answer from
the whole vocabulary.

• For video captioning, during training, we mask a certain
percentage of the tokens, and then predict the masked
tokens using a seq2seq attention mask [35, 81]. During
inference, the full caption is auto-regressively predicted,
by inserting [MASK] tokens one at a time.

LAVENDER is inspired by VL-T5 [12], UniTAB [76] and
OFA [63] that aim to provide a unified pre-training frame-
work for image-text tasks. However, LAVENDER adopt an
encoder-only model and an additional lightweight MLM
head on top of it, while a heavy transformer decoder is

needed in [12, 63, 76]. By unifying all VidL tasks as MLM,
LAVENDER can seamlessly adapt to different VidL tasks,
meanwhile (i) support different VidL tasks with a single set
of parameter values when multi-task finetuned; (ii) general-
ize to test data under few-shot finetuning; and (iii) enable
zero-shot inference on video question answering. Surpris-
ingly, by using this simple generative approach, we outper-
form previously published state-of-the-arts on 10 out of 14
downstream tasks (Table 1), even when pre-trained with
much fewer data (Section 4.5).

2. Related Work
Video-Language Pre-training. Branching out from
large-scale image-text pre-training [10, 59], researchers have
been leveraging large-scale multimodal data [3, 9, 27, 46,
55, 79, 80] to build pre-trained video-language (VidL) mod-
els [1, 16, 18, 28, 42, 48, 52, 69, 70, 75] for a wide range of
generative [31, 71, 82] and discriminative [24, 30, 44] tasks.
Prominent examples include VideoBERT [58], HERO [33],
ActBERT [83], ClipBERT [29] and MERLOT [80]. Popu-
lar pre-training tasks include Masked Language Modeling
(MLM) [57], Video Text Matching (VTM) [29], frame or-
der modeling [33, 80] and masked visual modeling [15, 33].
Although achieving strong performance, existing methods
all require task-specific architectures or objectives for dif-
ferent downstream tasks. For example, text-to-video re-
trieval [22, 51] is modeled as binary classification [29] or
via contrastive learning [17, 45]; video question answer-
ing [24, 68] is often formulated as multi-class classification
with a pre-defined answer set [77, 80]; and video captioning
can be tackled via MLM with a multi-layer perceptron [36]
or prefix language modeling with a text decoder [54].
Unified Frameworks for Multimodal Understanding.
There have been attempts in building an omnipotent model
that can simultaneously handle different tasks with a unified
architecture, which can be broadly categorized into two di-
rections. The first is to insert expert-designed task-specific
heads for each downstream task [21, 23, 34, 56]. These task-
specific output layers not only require expert knowledge, but
are also unlikely to generalize to new tasks. For example,
when a new question answering task comes in, a new fully-
connected layer with output dimension of answer vocabulary
size is required. The second direction is to unify the input-
output format of different downstream tasks [12, 63, 66, 76].
With a unified vocabulary, different downstream tasks (e.g.,
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(a) Task-specific VidL Methods (b) Unified Image-text Models (c) LAVENDER

Figure 2. Illustration of the differences between LAVENDER and existing methods with image/video QA as an example. Unlike
task-specific designs in existing VidL methods, LAVENDER unifies all tasks as MLM (Figure 1). We adopt an encoder-only architecture, with
a lightweight MLM head, instead of the heavy decoder in unified image-text models (e.g., VL-T5 [12] with task-specific prefix in text input).

VQA [20] and image captioning [9]) can be formulated as the
sequence-to-sequence generation with the shared encoder-
decoder architecture [2, 63, 74, 76].
Our work aims to provide a unified framework for VidL
understanding, in contrast to task-specific architectures and
objectives used in existing VidL models (Figure 2c vs. Fig-
ure 2a). LAVENDER differs from the previous unified mod-
els in that all pre-training and downstream tasks are uni-
fied as MLM, and a simple encoder-only architecture with
a lightweight MLM head is used, instead of sequence-to-
sequence modeling as in [2, 12, 66, 74] that also requires a
heavy transformer decoder (Figure 2c vs. Figure 2b).

3. LAVENDER

3.1. Model Architecture
Given a pair of text sentence {wn}|Nn=1 and a video

{vt}|Tt=1, we first encode them separately via unimodal en-
coders (i.e., vision encoder and text encoder) to generate
unimodal features. Here, N is the number of tokens in a
sentence and T is the number of frames sampled from the
input video. We follow previous works [29, 80] to only
sparsely sample a few frames to ease the computational
burden. A multimodal fusion encoder (dubbed as fusion
encoder) projects textual features and visual features into
a shared embedding space to learn cross-modal representa-
tions. As LAVENDER unifies both pre-training and down-
stream tasks as Masked Language Modeling (MLM), the
same MLM head is used to generate the final outputs from
the cross-modal representations, across different tasks. Next,
we explain each component in detail.
Vision Encoder. Inspired by the success of vision trans-
formers in modeling spatial details in images [14, 38], dif-
ferent transformer architectures [4, 39, 72] have been pro-
posed to model the long-range temporal modeling in videos,
achieving promising results on action recognition [26]. Re-
cent video-language works [15, 36] have started to em-
brace the success of video transformers, demonstrating
stronger performance than encoding each video frame inde-
pendently [29]. In our work, we adopt Video Swin Trans-

former [39] (VidSwin) as the vision encoder to encode the
raw video frame inputs as a sequence of visual features.
Given T input video frames {vt}|Tt=1 of size H ×W × 3,
we first split each frame into non-overlapping patches of size
h× w. VidSwin additionally enforces temporal downsam-
pling of size 2 as a preprocessing step. To allow LAVENDER
to utilize both video-text and image-text data for pre-training,
we remove this temporal downsampling. As a result, we can
extract a sequence of visual features of size T × H

h × W
w

from the last encoder block of VidSwin. Each feature is of
size 8C (C is the channel dimension), which is projected
to the same dimensional space as text features via a fully-
connected layer. We follow [15] to add learnable positional
embedding layers along both spatial and temporal dimen-
sions. The resulting visual features are used as input to the
fusion encoder to learn cross-modal representations.
Text Encoder. The input text sentence is first tokenized
into the sequence of word tokens {wn}|Nn=1, following [67].
Two special tokens [CLS] and [SEP] are inserted at the
beginning and the end of the token sequence. We follow
previous works [15, 29, 80] to adopt a lightweight word em-
bedding layer [13] as the text encoder. The high-dimensional
text embeddings are concatenated with visual features and
then fed into the fusion encoder.
Multimodal Fusion Encoder. The fusion encoder is a
12-layer, 768-dimensional Transformer [61], mirroring the
BERT-base architecture [13]. To compute the cross-modal
representations, the unimodal features from vision and text
encoders are fused together via self-attention operations.

3.2. Our Unified Framework
Now, we introduce how to train LAVENDER in a unified

way, with the same MLM objective and the shared vocabu-
lary for both pre-training and downstream finetuning.
Video-language Pre-training. We adopt two objectives
to pre-train LAVENDER. The first is Masked Language
Modeling (MLM), which is directly adopted from language
model pre-training [13, 37]. In MLM, we randomly replace
15% of word tokens with a [MASK] token, a random word,
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or the same word. The goal is to reconstruct the correct
tokens based on the corresponding hidden representations
from the output of the fusion encoder at the masked position.
A multi-layer perceptron (MLP) with output dimension as
vocab size1 projects these hidden representations into
the discrete word token space. Cross-entropy loss is used
to supervise the model training. The second is Video Text
Matching, but reformatted as MLM (VTM as MLM). Specif-
ically, we append a [MASK] token to the textual sentence to
mimic the masked textual inputs in MLM. At each training
step, we randomly replace the corresponding text for a given
video with a text description from a different video in the
same batch. At the masked position, LAVENDER reuses the
exact same MLP used in MLM to make a prediction. Al-
though the ground-truth label is restricted to two tokens (i.e.,
true (false) for a positive (negative) video-text pair), but
the model predictions are made across all vocabularies.
Downstream Adaptation. As shown in Figure 1, we
can readily apply the pre-trained LAVENDER to 4 types of
downstream tasks, including text-to-video retrieval, multiple-
choice / open-ended video question answering, and video
captioning. For each task, we transform the text input by
inserting or replacing existing tokens with [MASK] tokens,
so that all tasks can be supervised with cross-entropy loss,
and the final predictions are made based on the word token
predicted at the masked position. Here, we explain in detail
how to construct the masked textual inputs and generate
model predictions for each downstream task.

For text-to-video retrieval, similar to VTM during pre-
training, we insert a [MASK] token at the end of the text
input. During training, we treat corresponding video-text
pairs as positives (with ground-truth label true) and all
other pairwise combinations constructed by replacing the
ground-truth text with a randomly sampled one as nega-
tives (with ground-truth label false). During inference,
given a textual query, we rank the videos according to the
model confidence of predicting true at the masked po-
sition. For multiple-choice video QA, we concatenate
each answer choice (An) sequentially to the question (Q)
with a [SEP] token in between. A [MASK] token is then
added at the end, to allow the model to make a prediction
of the correct index for the ground-truth answer choice. For
example, for a question and 5 answer choices, we take
Q+[SEP]+A0+[SEP]+...+A4+[MASK] as the text in-
put. If An is the correct answer, the ground-truth label for
the masked token is n. Through the MLM head, the model
makes a prediction at the masked position over the whole
vocabulary. During inference, to ensure a valid answer, we
take the most probable predictions over all answer indices
(e.g., {0,1,2,3,4}). Conventional methods [15, 33] con-
catenate a single answer with the question at a time, and
model as multi-class classification. Intuitively, concatenat-

1The vocab size is 30,522, following bert-base-uncased.

ing all answers may better mimic how humans tackle a MC
question (e.g., we often read through all options to conclude
an answer).2 For open-ended video QA, we similarly inject
[MASK] tokens after the question. For simplicity, we only
add one [MASK] token.3 We then tokenize the ground-truth
answers as the ground-truth label for masked prediction. If
the tokenized answer is longer than 1 word, we simply ig-
nore it during training, and regard it as a wrong prediction
during inference. For video captioning, we use a causal self-
attention mask where the caption token can only attend to
the existing output tokens, which simulates a uni-directional
seq2seq generation process, following [36]. During training,
we randomly “mask” some words with [MASK] token and
apply the MLM objective. During inference, the caption is
generated in an auto-regressive manner. At each generation
step, the model sees the entire video input and previously
generated tokens, plus a [MASK] token, at which the model
makes a prediction for the current token.

4. Experiments
In this section, we first describe our experimental settings

(4.1), and show the superiority of LAVENDER over com-
parable task-specific baselines under both single-task (4.2)
and multi-task (4.3) finetuning settings. We then show that
our model can better generalize to testing data under few-
shot finetuning and has strong zero-shot capability on video
question answering benchmarks (4.4). Lastly, we compare
LAVENDER with prior arts and show we outperform on 11
out of 14 benchmarks, even when pre-trained with much
fewer data (4.5).

4.1. Experimental Settings
Pre-training Data. In our default setting, we follow [3]
to aggregate video-text pairs in WebVid2.5M [3] and image-
text pairs in CC3M [55] to pre-train LAVENDER. As a scale-
up recipe, we additionally crawl 11.9M video-text pairs from
the web, following the same procedure in [3]. We similarly
scale up image-text pairs by assembling COCO [9], Visual
Genome [27], SBU Captions [47], CC12M [7] and CC3M.
Combining these video-text and image-text datasets together
results in 14M videos + 16M images. Unless otherwise
specified, all results reported in this section as LAVENDER
are pre-trained under the default setting with 2.5M videos
+ 3M images. In Section 4.5, we show that scaling up our
pre-training data further improves model performance.
Downstream Tasks. We evaluate LAVENDER on 14 video-
language benchmarks over popular VidL tasks, including
text-to-video retrieval, video question answering (QA) in

2Quantitatively, we observe concatenating a single answer results in
some performance drop (e.g., 98.7 → 94.0 on TGIF-Transition).

3Note that we can optionally insert multiple [MASK] tokens to allow
answer predictions with variant lengths. However, over 95% of the questions
in the evaluation datasets considered can be answered with a single word,
as shown in Appendix.
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VidL Task-specific Finetune Meta TGIF MSVD DiDeMo MSRVTT
Pre-training designs setting #Params # Ave. Action QA Ret. Cap.

-
- ST 4(P+H) 1 45.5 93.5 40.8 0.04 47.7

MT P+H 2 58.5 95.9 47.4 41.2 50.0

Head ST 4(P+H) 3 40.1 31.9 44.2 36.7 47.4
MT P+4H 4 55.6 94.1 44.6 35.4 48.3

VTM+MLM Head ST 4(P+H) 5 64.0 94.5 46.7 59.0 55.7
MT P+4H 6 62.4 95.5 47.7 53.0 53.3

VTM (as MLM)+MLM

- ST 4(P+H) 7 68.9 95.8 54.4 68.2 57.3
-

MT P+H
8 68.3 96.5 53.5 65.8 57.4

Task Prompt 9 67.9 96.2 53.4 65.6 56.4
Task Token 10 67.9 96.5 53.6 64.9 56.7

Table 2. Comparison to task-specific baseline under single-task (ST) and multi-task (MT) finetuning, with or without video-language
(VidL) pre-training. We report accuracy for QA, average (R1, R5, R10) for retrieval (Ret.) and CIDEr score for captioning (Cap.). Meta-Ave.
is the average across all scores. P and H denote the total parameter count in the backbone of LAVENDER (vision encoder + text encoder +
fusion encoder) and top output layer. Note that the baseline with task-specific heads (L3-6) is LAVENDER-TS, introduced in Section 4.2.

both multiple-choice (MC) and open-ended (OE) settings
and video captioning. We briefly list the evaluation datasets
for each task type below.

• Text-to-video Retrieval: MSRVTT [71], DiDeMo [22],
MSVD [8] and LSMDC [51];

• MC Video QA: TGIF-Action, TGIF-Transition [24],
MSRVTT-MC [78] and LSMDC-MC [60];

• OE Video QA: TGIF-Frame [24], MSRVTT-QA, MSVD-
QA [68] and LSMDC-FiB [44];

• Video Captioning: MSRVTT [71] and MSVD [8].

Implementation Details. We initialize our Vision Encoder
with VideoSwin-Base [39], pre-trained on Kinetics-600 [26].
Text Encoder and Multimodal Fusion Encoder are initialized
from pre-trained BERT-Base [13]. LAVENDER is end-to-
end trained for both pre-training and downstream finetuning.
For default setting with 2.5M videos + 3M images, we pre-
train LAVENDER for 10 epochs on 32 NVIDIA V100 GPUs,
which takes about 2 days. The scale-up pre-training takes
about 10 days on 64 NVIDIA V100 GPUs. More implemen-
tation details can be found in Appendix.

4.2. Comparison to Task-specific Baseline
To make a fair comparison to task-specific methods,

we train a task-specific version of LAVENDER (denoted as
LAVENDER-TS). We replace the shared Masked Language
Modeling (MLM) head in LAVENDER with task-specific
heads and adopt task-specific objectives. For text-to-video
retrieval (and similarly for video text matching during pre-
training), a multi-layer perceptron (MLP) with output di-
mension 1 is applied over the global video-language repre-
sentation of the [CLS] token and binary cross-entropy loss
is adopted to supervise the model training. For multiple-
choice video question answering (QA), we concatenate

4We empirically observe that the finetuning of DiDeMo retrieval with
LAVENDER without pre-training did not converge. This result indicates
that in order to model retrieval task as MLM, where the answer is limited
to two words (true or false) instead of 30,522 words, the model has to
learn from more data (e.g., pre-training or multi-task finetuning).

questions with all answer candidates to form the input text,
similar to what was described in Section 3.2, but without
the added [MASK] token. A task-specific MLP with out-
put dimension as the number of answer choices is applied
over the representation of [CLS] token and cross-entropy
loss is used to train a classifier over all answer indices (e.g.,
{0, 1, 2, 3, 4} with 5 answer choices). For open-ended video
QA, we follow the common practice [15,80] to build a finite
set of answer vocabularies covering the most common an-
swers in the training split of each dataset. Similarly, a MLP
with output dimension as the number of answers is added
and cross-entropy loss is used to train a classifier over all
answers. For video captioning, we simply adopt the same
training strategy with MLM head as in our unified model.

Table 2 compares LAVENDER to the task-specific baseline
LAVENDER-TS under different settings, on four represen-
tative benchmarks. For easier comparisons, we measure
the average model performance with Meta-Ave, the average
across scores over all evaluation tasks. Here, we focus our
discussion on results under single-task finetuning, and defer
the analysis on multi-task finetuning to Section 4.3. With-
out video-language (VidL) pre-training, LAVENDER-TS with
task-specific heads (L3) outperforms our unified model (L1)
on MSVD-QA and DiDeMo Retrieval. Captioning perfor-
mance are similar as the same MLM head and finetuning
strategy are applied to both models. On TGIF-Action, we
empirically find the training of LAVENDER-TS struggles to
converge, leading to a low Meta-Ave.

We also compare the two models under VidL pre-training.
We follow [29] to pre-train task-specific LAVENDER-TS with
MLM and the standard Video Text Matching (VTM) task,
which is modeled as binary classification with an additional
MLP layer. In comparison, the unified model LAVENDER is
pre-trained with MLM and VTM as MLM, with the shared
MLM head. The unified VidL pre-training (L7) significantly
enhances the performance of LAVENDER, with a gain of
+23.4 on Meta-Ave over without pre-training (L1). Compar-
ing both models under VidL pre-training, we also observe
that LAVENDER (L7) outperforms LAVENDER-TS (L5) by a
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Finetune Meta TGIF MSRVTT LSMDC MSVD DiDeMo
Method # Params Ave. Act. Trans. Frame MC QA Ret Cap MC FiB Ret QA Ret Cap Ret
ST 14P 73.9 95.8 99.1 72.2 96.6 44.2 58.9 57.3 84.5 56.9 39.8 54.4 67.6 139.4 68.2
MT (all-in-one) P 73.4 95.8 98.0 70.7 93.9 44.1 56.3 57.1 85.3 56.5 39.4 53.4 69.2 141.1 66.1
MT (best) 14P 73.8 95.8 98.3 71.6 94.3 44.2 56.4 57.2 86.0 56.7 39.4 55.4 69.3 141.6 66.5
MT → ST 14P 74.2 96.6 98.5 71.2 96.0 44.1 58.8 58.0 85.3 56.9 39.8 53.5 69.7 142.9 67.7
MT (all-in-one) TS >P 69.2 93.8 97.2 65.4 92.2 41.7 52.7 54.2 83.0 49.5 34.7 49.2 65.6 133.7 56.5

Table 3. Multi-task Finetuning under VidL pre-training. Accuracy, average (R1, R5, R10) and CIDEr score are used as evaluation metrics
for video QA, retrieval and captioning tasks. Meta-Ave. is the average score across all evaluation datasets. P denotes the total parameter
count in LAVENDER. MT (all-in-one) TS is LAVENDER-TS trained under all-in-one setting, all others are based on LAVENDER.

notable margin across all 4 tasks (+4.9 on Meta-Ave).

4.3. Multi-task Finetuning
In this section, we aim to answer the important ques-

tion raised in Section 1: can we have a unified architecture
that supports all downstream tasks simultaneously without
introducing task-specific heads? We first compare LAVEN-
DER with several multi-task learning baselines with different
task-specific designs in Table 2 and report results under the
extreme multi-task setting - a single model that can support
all 14 datasets (all-in-one) in Table 3.
Comparison to task-specific baseline. We begin our
comparison with the most common multi-task baseline in lit-
erature [34, 41] - adopting a task-specific head and objective
for each task, while sharing the backbone. This is equivalent
to finetuning the task-specific model LAVENDER-TS under
multi-task setting. We compare the two models in Table 2
and summarize our findings below:
• Single-task vs. Multi-task: Without video-language

(VidL) pre-training (L1-4), we find that multi-task train-
ing greatly improves model performance in both cases,
as it can take advantages of additional and diverse su-
pervision. Multi-task finetuning can also be regarded as
a way of pre-training. Table 2 results suggest that pre-
training only (L5/L7) on larger-scale data gives better per-
formance than multi-task only (L4/L2), with a gain of +8.8
for LAVENDER-TS and +10.4 for LAVENDER, respectively.
Combining multi-task finetuning with VidL pre-training
renders slight performance drop (L5-8) for both models.

• Single shared head vs. Task-specific heads: LAVENDER
(single shared head) outperforms LAVENDER-TS (task-
specific heads), with (L8 vs. L6, +5.9) or without (L2
vs. L4, +2.9) VidL pre-training. LAVENDER also saves
more parameters (approximately 3H) from the additional
3 task-specific heads in LAVENDER-TS under multi-task
finetuning. In addition, the performance drop of multi-task
finetuning from single-task finetuning is less severe with
the shared MLM head (-0.6 for LAVENDER vs. -1.6 for
LAVENDER-TS) under VidL pre-training.

Multi-task Variants with LAVENDER. We also explore
different multi-task variants with our unified framework
LAVENDER in Table 2: (i) L8: the vanilla version with-
out any task-specific design; (ii) L9: with human-readable

task-specific prompts (e.g., “is the video-text paired, true or
false?” for video text matching), which has shown promising
results for language understanding [53]; and (iii) L10: with
learnable task-specific tokens (e.g., a special token [VTM]
for video text matching), which is in analogy to the task
prefixes in [12]. Different from observations in [12,53], both
task-specific prompts and tokens do not show a clear advan-
tage over the vanilla version. We conjecture the differences
may be due to the weaker text encoder and the less diverse
text prompts, which we leave as interesting directions for
future study. Based on the above analyses, we simply extend
the vanilla multi-task finetuning method from 4 to all 14
VidL benchmarks considered.
All-in-One. In Table 3, we finally attempt to answer the
question with one model that can conquer all 14 downstream
tasks simultaneously. We first establish the baseline per-
formance by training single-task (ST) models with LAVEN-
DER. We then report multi-task results with (i) a single set
of parameters for all tasks (MT (all-in-one)); (ii) the best-
performing checkpoint for each task (MT (best)); and (iii)
with multi-task finetuning as 2nd stage pre-training and then
finetune on each task (MT→ST), from the learned weights
with MT (all-in-one). As the results show, MT→ST achieves
slightly better Meta-Ave across all settings. Surprisingly, the
all-in-one model is very competitive, with only -0.5 perfor-
mance drop on Meta-Ave, when compared with ST models.
Under all-in-one setting, our unified method consistently
outperform task-specific baseline with a gain of +4.2 on
Meta-Ave. We explore additional MT settings in Appendix,
and find that all-in-one empirically strikes a balance between
sophisticated heuristic designs of multi-task setting and good
model performance.

4.4. Few-shot and Zero-shot Evaluation
Next, we showcase two capabilities enabled by LAVEN-

DER over task-specific baseline.
Few-Shot Generalizability. We first study how LAVEN-
DER can generalize to testing data with limited training exam-
ples. Figure 3 compares the results of our unified LAVENDER
(red line), against the task-specific baseline LAVENDER-TS
with different heads and finetuning objectives (blue line) on 4
representative benchmarks. The two dotted lines denote 90%
of model performance when trained with all the training data
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(a) TGIF-Action (b) MSVD-QA (c) DiDeMo Retrieval (d) MSRVTT Captioning

Figure 3. Few-shot Evaluation under VidL Pre-training. Each experiment are repeated 5 times with different random seeds. The shaded
areas highlight the standard error. Percentage of training data needed to achieve 90% of the full model performance: (a) 40%, (b) 10%, (c)
10%, (d) 6% for LAVENDER (unified as MLM, red) and (a) 60%, (b) 60%, (c) 25%, (d) 10% for task-specific baseline LAVENDER-TS (blue).

# pre-train TGIF MSRVTT LSMDC MSVD
Method video/images Act. Trans. Frame MC QA MC FiB QA
JustAsk [73] 69M / - - - - - 2.9 - - 7.5
MERLOT RESERVE [79] 1B/ - - - - - 5.8 - 31.0 -
BLIP [32] - / 129M - - - - 19.2 - - 35.2
Flamingo [2] 2.1B / 27M - - - - 19.2 - - 35.2
FrozenBiLM [74] - / 10M - - 41.9 - 16.9 - 51.5 33.8
All-in-one [62] 283M / - - - - 80.3 - 56.3 - -
LAVENDER-TS 2.5M / 3M 48.5 47.9 0.0 84.6 0.0 66.9 0.0 0.0

LAVENDER
2.5M / 3M 52.6 54.1 16.7 86.7 4.5 73.8 34.2 11.6
14M / 16M 55.1 53.8 19.6 87.2 2.7 73.9 36.7 9.2

Table 4. Zero-shot Evaluation on Video QA (top-1 accuracy). Models are evaluated directly after pre-training. BLIP [32] is additionally
supervised with VQA v2 [20], and MERLOT RESERVE [79] is pre-trained with additional audio modality and uses GPT-3 [6] to reword
questions into masked statements. Flamingo [2] and FrozenBiLM [74] leverage large language models with more than 8x more parameters
than the BERT-Base model in LAVENDER.

for each model. Note that both models learn from the exact
same amount of data, that is, ∼5M images/videos during
pre-training and the same percentage of training data during
single-task finetuning. LAVENDER shows a clear advantage
of easily achieving 90% of the full model performance, with
much less training data. Specifically, approximately 40%,
10%, 10% and 6% of training data is needed for LAVEN-
DER on TGIF-Action, MSVD-QA, DiDeMo-Retrieval and
MSRVTT-Captioning, while LAVENDER-TS requires 60%,
60%, 25% and 10%, respectively.

Zero-Shot Evaluation on Video QA. Table 4 compares
zero-shot (ZS) performance of LAVENDER with task-specific
baseline LAVENDER-TS on 8 video QA benchmarks. Since
the model has neither learned to perform the multiple-choice
QA task nor seen similar data during pre-training, we trans-
form multiple-choice QA as Video Text Matching (VTM)
for better ZS performance. Specifically, we let LAVEN-
DER to predict true or false via MLM head, given a
video-question-answer input, and we rank the probability of
model prediction as true across all answer choices. Simi-
larly, for LAVENDER-TS with binary classification head for
VTM, we simply rank the probability of model prediction
as “matched”. With the same pre-training data, LAVENDER
evidently outperforms LAVENDER-TS on all multiple-choice
QA benchmarks. On open-ended QA tasks, LAVENDER
can be applied seamlessly, thanks to the shared MLM head.

However, the randomly initialized task-specific heads of
LAVENDER-TS give meaningless ZS predictions.

We also compare LAVENDER against previous methods.
Without the help of additional audio modality in [79] or su-
pervision signals in [32], LAVENDER achieves competitive
ZS performance, even when pre-trained with much less data
(5.5M vs. >69M). When scaling up the pre-training data by
roughly 5 times, we observe notable performance improve-
ments on most QA benchmarks. The performance drop on
a few datasets may be due to the inclusion of more noisy
data when scaling up. It is worth noting that advanced tech-
niques in concurrent studies [2, 65, 74], such as more power-
ful language models, larger-scale pre-training and enhanced
pretraining schema with in-context pairs are orthogonal to
our study and which we believe can be leveraged to further
improve LAVENDER performance in future work.

4.5. Comparison to Prior Arts
In this section, we compare LAVENDER with prior arts,

which are mostly designed to tackle a single type of video-
language (VidL) task. Note that LAVENDER performance
are reported on the best finetuning setting for each task, we
include more detailed results in Appendix.

Table 5 summarizes results of LAVENDER on video ques-
tion answering (QA) and video captioning. For video QA,
LAVENDER achieves significant gains over existing VidL
pre-trained models on 7 out 8 video QA benchmarks con-
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# Pretrain # Params in TGIF MSRVTT LSMDC MSVD Captioning
Method videos/images Backbone Act. Trans. Frame MC QA MC FiB QA MSRVTT MSVD
ClipBERT [29] - / 200K 137M 82.8 87.8 60.3 88.2 37.4 - - - - -
JustAsk [73] 69M / - 166M - - - - 41.5 - - 46.3 - -
MERLOT [80] 180M / - 219M 94.0 96.2 69.5 90.9 43.1 81.7 52.9 - - -
VIOLET [15] 183M / 3M 198M 92.5 95.7 68.9 91.9 43.9 82.8 53.7 47.9 - -
All-in-one [62] 283M / - 110M 95.5 94.7 66.3 92.3 46.8 84.4 - 48.3 - -
SwinBERT [36] - / - 198M - - - - - - - - 53.8 120.6
MV-GPT [54] 53M / - 314M - - - - 41.7 - - - 60.0 -

LAVENDER
2.5M / 3M

198M
96.6 99.1 72.2 96.6 44.2 86.0 56.9 55.4 58.0 142.9

14M / 16M 96.3 98.7 73.5 97.4 45.0 87.0 57.1 56.6 60.1 150.7
Table 5. Comparison with SOTA on video QA (accuracy) and captioning (CIDEr).

# Pretrain # Params in Text-to-Video Retrieval
Method videos/images Backbone MSRVTT DiDeMo MSVD LSMDC
ClipBERT [29] - / 200K 137M 22.0 / 46.8 / 59.9 20.4 / 48.0 / 60.8 - -
Frozen [3] 2.5M / 3.2M 232M 32.5 / 61.5 / 71.2 31.0 / 59.8 / 72.4 45.6 / 79.8 / 88.2 15.0 / 30.8 / 39.8
VIOLET [15] 183M / 3M 198M 34.5 / 63.0 / 73.4 32.6 / 62.8 / 74.7 - 16.1 / 36.6 / 41.2
All-in-one [62] 103M / - 110M 37.9 / 68.1 / 77.1 32.7 / 61.4 / 73.5 - -
BridgeFormer [19] - / 400M ∼149M 44.9 / 71.9 / 80.3 - 54.4 / 82.8 / 89.4 21.8 / 41.1 / 50.6
QB-Norm [5] - / 400M ∼149M 47.2 / 73.0 / 83.0 43.3 / 71.4 / 80.8 47.6 / 77.6 / 86.1 22.4 / 40.1 / 49.5
CAMoE [11] - / 400M ∼149M 47.3 / 74.2 / 84.5 43.8 / 71.4 / 79.9 49.8 / 79.2 / 87.0 25.9 / 46.1 / 53.7

LAVENDER
2.5M / 3M

198M
37.8 / 63.8 / 75.0 47.4 / 74.7 / 82.4 46.3 / 76.9 / 86.0 22.2 / 43.8 / 53.5

14M / 16M 40.7 / 66.9 / 77.6 53.4 / 78.6 / 85.3 50.1 / 79.6 / 87.2 26.1 / 46.4 / 57.3
Table 6. Comparison with SOTA on text-to-video-retrieval (R1/5/10). CAMoE [11] assumes the model can see all queries during testing.

sidered. On MSRVTT-QA, LAVENDER is only 1.8 points
behind All-in-one [62] pre-trained with 283M videos, which
is 9 times more than ours (30M). It is worth mentioning that
VIOLET [15] adopts the same model architecture and fine-
tuning objectives as our task-specific baseline LAVENDER-
TS. Even when scaling up the VidL pre-training to 186M
videos+images, the task-specific model VIOLET still under-
performs LAVENDER, which further demonstrates the advan-
tages of our unified framework. Due to computational con-
straint, we leave even larger-scale pre-training with >100M
data as future study. For video captioning, LAVENDER
achieves the new state-of-the-arts on both datasets. Note
that MV-GPT [54] is pre-trained for multi-modal video cap-
tioning, where the auto-transcribed text from audio is used
as additional input. With video-only inputs, LAVENDER is
able to achieve comparable performance. Furthermore, we
also include comparison in number of model parameters,
LAVENDER is of comparable model size, but requires less
data to achieve better performance.

Table 6 presents the comparison on text-to-video re-
trieval. The most competitive methods [5, 11, 19] on text-
to-video retrieval are based on CLIP [49] pre-trained on
400M images. However, with much fewer pre-training data,
LAVENDER can still perform competitively on all 4 bench-
marks, especially when compared to non-CLIP pre-trained
methods [3, 15, 62]. Notably, on DiDeMo and LSMDC,
LAVENDER surpasses all baseline methods in Table 6. We
hypothesize that the fusion encoder in LAVENDER is more
effective in modeling interactions between video and long
paragraph query (i.e., DiDeMo) or the contextualized queries

collected from movie scripts (i.e., LSMDC), than the late
dot-product fusion in [5, 11]. Furthermore, competitive con-
trastive methods [5, 11, 19, 43] may offer fast inference for
retrieval, but cannot support QA and captioning with the
same model weight. How to find a balance between fast
retrieval and unification is an interesting future direction.5

5. Conclusion
We introduce LAVENDER, the first unified video-language

(VidL) framework, that can tackle various VidL tasks with
a unified Masked Language Modeling objective. Without
any task-specific architectures, LAVENDER outperforms the
prior state-of-the-art on 11 out of 14 benchmarks consid-
ered. Experiments show that LAVENDER is better suited
for multi-task learning, few-shot generalization and zero-
shot evaluation on video question answering tasks. Promis-
ing future extensions of LAVENDER include: (i) extension
to fine-grained VidL tasks (e.g., video corpus moment re-
trieval [31]); and (ii) more effective in-context few-shot
learning or prompt tuning. Like other data-driven systems,
LAVENDER shares similar risks that may have negative so-
cietal impact, such as biases in training data and energy
consumption with large-scale training. However, we be-
lieve that our unified framework combined with multi-task
learning can most likely reduce both memory and energy
costs, and potentially lead to more economical deployment
in real-world applications.

5We also include a brief comparison of ZS retrieval on DiDeMo, and
show that LAVENDER is also competitive (ours, R1/R5: 22.4/47.3 vs. Video-
CLIP [70], R1/R5: 16.6/46.9).
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