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Abstract

Image resampling is a basic technique that is widely
employed in daily applications. Existing deep neural net-
works (DNNs) have made impressive progress in resam-
pling performance. Yet these methods are still not the per-
fect substitute for interpolation, due to the issues of effi-
ciency and continuous resampling. In this work, we propose
a novel method of Learning Resampling Function (termed
LeRF), which takes advantage of both the structural priors
learned by DNNs and the locally continuous assumption of
interpolation methods. Specifically, LeRF assigns spatially-
varying steerable resampling functions to input image pix-
els and learns to predict the hyper-parameters that deter-
mine the orientations of these resampling functions with a
neural network. To achieve highly efficient inference, we
adopt look-up tables (LUTs) to accelerate the inference of
the learned neural network. Furthermore, we design a
directional ensemble strategy and edge-sensitive indexing
patterns to better capture local structures. Extensive exper-
iments show that our method runs as fast as interpolation,
generalizes well to arbitrary transformations, and outper-
forms interpolation significantly, e.g., up to 3dB PSNR gain
over bicubic for ×2 upsampling on Manga109.

1. Introduction

Due to the rapid growth of visual data, there is a strong
demand for digital image processing. Image resampling,
one of the most common techniques, aims to obtain an-
other image by generating new pixels following a geomet-
ric transformation rule from existing pixels in a given im-
age [8]. Common transformations include upsampling (i.e.,
single image super-resolution), downsampling, affine trans-
formation, etc. Image resampling enjoys various applica-
tions, ranging from photo editing, optical distortion com-
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Figure 1. LeRF assigns steerable resampling functions to input
pixels, and learns to predict the hyper-parameters that determine
the orientations of these continuous functions for resampling un-
der arbitrary transformations.

pensation [10], online content streaming [35], and visual
special effects production [38].

Recently, deep neural networks (DNNs) have made im-
pressive progress in the field of image resampling [9,12,17,
27, 39, 40], thanks to the learning-from-data paradigm that
obtains powerful structural priors from large-scale datasets.
Despite the superior performance that DNN-based methods
have achieved, long-lived interpolation methods like bicu-
bic [16] are still preferred choices in most cases.

We attribute this phenomenon to the following two rea-
sons: 1) Interpolation is simple and highly efficient, result-
ing in less dependency and thus the practicality to be de-
ployed on a variety of devices, ranging from IoT devices
to gaming workstations. 2) Interpolation supports arbitrary
transformations. It assumes a continuous resampling func-
tion for a local area, resulting in the versatility in applying
to not only homographic transformations like upsampling
and downsampling, but also general warping. Although re-
cent DNN-based methods explore beyond fixed-scale up-
sampling [5, 12, 27, 39, 43, 48], an efficient and continuous

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5866



solution that matches interpolation remains less explored.
In this work, we aim to fill this blank research area

by taking a middle way between DNN-based methods and
interpolation methods. We propose a novel method of
Learning Resampling Function (termed LeRF), where pa-
rameterized continuous functions for resampling different
structures are learned from data. Specifically, as illustrated
in Fig. 1, we assign spatially-varying steerable resampling
functions to image pixels, whose orientations are parame-
terized with several hyper-parameters. Then, we train a neu-
ral network to predict these hyper-parameters for each pixel
in an input image, thus defining the resampling function
for that pixel location. Finally, we obtain the output image
by interpolating an input image with these locally adapted
resampling functions. LeRF takes advantage of both the
structural priors learned by DNN and the locally continu-
ous assumption of interpolation methods. Furthermore, we
present an efficient implementation, where the inference of
the learned neural network is accelerated with look-up ta-
bles (LUTs) [15,22,23,29]. We further design a directional
ensemble strategy and edge-sensitive indexing patterns to
better capture local structures in images.

We examine the advantages and generalization abil-
ity of LeRF in various image resampling tasks, includ-
ing arbitrary-scale upsampling, homographic transforma-
tion, and general warping. In particular, as illustrated in
Fig. 2, at a similar running time, our method outperforms
popular interpolation methods significantly in upsampling,
which demonstrates the superiority of LeRF in terms of per-
formance and efficiency.

Contributions of this paper are summarized as follows:
1) We propose LeRF, a novel method for continuous re-

sampling. We assign spatially-varying steerable resampling
functions to image pixels, where we train a neural network
to predict the hyper-parameters that determine the orienta-
tions of these resampling functions.

2) We present an efficient implementation of LeRF by
adopting look-up tables to accelerate the inference of the
trained neural network. Furthermore, we design a direc-
tional ensemble strategy and edge-sensitive indexing pat-
terns to better capture local structures.

3) Extensive experiments demonstrate that our method
operates as efficient as interpolation, generalizes well to ar-
bitrary transformations, and obtains significantly better per-
formance over interpolation.

2. Related Works
Image interpolation for resampling. Interpolation, the
most common solution for image resampling, assumes a lo-
cally continuous intensity surface and approximates it with
a fixed resampling function, such as nearest (nearest),
linear (bilinear), cubic (bicubic) [16], and windowed
sinc (lanczos). It predicts resampling weights with the as-

Figure 2. Performance-efficiency trade-off of arbitrary-scale up-
sampling methods. PSNR values are obtained on Set14 for ×4
upsampling. The running time is evaluated on mobile and desktop
devices, respectively.

sumed resampling function, and then aggregates input pix-
els with these resampling weights to obtain the target pixel.
This assumption allows for continuous resampling under ar-
bitrary transformations, yet leads to blurry results due to ig-
noring different local structures [34]. We follow the same
assumption on local continuity, but our method deals with
different structures with adapted resampling functions in-
stead of fixed ones.
Adaptive image resampling. To integrate local struc-
tural information into the resampling process, many meth-
ods are proposed, including edge-directed interpolation
[2, 24, 44, 52] and kernel regression [21, 41, 51]. Different
from these methods that rely on hand-designed rules, our
method adopts a neural network to learn structural priors
and integrate them into the resampling functions in a data-
driven way. Another line of work achieves adaptive resam-
pling by combining interpolation methods with adaptive fil-
tering [11,14,17,37]. Among them, RAISR achieves super-
resolution by predicting adaptive filters for each pixel from
a hash table and then applying the predicted adaptive filters
to pre-upsampled images [11, 37]. This kind of method op-
erates on the pre-resampled results of common interpolation
methods (usually bicubic) with a fixed transformation (e.g.,
×2 upsampling), thus lacking the generalization ability to
be extended to unseen arbitrary transformations.
DNN-based image resampling. With the rise of deep neu-
ral networks, impressive progress has been made in image
resampling, such as upsampling [3,4,9,17,25,27,36,46,47,
49, 54], downsampling [40, 42], and homographic transfor-
mation [39]. For arbitrary-scale upsampling, Meta-SR [12]
and LIIF [5] are two representative works. Meta-SR pre-
dicts the resampling weights from upsampling scales with a
weight prediction network, similar to kernel prediction net-
works [26, 32], and aggregates deep features to get the fi-
nal upsampled image [12]. Following works improve the
process with support for homographic transformations [39]
and scale-aware feature adaptation [43]. On the other hand,
LIIF models the aggregation step with a neural implicit rep-
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Figure 3. Comparison between interpolation and LeRF. (a) Interpolation assumes a spatial-invariant fixed function Φ(·) to predict resam-
pling weights W . (b) LeRF learns spatially-varying steerable function ΦΘ with a DNN f(·).

resentation, predicting the target pixels from deep latent fea-
tures and target coordinates [5]. Following works improve
the implicit representation by integrating frequency analy-
sis [20] and modulation-based transformer [48]. Different
from these works, we utilize explicit local functions, result-
ing in advantages in efficiency and interpretability.
Efficient super-resolution with look-up table. A look-up
table is composed of index-value pairs, which can be effi-
ciently retrieved through memory access. It is widely ap-
plied in the image signal processing pipeline [18, 50]. Re-
cently, SR-LUT has been introduced to accelerate the infer-
ence of a fixed-scale super-resolution network by travers-
ing all possible low-resolution (LR) patches, pre-computing
all corresponding high-resolution (HR) patches, and saving
them as index-value pairs [15]. At inference, the computa-
tions in the super-resolution network are replaced with re-
trieving values from LUT, leading to inference acceleration.
Different from existing LUT-based methods [15,22,23,29],
which adopt different groups of LUTs under different up-
sampling scales, our LUTs store the same group of hyper-
parameters across arbitrary transformations, thus achieving
continuous resampling at high efficiency.

3. Learning Resampling Function

3.1. Formulation

Typically, resampling through interpolation can be im-
plemented in the following steps.

① Obtain relative offsets: the target coordinates after
transformation, such as upsampling, are projected back to
the coordinate space of the input image, and the relative spa-
tial offsets between target pixels and source pixels in their
support patches are obtained.

② Predict resampling weights: based on the relative spa-
tial offsets, the resampling weights, i.e., resampling kernels,
are predicted for each pixel in the support patch.

③ Aggregate pixels: the source pixels are aggregated
through weighted summation to obtain the target pixel

value. The above process can be formulated as

Îq =
∑
p∈Ω

Wp→qIp (1)

where Îq is the interpolated pixel value at the target coor-
dinate, Ip the pixel value at the source coordinate, Ω the
support patch, and Wp→q the weight from p to q.

As illustrated in Fig. 3(a), an isotropic resampling func-
tion Φ(·), e.g. cubic in bicubic interpolation, is assumed to
predict resampling weights from relative offsets, which can
be formulated as

Wp→q = Φ(dp→q) (2)

where dp→q is the relative offset from p to q, which can be
obtained based on the geometric transformation T . Thanks
to the continuity of the resampling function Φ, arbitrary
transformations from Iin to Iout can be achieved. The
assumption of local continuity contributes to the versatil-
ity and high efficiency of interpolation. But the spatially-
invariant resampling function leads to blurry results due to
the ignorance of local structures.

3.2. The Steerable Resampling Function

In this work, we propose a novel method of learning re-
sampling function that adapts the resampling functions to
local structures in a data-driven way. Different from the
fixed resampling function in interpolation, we assume a kind
of steerable resampling function ΦΘ, parameterized by Θ.
Specifically, we utilize the anisotropic gaussian,

ΦΣ(x− µ) =
1

2π|Σ|
1
2

exp{−1

2
(x− µ)

T
Σ−1(x− µ)}

(3)
where (x−µ) are the relative offsets between the target and
source pixels, | · | denotes the determinant of the covariance
matrix Σ. We parameterize Σ as the following,

Σ =

(
σ2
X ρσXσY

ρσXσY σ2
Y

)
(4)
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Figure 4. Visualization of parameterized resampling functions.

where ρ, σX , and σY are hyper-parameters, and thus the
resampling function becomes Φ(ρ,σX ,σY ). From the per-
spective of statistics, ρ can be interpreted as the correlation
between 2D variables and σX , σY the standard deviations.

As illustrated in Fig. 4, our resampling function is steer-
able, where different orientations and shapes can be ob-
tained by tuning hyper-parameters (ρ, σX , σY ), showing its
modeling capacity for a variety of local structures. Other
non-steerable functions, such as Keys cubic [16] are also
applicable as resampling functions. Details of the compari-
son are provided in Table 3 and Fig. 10.

But, direct optimization of the above hyper-parameters
leads to unstable gradients and divergence. Thus, we mod-
ify the formulation by omitting the determinant multiplier
and predicting a group of (ρ, 1

σX
, 1
σY

) for stable training. In
the following section, we introduce the learning process of
these hyper-parameters and our efficient implementation.

3.3. Learning with DNN and LUT Acceleration

As shown in Fig. 3(b), we adopt a deep neural network
to learn structural priors from an external dataset for pre-
dicting hyper-parameters Θ in resampling functions. The
training loss function can be formulated as

Lq = ||Iq −
∑
p∈Ω

ΦΘ(dp→q)Ip||2, Θ = f(Np), (5)

where Iq is the ground truth pixel value at location q, f(·)
is a trainable DNN, and Np denotes the surrounding pixels
of Ip (not necessarily the same as the support patch Ω).

Furthermore, to match the efficiency of interpolation, we
accelerate the inference of the trained DNN by adopting
look-up tables [15, 22, 23, 29]. As shown in Fig. 5(a), for
each pair in the LUT to accelerate DNN, its index i∗ is a
combination of pixels (i.e., Np), and its value v∗ is a group
of corresponding hyper-parameters for that pixel combina-
tion (i.e., Θ). This way, hyper-parameters can be retrieved
directly from the saved values in LUTs, skipping computa-
tions in DNN and thus resulting in high efficiency.

Different from existing LUT-based methods, whose LUT
values are image pixels, our LUTs store hyper-parameters
that reflect structural characteristics. Thus, to better extract
structural priors, we propose the following adaptations.

Directional ensemble strategy. We propose a directional
ensemble (DE) strategy to replace the rotation ensemble
(RE) strategy in existing LUT-based methods [15, 22, 23].
As illustrated in Fig. 5(b), in RE, the predictions are aver-
aged across all directions, while the proposed DE strategy
only ensembles the predictions with the same direction (i.e.,
180◦ rotational symmetry, instead of 90◦ in RE). This en-
ables the learning of ρ, which determines the orientation of
the steerable resampling function (see Table 5 and Fig. 11).

Edge-sensitive indexing patterns. As illustrated in
Fig. 5(c), we include patterns “C” and “X”, alongside the
default “S” pattern in SR-LUT to better capture edges of
different orientations. For example, The “C” and “C ′” pat-
terns are sensitive to vertical and horizontal edges, respec-
tively. We validate their effectiveness in Table 5. Corre-
spondingly, as shown in Fig. 5(a), our DNN follows a multi-
branch design, and each branch is accelerated by a LUT.

Pre-filtering stage. Inspired by DNN-based resampling
methods [12, 43, 48], we pre-filter the image with a neu-
ral network, which can also be accelerated by LUTs with
the proposed edge-sensitive indexing patterns. This pre-
filtering stage helps enhance image content and contributes
to better performance (see Table 5 and Fig. 11).
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Method
Set5 Set14 BSDS100 Urban100 Manga109

×1.5
×1.5

×1.5
×2.0

×2.0
×2.0

×2.0
×2.4

×1.5
×1.5

×1.5
×2.0

×2.0
×2.0

×2.0
×2.4

×1.5
×1.5

×1.5
×2.0

×2.0
×2.0

×2.0
×2.4

×1.5
×1.5

×1.5
×2.0

×2.0
×2.0

×2.0
×2.4

×1.5
×1.5

×1.5
×2.0

×2.0
×2.0

×2.0
×2.4

Nearest 31.34 31.07 30.84 29.63 29.15 28.84 28.57 27.70 28.99 28.72 28.40 27.62 26.21 25.91 25.62 24.78 28.59 28.36 28.14 26.87
Bilinear 34.99 33.19 32.23 31.49 31.68 30.26 29.24 28.70 30.92 29.66 28.67 28.20 28.24 26.91 25.96 25.46 32.45 30.33 29.16 28.28
Bicubic 36.76 34.68 33.64 32.70 33.07 31.45 30.32 29.62 32.14 30.67 29.54 28.93 29.50 27.95 26.87 26.22 34.76 32.13 30.81 29.61
Lanczos2 36.83 34.74 33.70 32.74 33.13 31.50 30.36 29.65 32.19 30.71 29.58 28.95 29.55 28.00 26.91 26.25 34.87 32.22 30.89 29.66
Lanczos3 37.61 35.31 34.23 33.24 33.75 31.97 30.76 30.02 32.74 31.11 29.89 29.23 30.12 28.42 27.25 26.55 36.12 33.06 31.63 30.28
RAISR* [37] 35.50 35.49 35.57 33.38 31.84 31.67 31.71 30.22 30.87 30.68 30.66 29.42 28.77 28.60 28.64 27.01 33.81 33.74 33.88 30.61
SR-LUT* [15] 37.74 35.52 34.47 33.45 33.53 31.79 30.59 29.86 33.06 31.40 30.15 29.45 30.24 28.55 27.39 26.69 35.31 32.30 30.96 29.58
LeRF (Ours) 38.30 36.60 35.71 34.74 34.59 33.06 31.98 31.10 33.76 32.08 30.83 30.09 31.86 30.08 28.86 27.99 36.57 34.79 33.88 32.67

Meta-SR [12] 41.29 - 38.12 - 37.47 - 33.99 - 35.79 - 32.32 - 35.85 - 32.98 - 42.92 - 39.22 -
LIIF [5] 41.22 38.99 38.08 36.99 37.44 35.31 33.96 32.95 35.75 33.68 32.28 31.45 36.70 34.08 32.84 31.70 42.77 40.19 39.13 37.69

Method
Set5 Set14 BSDS100 Urban100 Manga109

×2.0
×3.0

×3.0
×3.0

×3.0
×4.0

×4.0
×4.0

×2.0
×3.0

×3.0
×3.0

×3.0
×4.0

×4.0
×4.0

×2.0
×3.0

×3.0
×3.0

×3.0
×4.0

×4.0
×4.0

×2.0
×3.0

×3.0
×3.0

×3.0
×4.0

×4.0
×4.0

×2.0
×3.0

×3.0
×3.0

×3.0
×4.0

×4.0
×4.0

Nearest 28.87 27.91 26.88 26.25 27.07 26.08 25.33 24.74 27.12 26.17 25.57 25.03 24.25 23.34 22.68 22.17 26.12 25.04 24.06 23.43
Bilinear 30.43 29.53 28.27 27.55 27.94 27.04 26.16 25.51 27.60 26.77 26.11 25.53 24.81 23.99 23.26 22.68 27.21 26.16 24.95 24.19
Bicubic 31.41 30.39 29.12 28.42 28.70 27.63 26.75 26.09 28.18 27.20 26.53 25.95 25.43 24.45 23.71 23.14 28.20 26.95 25.67 24.90
Lanczos2 31.44 30.41 29.14 28.44 28.72 27.64 26.77 26.10 28.20 27.21 26.54 25.96 25.45 24.47 23.73 23.15 28.23 26.97 25.70 24.92
Lanczos3 31.85 30.79 29.49 28.78 29.04 27.91 27.01 26.31 28.43 27.39 26.70 26.10 25.71 24.68 23.92 23.32 28.70 27.38 26.02 25.21
RAISR* [37] 32.35 31.87 29.91 29.65 29.04 28.62 27.10 26.86 28.24 27.84 26.68 26.42 25.92 25.50 24.08 23.89 29.30 28.73 26.40 26.12
SR-LUT* [15] 32.04 31.00 29.70 29.00 28.88 27.84 26.95 26.30 28.62 27.54 26.84 26.21 25.83 24.78 24.00 23.39 28.03 26.74 25.39 24.72
LeRF (Ours) 33.17 32.02 30.86 30.15 30.06 28.84 28.05 27.35 29.15 28.00 27.31 26.70 26.90 25.68 24.88 24.23 30.86 29.48 28.10 27.25

Meta-SR [12] - 34.71 - 32.48 - 30.56 - 28.83 - 29.26 - 27.73 - 28.91 - 26.69 - 34.37 - 31.32
LIIF [5] 35.63 34.59 33.17 32.37 31.68 30.39 29.45 28.65 30.47 29.24 28.42 27.73 30.23 28.80 27.55 26.66 35.73 34.17 32.29 31.19

Table 1. Quantitative comparison in PSNR for arbitrary-scale upsampling. ×rh
×rw

denotes upsampling rh times along the short side and
rw times along the long side. SSIM and LPIPS results are in the supplementary document. * denotes that we combine fixed-scale super-
resolution methods with bicubic to achieve arbitrary-scale upsampling. The best and second best results are highlighted and underlined.

4. Experiments and Results

4.1. Experimental Settings

Datasets and metrics. We train LeRF on the DIV2K
dataset [1], which is widely used in image resampling tasks.
We train LeRF on the ×4 downsampled data pairs, and ap-
ply the obtained model to resampling for arbitrary transfor-
mations. For arbitrary-scale upsampling, we evaluate LeRF
with 5 benchmark datasets: Set5, Set14, BSDS100 [30],
Urban100 [13], and Manga109 [31]. We select representa-
tive symmetric or asymmetric upsampling scales for eval-
uation and apply bicubic interpolation as the degradation
model to obtain the LR images. For performance eval-
uation, we report PSNR and SSIM [45] for fidelity, and
LPIPS [53] for perceptual quality. For efficiency evaluation,
we report running time, theoretical multiply-accumulate op-
erations (MACs), and storage requirements to evaluate the
performance-efficiency trade-off.

Comparison methods. The main competitors to the pro-
posed method are interpolation methods, including nearest
neighbor, bilinear, bicubic, lanczos2, and lanczos3. Fur-
thermore, we combine fixed-scale super-resolution meth-
ods with bicubic interpolation as additional baselines
for arbitrary-scale upsampling (RAISR* and SR-LUT*).

Method
RunTime

(ms) MACs Storage
Size

PSNR/SSIM
(dB)/-

Nearest 11 - - 24.74/0.6553
Bilinear 31 14.74M - 25.51/0.6824
Bicubic 126 51.61M - 26.09/0.7056
Lanczos2 494 110.59M - 26.10/0.7058
Lanczos3 914 165.89M - 26.31/0.7130
RAISR* [37] 3,744 - 3.19MB 26.86/0.7357
SR-LUT* [15] 137 53.33M 81.56KB 26.30/0.7256
LeRF (Ours) 110 57.94M 1.67MB 27.35/0.7475

MetaSR [12] 10,260 1.68T 85.59MB 28.83/0.7876
LIIF [5] 67,080 2.54T 255.76MB 28.65/0.7878

Table 2. Efficiency comparison of running time, MACs, storage
requirements, and performance (Set14) for producing a 1280×720
HD image through 4× upsampling. For interpolation methods,
SR-LUT*, and LeRF, the running time is evaluated on CPU of a
mobile phone and averaged across 10 trials, while for RAISR* and
DNNs, that is evaluated on CPU of a desktop computer.

Specifically, since RAISR [37] lacks generalization ability
across different upsampling scales, we fuse the results of
×2, ×3, and ×4 models by choosing the model with the
closest integer upsampling scales (e.g., ×3 model for ×2.0

×3.0 ).
We retrain SR-LUT [15] on the mixed-scale data of ×2, ×3,
and ×4 downsampled data pairs jointly with bicubic inter-
polation to achieve arbitrary-scale upsampling. Finally, we
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×1.5
×2.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* LeRF (Ours)

(PSNR/SSIM) (23.46/0.8875) (24.88/0.9174) (25.63/0.9275) (26.62/0.9362) (25.51/0.9305) (28.36/0.9577)

×2.0
×2.4

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* LeRF (Ours)

(PSNR/SSIM) (29.83/0.9553) (31.29/0.9641) (32.06/0.9666) (32.34/0.9681) (31.98/0.9664) (35.28/0.9787)

×3.0
×3.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* LeRF (Ours)

(PSNR/SSIM) (28.14/0.8051) (28.57/0.8191) (28.76/0.8244) (29.14/0.8396) (28.98/0.8355) (29.54/0.8440)

×4.0
×4.0

upsampling
GT Bilinear Bicubic Lanczos3 RAISR* SR-LUT* LeRF (Ours)

(PSNR/SSIM) (16.39/0.4217) (16.58/0.4402) (16.63/0.4429) (16.97/0.4896) (16.76/0.4619) (17.30/0.5175)

Figure 6. Qualitative comparison for arbitrary-scale upsampling. From top to bottom, the example images are: UltraEleven (Manga109),
MukoukizuNoChonbo (Manga109), 126007 (BSDS100), and img092 (Ubran100). Best view in color and on screen.

include DNN-based arbitrary-scale super-resolution meth-
ods (Meta-SR [12] and LIIF [5]) for reference.
Implementation details. Our method is trained with the
Adam optimizer [19] in the cosine annealing schedule [28].
We train LeRF with the MSE loss function for 5 × 104

iterations at a batch size of 32. Except for the indexing
patterns, each branch in our DNN keeps the same archi-
tecture as the network in SR-LUT. To obtain a fair com-
parison in running time tests, we implement LeRF and
interpolation methods on the Android platform under the
same parallel API, with the only difference being the re-
sampling functions and LUT retrieval in our method. Our
method is implemented in MindSpore [33] and the code
is available at https://gitee.com/mindspore/
models/tree/master/research/cv/lerf.

4.2. Performance Evaluation

Quantitative comparison. We list the quantitative com-
parisons with other methods in Table 1. As can be seen,
our method achieves significantly better performance than
interpolation methods. For example, it exceeds bicubic in-
terpolation up to 3dB PSNR when upsampling ×2.0

×2.0 on the
Manga109 dataset.

Qualitative comparison. In Fig. 6, we compare the visual
quality of LeRF with interpolation methods, RAISR*, and
SR-LUT*. As can be seen, our method obtains better visual
quality across various local structures and textures. Specif-
ically, since the resampling functions are adapted to local
structures, LeRF is capable of retaining clearer textures and
avoiding blurry boundaries.
Visualization of learned resampling functions. We fur-
ther visualize the intermediate results of the proposed
method in Fig. 7. As can be seen, the hyper-parameter ρ
clearly distinguishes the orientations of edges (red vs. blue),
and σX and σY capture the horizontal and vertical lines, re-
spectively. In addition, in the second row of each example,
we visualize the resampling functions defined by the pre-
dicted hyper-parameters. The shapes of resampling func-
tions are well adapted to corners, flat surfaces, and edges
with various orientations. This validates the effectiveness
of extracting structural priors in a data-driven way.

4.3. Efficiency Evaluation

To evaluate the efficiency, we conduct running time tests,
estimate the theoretical MACs, and report storage require-
ments for LeRF and comparison methods. We list the de-
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Figure 7. Visualization of the pixel-wise hyper-parameters and the
corresponding resampling functions. The shapes of the predicted
resampling functions are well adapted to local structures.

tailed comparison in Table 2. As can be seen, the proposed
LeRF achieves comparable or better running time compared
to the popular interpolation methods, showing its role as a
superior competitor with significantly better performance.
On the other hand, compared to DNN-based methods, LeRF
shows a clear advantage in efficiency. Furthermore, our
method requires far less extra storage as well as fewer soft-
ware dependencies, demonstrating its practicality for being
deployed on various devices.

4.4. Generalization Evaluation

In Fig. 8, we evaluate the generalization ability of LeRF
to arbitrary transformations and compare it with widely ap-
plied interpolation methods. As can be seen, the learned re-
sampling functions generalize well to unseen deformations.
LeRF generates sharper edges and retains more texture de-
tails, leading to more visually pleasing results than popular
interpolation methods.

4.5. Ablation Analysis

Analysis of GT-optimized resampling functions. To ana-
lyze the optimal shapes of resampling functions across dif-
ferent transformations, we obtain hyper-parameters in re-
sampling functions via per-image optimization. In Fig. 9,
we visualize the clustering results on Set14 of these GT-
optimized resampling functions across different upsampling
scales. As can be seen, the GT-optimized cluster centroids
are very similar across different upsampling scales, explain-
ing the generalization ability of our method.

Input Transformation Bilinear Bicubic Ours

Figure 8. Visual comparison of LeRF with interpolation methods
under general homographic transformations (downsampling, rota-
tion, and sheering) and arbitrary warping (according to a barrel-
shaped distortion and optical flow).

Figure 9. Visualization of GT-optimized resampling function clus-
tering centroids on Set14 for ×2, ×3, and ×4 upsampling, respec-
tively. They show consistency across different upsampling scales.

The effectiveness of the steerable resampling function.
We conduct the following ablation experiments on the Set5
benchmark to analyze the design of the steerable resam-
pling function. 1) Fixed gaussian: We freeze the hyper-
parameters in the anisotropic gaussian. 2) Learned Keys
cubic: We utilize another non-steerable resampling func-
tion, the isotropic Keys cubic function [16], which has only
one hyper-parameter that controls the sharpness of the one-
dimension piecewise cubic. The experimental results are
listed in Table 3, and visual results are shown in Fig. 10. As
can be seen, non-steerable resampling functions like Keys
cubic produce zig-zag artifacts and inferior performance,
showing the effectiveness of our learned steerable resam-
pling functions.
Analysis of training data. By default, LeRF is trained with
×4 downsampled data pairs. We retrain our method on ×2
data pairs and mixed data pairs with both symmetric and
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MACs Storage ×2 ×3 ×4

Ours 57.94M 1.67MB 35.71 32.02 30.15

fixed gaussian Φ(0,1,1) 45.04M 244.69KB 30.75 27.70 26.31
learned Keys cubic 126.94M 489.38KB 34.68 31.17 29.08

Table 3. Ablation experiments on Set5 on the the design of the
steerable resampling function.

cubic

OursOurs

cubic

Figure 10. The non-steerable Keys cubic function produces arti-
facts along diagonal edges.

MACs Storage ×2 ×3 ×4

Ours (×4 data) 57.94M 1.67MB 35.71 32.02 30.15

×2 data training 57.94M 1.67MB 35.67 32.11 29.91
mixed-scale training 57.94M 1.67MB 35.67 32.26 30.06

Table 4. Ablation experiments on Set5 on data pairs for training.

asymmetric upsampling scales. As listed in Table 4, train-
ing on mixed data pairs yields similar performance, show-
ing the robustness and generalization ability of our method,
which is consistent with the clustering results in Fig. 9.
The effectiveness of the LUT acceleration and the pro-
posed adaptations. As listed in Table 5, we conduct the
following ablation experiments to analyze the design of the
LUT acceleration and our adaptations. 1) Without LUT ac-
celeration: Compared with the learned network, the LUT
acceleration saves a lot of computations at a very small
performance cost. 2) Without DE: The visualization of
the learned hyper-parameter ρ in Fig. 11 shows that RE
makes an isotropic assumption and thus lacks the ability to
learn edge orientations, resulting in a performance drop. 3)
Without edge-sensitive patterns: LeRF with “SCX” index-
ing patterns outperforms the variant with only the default
“S” pattern, showing the ability of edge-sensitive indexing
patterns to better capture edge structures. 4) Without pre-
filtering or pre-filtering only: As shown in Fig. 11 and Ta-
ble 4, the pre-filtering stage enhances edges and contributes
to better performance, and pre-filtering only is suboptimal
due to the lack of adpativity of resampling functions.

4.6. Limitation

In most cases, our method produces better results com-
pared with interpolation. But, it may fail under certain cir-
cumstances. In Fig. 12, we show its limitation in down-
sampling, where aliasing artifacts appear in regions with

MACs Storage ×2 ×3 ×4

Ours 57.94M 1.67MB 35.71 32.02 30.15

w/o LUT acceleration 21.75G 1.59MB 36.11 32.23 30.28
w/o DE 57.94M 978.76KB 34.44 31.50 29.47
w/o “CX” pattern 49.65M 326.25KB 34.90 31.79 29.70
w/o pre-filtering 53.45M 1.43MB 34.43 31.41 29.33
pre-filtering only 56.10M 244.69KB 34.69 31.16 29.15

Table 5. Ablation experiments on Set5 on the LUT acceleration
and our adaptations.

Input

Input InputPre-filtered Pre-filtered

DE 𝜌RE 𝜌 DE Output

RE Output

Figure 11. Upper: Replacing RE with DE enables the learning of
edge orientations. Lower: The pre-filtering stage enhances edges.

HR Bicubic Lanczos3 OursBilinear

Figure 12. Limitation. LeRF produces aliasing artifacts for image
downsampling in regions with highly dense textures.

highly dense textures. It is probably caused by a lack of
training on downsampled data. Moreover, replacing the
pre-filtering stage with anti-aliasing filters may mitigate this
problem [6, 7].

5. Conclusion Remarks
In this work, we propose LeRF, a novel method for con-

tinuous resampling by integrating learned structural priors
into the steerable resampling function. We show its supe-
rior performance, high efficiency, and versatility for arbi-
trary transformations. In the future, we plan to extend this
idea to other modalities, e.g., video and point clouds.
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