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Abstract

Recent DEtection TRansformer-based (DETR) models
have obtained remarkable performance. Its success cannot
be achieved without the re-introduction of multi-scale feature
fusion in the encoder. However, the excessively increased to-
kens in multi-scale features, especially for about 75% of low-
level features, are quite computationally inefficient, which
hinders real applications of DETR models. In this paper, we
present Lite DETR, a simple yet efficient end-to-end object
detection framework that can effectively reduce the GFLOPs
of the detection head by 60% while keeping 99% of the origi-
nal performance. Specifically, we design an efficient encoder
block to update high-level features (corresponding to small-
resolution feature maps) and low-level features (correspond-
ing to large-resolution feature maps) in an interleaved way.
In addition, to better fuse cross-scale features, we develop
a key-aware deformable attention to predict more reliable
attention weights. Comprehensive experiments validate the
effectiveness and efficiency of the proposed Lite DETR, and
the efficient encoder strategy can generalize well across
existing DETR-based models. The code will be available
in https://github.com/IDEA-Research/Lite-
DETR.

1. Introduction

Object detection aims to detect objects of interest in im-
ages by localizing their bounding boxes and predicting the
corresponding classification scores. In the past decade, re-
markable progress has been made by many classical de-
tection models [23, 24] based on convolutional networks.

*This work was done when Feng Li was an intern at IDEA.
†Corresponding author.

Figure 1. Average precision (Y axis) versus GFLOPs (X axis) for
different detection models on COCO without extra training data.
All models except EfficientDet [29] and YOLO series [12, 30] use
ResNet-50 and Swin-Tiny as backbones. Specifically, two markers
on the same line use ResNet-50 and Swin-Tiny, respectively. In-
dividual markers only use ResNet-50. Each dashed line connects
algorithm variants before and after adding our algorithm. The size
of the listed models vary from 32M to 82M.

Recently, DEtection TRansformer [1] (DETR) introduces
Transformers into object detection, and DETR-like models
have achieved promising performance on many fundamental
vision tasks, such as object detection [13, 36, 37], instance
segmentation [5, 6, 14], and pose estimation [26, 28].

Conceptually, DETR [1] is composed of three parts: a
backbone, a Transformer encoder, and a Transformer de-
coder. Many research works have been improving the back-
bone and decoder parts. For example, the backbone in DETR
is normally inherited and can largely benefit from a pre-
trained classification model [10, 20]. The decoder part in
DETR is the major research focus, with many research works
trying to introduce proper structure to DETR query and im-
prove its training efficiency [11, 13, 18, 21, 36, 37]. By con-
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trast, much less work has been done to improve the encoder
part. The encoder in vanilla DETR includes six Transformer
encoder layers, stacked on top of a backbone to improve its
feature representation. Compared with classical detection
models, it lacks multi-scale features, which are of vital im-
portance for object detection, especially for detecting small
objects [9, 16, 19, 22, 29]. Simply applying Transformer en-
coder layers on multi-scale features is not practical due to
the prohibitive computational cost that is quadratic to the
number of feature tokens. For example, DETR uses the C5
feature map, which is 1/32 of the input image resolution, to
apply the Transformer encoder. If a C3 feature (1/8 scale) is
included in the multi-scale features, the number of tokens
from this scale alone will be 16 times of the tokens from the
C5 feature map. The computational cost of self-attention in
Transformer will be 256 times high.

To address this problem, Deformable DETR [37] devel-
ops a deformable attention algorithm to reduce the self-
attention complexity from quadratic to linear by compar-
ing each query token with only a fixed number of sampling
points. Based on this efficient self-attention computation,
Deformable DETR introduces multi-scale features to DETR,
and the deformable encoder has been widely adopted in
subsequent DETR-like models [11, 13, 18, 36].

However, due to a large number of query tokens intro-
duced from multi-scale features, the deformable encoder
still suffers from a high computational cost. To reveal this
problem, we conduct some analytic experiments as shown
in Table 1 and 2 using a DETR-based model DINO [36] to
analyze the performance bottleneck of multi-scale features.
Some interesting results can be observed. First, the low-level
(high-resolution map) features account for more than 75% of
all tokens. Second, direct dropping some low-level features
(DINO-3scale) mainly affects the detection performance for
small objects (AP_S) by a 10% drop but has little impact on
large objects (AP_L).

Inspired by the above observations, we are keen to address
a question: can we use fewer feature scales but maintain
important local details? Taking advantage of the structured
multi-scale features, we present an efficient DETR frame-
work, named Lite DETR . Specifically, we design a simple
yet effective encoder block including several deformable
self-attention layers, which can be plug-and-play in any
multi-scale DETR-base models to reduce 62% ∼ 78% en-
coder GFLOPs and maintain competitive performance. The
encoder block splits the multi-scale features into high-level
features (e.g., C6, C5, C4) and low-level features (e.g., C3).
High-level and low-level features will be updated in an in-
terleaved way to improve the multi-scale feature pyramid.
That is, in the first few layers, we let the high-level features
query all feature maps and improve their representations, but
keep low-level tokens intact. Such a strategy can effectively
reduce the number of query tokens to 5% ∼ 25% of the

original tokens and save a great amount of computational
cost. At the end of the encoder block, we let low-level to-
kens query all feature maps to update their representations,
thus maintaining multi-scale features. In this interleaved
way, we update high-level and low-level features in different
frequencies for efficient computation.

Moreover, to enhance the lagged low-level feature up-
date, we propose a key-aware deformable attention (KDA)
approach to replacing all attention layers. When performing
deformable attention, for each query, it samples both keys
and values from the same sampling locations in a feature
map. Then, it can compute more reliable attention weights
by comparing the query with the sampled keys. Such an
approach can also be regarded as an extended deformable
attention or a sparse version of dense attention. We have
found KDA very effective in bringing the performance back
with our proposed efficient encoder block.

To summarize, our contributions are as follows.

• We propose an efficient encoder block to update high-
level and low-level features in an interleaved way,
which can significantly reduce the feature tokens for
efficient detection. This encoder can be easily plugged
into existing DETR-based models.

• To enhance the lagged feature update, we introduce a
key-aware deformable attention for more reliable atten-
tion weights prediction.

• Comprehensive experiments show that Lite DETR can
reduce the detection head GFLOPs by 60% and main-
tain 99% detection performance. Specifically, our Lite-
DINO-SwinT achieves 53.9 AP with 159 GFLOPs.

2. Related Work
Preliminary: DETR [1] regards object detection as a direct
set prediction problem and uses a set-based global loss to
force unique predictions via bipartite matching. Vanilla
DETR [1] only uses single-scale features from the last stage
of the backbone ( 1

32 of the input image resolution), i.e.,
Xfeat ∈ RN×D, where D is the feature dimension and N
is the total number of flattened features. These features will
then be processed by the encoder with dense self-attention
layers for feature fusion and enhancement. The use of an
encoder is similar to FPN [16] in CNN-based models. These
refined features will be queried by the decoder to detect
objects by predicting classification scores and regressing
bounding boxes. In general, as DETR only uses high-level
features that are of low resolution, these features lack rich
local details that are critical for small object detection.
Improving Decoder Design of DETR: Recently, DETR-
based detectors have seen more rapid progress [13,18,21,33,
36] compared to classical detectors [2,24]. As a result, DINO
[36] achieved first place in COCO 2017 object detection for
the first time as a DETR-like model. Most works focus
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Model Total GFLOPs Backbone (M.S.) Encoder Decoder Total Train Mem AP APs APL

DINO-4scale (100%) 235 70 137 28 32G 50.7 33.5 64.7
DINO-3scale (25%) 122 70 31 21 13G 48.2 30.1 63.9

Table 1. GFLOPs of DINO based on ResNet-50 with four feature scales and three feature scales, respectively. We use ResNet-50 as the
backbone and evaluate on COCO val2017 trained with 12 epochs. 100% means we use all the feature tokens, while 25% means we use
three high-level features, which accounts for 25% of all tokens.

on improving the Transformer decoder in DETR for better
performance and faster convergence speed. Specifically,
Meng et al. [21] propose to decouple content and positional
information in the decoder to provide better spatial priors in
localization. [18, 37] further design better formulations of
positional queries than previous works. The one-to-one label-
assignment scheme is also widely discussed in [4, 11, 13, 36]
for a better assignment. Moreover, some models design
[33, 36, 37] better decoder query initialization by utilizing
dense priors from the encoder.
Improving Multi-Scale Feature Extraction of DETR:
Though DETR-based models with multi-scale features have
shown promising performance [36, 37], especially for small
object detection, their efficiency is still a concern for many
applications. In fact, multi-scale feature extraction has been
widely studied in many CNN-based detectors for efficiency
and effectiveness, such as FPN [16], BiFPN [29], PANET
[19], and NAS-FPN [9], yet the efficiency of multi-scale
DETR is under-explored. Recently, a few works [27, 34, 35,
37] have attempted to design efficient encoders.

Deformable DETR [37] proposes deformable attention,
which can be used in the DETR encoder to sparsify the val-
ues in a self-attention layer by sampling only a few values
for each query. The proposed deformable encoder leads to
good detection results with an affordable computation cost,
which has been widely acknowledged and applied in many
vision tasks. However, compared with single-scale detectors,
the computation cost of multi-scale deformable DETR is
still high for efficient usage. Based on the strong deformable
encoder, some works attempt to improve its efficiency. Ef-
ficient DETR [33] proposes to use fewer encoder layers by
leveraging encoder dense priors for decoder query initializa-
tion. Sparse DETR [25] proposes to sparsely update salient
tokens in the encoder to reduce the number of queries with
a scoring network. In fact, the encoder is responsible for
feature extraction, but Sparse DETR introduces multi-layer
detection loss in encoder layers, making it hard to generalize
to other DETR-based models.

Recently, DETR++ [34] proposes to replace the encoder
with BiFPN [29] and VIDT [27] develops a stronger decoder
to remove the encoder. IMFA [35] proposes to sample sparse
scale-adaptive features from some interesting areas of multi-
scale features. However, the performance of these models
still largely lags behind improved detectors [13, 36] based
on the deformable encoder.

Feature Scale (S) S1 ( 1
64 ) S2 ( 1

32 ) S3 ( 1
16 ) S4 ( 18 )

Token Ratio 1.17% 4.71% 18.8% 75.3%

Table 2. The token ratio of each feature scale in a 4-scale feature
pyramid.

3. Method
3.1. Motivation and Analysis

In this part, we first analyze why existing DETR-based
models are still inefficient and then show some interesting
observations. Multi-scale features are of vital importance for
detecting objects of diverse scales. They are composed of
multiple feature scales ranging from high-level (low resolu-
tion) to low-level (high resolution) features. Each lower-level
feature map contains 4× more tokens than its previous fea-
ture level. From Table 2, we can observe that the number of
tokens in low-level features quadratically increases, whereas
the three higher-level scales account for only about 25%.

Furthermore, we take a DETR variant DINO [36] as a pre-
liminary example. What will happen if we simply drop the
low-level feature (S4 in Table 2) in its deformable encoder
to reduce the computational costs? In Table 1, a reduced
DINO-3scale model trades a 48% efficiency gain in terms
of GFLOPs at the cost of a 4.9% average precision (AP)
and even 10.2% AP on small object detection deterioration.
However, the AP on large objects is competitive. That is,
high-level tokens contain compact information and rich se-
mantics to detect most objects. By contrast, a large number
of low-level tokens are mainly responsible for local details
to detect small objects. Meanwhile, multi-scale features con-
tain many redundant tokens, especially low-level features.
Therefore, we would like to explore how to efficiently update
multi-scale features by primarily focusing on constructing
better high-level features.

In this way, we can prioritize high-level feature updates in
most layers, which could significantly reduce query tokens
for a more efficient multi-scale encoder. To sum up, this work
aims to design a general solution for highly efficient DETR-
based detectors and maintain competitive performance.

3.2. Model Overview

Following the multi-scale deformable DETR [37], Lite
DETR is composed of a backbone, a multi-layer encoder,
and a multi-layer decoder with prediction heads. The overall
model framework is shown in Fig. 2. Specifically, we split
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Figure 2. Illustration of the Lite DETR framework. We use S2 ∼ S4 to indicate the features from different backbone stages. That is, they
correspond to C5 ∼ C3 in ResNet-50 [10]. S1 is acquired by further downsampling C5 by a ratio of 0.5. In this figure, we take S1 ∼ S3 as
high-level features as an example. Moreover, (a) is the proposed high-level feature update discussed in Sec. 3.4 and (b) is the low-level
feature cross-scale fusion discussed in Sec. 3.5. In each efficient encoder block, the multi-scale features will go through high-level feature
update for A times and then conduct low-level feature update at the end of each block. The efficient encoder block will perform B times.

the multi-scale features from a backbone into high-level fea-
tures and low-level features. These features will be updated
in an interleaved manner (introduced in Sec. 3.3) with differ-
ent updating frequencies (explained in Sec. 3.4 and 3.5) in
the proposed efficient encoder block to achieve precision and
efficiency trade-off. To enhance the lagged update of low-
level features, we further introduce a key-aware deformable
attention (KDA) approach ( described in Sec. 3.6).

3.3. Interleaved Update

From our motivation, the bottleneck towards an efficient
encoder is excessive low-level features, where most of which
are not informative but contain local details for small ob-
jects. Moreover, multi-scale features S are structured in
nature, where the small number of high-level features en-
codes rich semantics but lack important local features for
some small objects. Therefore, we propose to prioritize
different scales of the features in an interleaved manner to
achieve a precision and efficiency trade-off. We split S into
low-level features FL ∈ RNL×dmodel and high-level features
FH ∈ RNH×dmodel , where dmodel is the channel dimen-
sion, and NH and NL are the corresponding token number
(NH ≈ 6% ∼ 33%NL). FH can contain the first three or
two scales in different settings, for clarity, we set FH to
S1, S2, S3 and FL to S4 by default. FH is regarded as the
primary feature and is updated more frequently, whereas FL

is updated less frequently. As deformable attention has a
linear complexity with feature queries, the small number of
frequently-updated high-level features largely reduces the
computational cost. As shown in Fig. 2, we stack the effi-
cient encoder block for B times, where each block updates
high-level features for A times but only updates low-level
features once at the end of the block. In this way, we can
maintain a full-scale feature pyramid with a much lower
computation cost. With this interleaved update, we design
two effective updating mechanisms for FL and FH .

3.4. Iterative High-level Feature Cross-Scale Fusion

In this module, the high-level features FH will serve as
queries (Q) to extract features from all-scales, including
the low-level and high-level feature tokens. This operation
enhances the representation of FH with both high-level se-
mantics and high-resolution details. The detailed updating
process is shown in Fig. 2(a). This operation is highly ef-
ficient. For example, using multi-scale feature queries in
the first two scales or the first three scales will significantly
reduce 94.1% and 75.3% queries, respectively, as shown
in Table 2. We also use the proposed key-aware attention
module KDA, which will be discussed in Sec 3.6, to perform
attention and update tokens. Formally, the update process
can be described as

Q = FH , K = V = Concat(FH , FL)

F ′
H = KDA(Q,K,V)

Output = Concat(F ′
H , FL)

(1)

where Concat is to concatenate low-level and high-level
features into full-scale features, query Q is the initial high-
level features, K and V are initial features from all levels,
and FH is the high-level tokens, and F ′

H are the updated
high-level features.

A high-level feature update layer will be stacked for multi-
ple (e.g., A times) layers for iterative feature extraction. Note
that the updated F ′

H will also update Q and the correspond-
ing high-level features in the multi-scale feature pyramid
iteratively, which makes a feature update in K and V in the
next layer. Interestingly, this high-level feature updating
module is similar to the Transformer decoder, where we
use a small number of high-level tokens to query their fea-
tures similar to a self-attention and query a large number of
low-level features similar to cross-attention.
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Figure 3. Illustration of the proposed Key-aware Deformable At-
tention (KDA) layer.

3.5. Efficient Low-level Feature Cross-Scale Fusion

As shown in Table 2, the low-level features contain exces-
sive tokens, which is a critical factor for inefficient computa-
tion. Therefore, the efficient encoder updates these low-level
features at a lower frequency after a sequence of high-level
feature fusion. Specifically, we utilize the initial low-level
features as queries to interact with the updated high-level
tokens as well as the original low-level features to update
their representation. Similar to the high-level feature update,
we use the interaction with a KDA attention layer. Formally,
we have

Q = FL, K = V = Concat(F ′
H , FL)

F ′
L = KDA(Q,K,V)

Output = Concat(F ′
L, F

′
H)

(2)

where Q is from the original low-level features, F ′
H and F ′

L

are the updated high-level and low-level features, respec-
tively. After a KDA layer, we can obtain the F ′

L. Finally,
we construct the output multi-scale features S′ by concate-
nating the updated low-level and high-level features. To
further reduce the computational cost, we use a lightweight
feed-forward network with a hidden dimension size 1

λ of the
original size. λ is 8 in our model.

3.6. Key-aware Deformable Attention

In a vanilla deformable attention layer, the query Q will
be split into M heads, and each head will sample K points
from each of the L feature scales as value V. Therefore, the
total number of values sampled for a query is Nv = M ×
L×K. The sampling offsets ∆p, and their corresponding
attention weights are directly predicted from queries using
two linear projections denoted as W p and WA. Deformable
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Figure 4. Comparison of previous efficient encoders strategies in
(a) Deformable DETR [37], (b) Sparse DETR [25], and (c) Trivially
using only the first three high-level scales. (d) Preliminary efficient
encoder to only update high-level features. We also present the
results of (c) and (d) in Table 5.

attention can be formulated as

∆p = QW p,V = Samp(S, p+∆p)WV

DeformAttn(Q,V) = Softmax(QWA)V
(3)

Where the projections are parameter matrices WA,W p ∈
Rdmodel×Nv and WV ∈ Rdmodel×dmodel . p are the reference
points of the query features and ∆p, p ∈ R(NH+NL)×N×2.
S is the multi-scale feature pyramid. With the sampled off-
sets ∆p, it computes the features with function Samp(S, p+
∆p) in the sampled locations (p+∆p) of feature pyramid
S with bilinear interpolation. Note that no key participates
in the original deformable attention layer, indicating that
a query can decide the importance of each sampled value
by only its feature without comparing it with keys. As all
the multi-scale features will be the queries to sample loca-
tions and attention weights, the original model can quickly
learn how to evaluate the importance of each sampled loca-
tion given the queries. Nevertheless, the interleaved update
in our encoder makes it difficult for the queries to decide
both the attention weights and sampling locations in other
asynchronous feature maps, as shown in Fig. 5.

To better fit the efficient encoder designs, we propose
a key-aware deformable attention (KDA) approach to sam-
pling both keys and values for a query, as shown in Fig.
3. The sampled keys and values, together with the query,
will then perform a standard scaled dot-product attention.
Formally, we have

V = Samp(S, p+∆p)WV ,

K = Samp(S, p+∆p)WK ,

KDA(Q,K,V) = Softmax(
QKT

√
dk

)V

(4)

where dk is the key dimension of a head. The computational
complexity of KDA is the same as the original deformable
attention as we sample the same number of values for each
query. In this way, KDA can predict more reliable attention
weights when updating features from different scales.
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Model #epochs AP AP50 AP75 APS APM APL GFLOPs
Encoder
GFLOPs Params

DETR-DC5 [1] 500 43.3 63.1 45.9 22.5 47.3 61.1 187 100 41M
Anchor DETR-DC5 [32] 50 44.2 64.7 47.5 24.7 48.2 60.6 151 70 39M
Conditional DETR-DC5 [21] 50 43.8 64.4 46.7 24.0 47.6 60.7 195 100 44M
DAB-DETR-DC5 [18] 50 44.5 65.1 47.7 25.3 48.2 62.3 202 100 44M
DN-DETR-DC5 50 46.3 66.4 49.7 26.7 50.0 64.3 202 100 44M
Deformable DETR efficient variants
Deformable DETR† [37] 50 46.8 66.0 50.6 29.8 49.7 62.0 177 90 40M
Lite-Deformable DETR H2L2-(2+1)x3(5%, ours) 50 45.8 65.1 49.3 27.7 49.1 61.1 108 23(↓ 74%) 41M
Lite-Deformable DETR H3L1-(6+1)x1(25%, ours) 50 45.9 65.6 49.2 27.9 49.0 61.6 115 30(↓ 66%) 41M
Lite-Deformable DETR H3L1-(3+1)x2(25%, ours) 50 46.2 65.5 49.8 28.2 49.2 61.5 119 35(↓ 61%) 41M
Lite-Deformable DETR H3L1-(2+1)x3(25%, ours) 50 46.7 66.1 50.6 29.1 49.7 62.2 123 39(↓ 57%) 41M
Efficient DETR [33] 50 44.2 62.2 48.0 28.4 47.5 56.6 159 79 32M
Sparse DETR∗-rho-0.1 [37] 50 45.3 65.8 49.3 28.4 48.3 60.1 111 24 41M
Sparse DETR∗-rho-0.2 [37] 50 45.6 65.8 49.6 28.5 48.6 60.4 119 32 41M
Sparse DETR∗-rho-0.3 [37] 50 46.0 65.9 49.7 29.1 49.1 60.6 127 40 41M
Sparse DETR∗-rho-0.5 [37] 50 46.3 66.0 50.1 29.0 49.5 60.8 141 54 41M

Table 3. Results for single-scale DETR-based models which use a larger resolution feature map with dilation (DC5) and Deformable
DETR-based models for improving efficiency. All models are based on ResNet-50. ∗ Sparse DETR is based on an improved Deformable
DETR baseline that combines the components from Efficient DETR [33]. ’rho’ is the keeping ratio of encoder tokens in Sparse DETR.
Value in the parenthesis indicates the percentage of our high-level tokens compared to the original features. † we adopt the result from the
official Deformable DETR codebase. The meaning of different model variants is described in Sec. 4.1.

3.7. Discussion with Sparse DETR and other Effi-
cient Variants

Another efficient way is to reduce encoder tokens by se-
lecting salient tokens in the multi-scale features, like Sparse
DETR [25]. However, there are three drawbacks to this
kind of approach. First, it is hard to generalize across other
DETR-based models since it breaks the structured feature or-
ganization. Second, the selected tokens via a scoring network
may not be optimal due to limited and implicit supervision.
Third, it introduces other components, such as multiple aux-
iliary encoder detection loss, to enhance its sparse encoder
representation. As the encoder is responsible for feature
extraction, adding detection supervision makes it difficult to
apply to existing models1.

Moreover, we illustrate the previous efficient encoders
and the preliminary efficient designs in Figure 4 for a clear
comparison.

4. Experiments

4.1. Setup

We demonstrate the generalization capability of our pro-
posed efficient encoder on a series of DETR-based models.
We also evaluate the effectiveness of each component with
ablations.
Datasets: We study Lite DETR on the challenging MS
COCO 2017 [17] detection dataset. Following the common
practice, we train on the training split and report the detec-
tion performance on the validation split val2017. We report

1In our experiments on DINO [36] with a ResNet-50 backbone, adding
the encoder detection loss alone will cause a 1.4 AP drop.

the standard mean average precision (AP) result under dif-
ferent IoU thresholds and object scales.
Implementation details: We evaluate the performance of
Lite DETR on multiple DETR-based models, including De-
formable DETR [37], H-DETR [11], and DINO [36]. These
models share a similar structure that is composed of a back-
bone, a multi-layer Transformer encoder, and a multi-layer
Transformer decoder. Therefore, we simply replace their
encoder with our proposed efficient module. Other model
components are kept the same as the original model. In our
KDA attention, for a fair comparison, we follow deformable
attention to use M=8 and K=4. Other settings follow the
original models. We use two backbones ResNet-50 [10] and
Swin-T [20] pre-trained on the ImageNet-1K [7] dataset in
our experiments.
Efficient encoder variants: In our proposed efficient en-
coder block, three hyperparameters control the computa-
tional cost, including the number of high-level feature scales
H used in FH , the number of efficient encoder blocks B,
and the number of iterative high-level feature cross-scale
fusion A. Therefore, we use HL-(A + 1) × B to denote
each variant of our Lite DETR , where L is the number of
low-level feature scales, and +1 denotes the default efficient
low-level cross-scale feature fusion at the end of each block .
For example, Lite-DINO H3L1-(3+1)×2 indicates we base
on DINO to use three high-level feature scales (H3L1) and
two efficient encoder blocks with three high-level fusion
((3+1)×2).

4.2. Efficiency Improvements on Deformable DETR

In Table 3, we use our proposed lite encoder to replace
the deformable encoder in Deformable DETR and build Lite-
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Model #epochs AP AP36 AP75 APS APM APL GFLOPs
Encoder
GFLOPs Params

EfficientDet-D6 [29] − 51.3 − − − − − 226 − 52M
YOLOv5-X [12] − 50.7 − − − − − 206 − 87M
YOLOv7-X [30] − 52.9 − − − − − 190 − 71M

Swin-T backbone
VIDT+ [27] 50 49.7 67.7 54.2 31.6 53.4 65.9 − − 38M
D2ETR [15] 50 49.1 − − − − − 127 − 46M

DINO [36] 36 54.1 72.0 59.3 38.3 57.3 68.6 243 137 47M
Lite-DINO H2L2-(2+1)x3(5%, ours) 36 53.1 71.4 57.9 36.6 56.0 68.8 138 30(↓78%) 47M

Lite-DINO H3L1-(6+1)x1(25%, ours) 36 53.3 71.7 58.2 36.3 56.6 68.7 149 41(↓70%) 47M
Lite-DINO H3L1-(2+1)x3(25%, ours) 36 53.9 72.0 58.8 37.9 57.0 69.1 159 53(↓62%) 47M

H-DETR [11] 36 53.2 71.5 58.2 35.9 56.4 68.2 234 137 47M
Lite-H-DETR H2L2-(2+1)x3(5%, ours) 36 52.3 70.7 57.2 35.9 55.2 67.7 131 30 47M
Lite-H-DETR H3L1-(6+1)x1(25%, ours) 36 52.7 71.5 58.3 35.6 56.0 68.0 142 41 47M
Lite-H-DETR H3L1-(2+1)x3(25%, ours) 36 53.0 71.3 58.2 36.3 56.3 68.1 152 53 47M

ResNet-50 backbone
DFFT [3] 36 46.0 − − − − − 101 18 −

PnP-DETR [31] 36 43.1 63.4 45.3 22.7 46.5 61.1 104 29 −
AdaMixer [8] 36 47.0 66.0 51.1 30.1 50.2 61.8 132 − 135M

IMFA-DETR [35] 36 45.5 45.0 49.3 27.3 48.3 61.6 108 ≈ 20 53M

DINO [36] 36 50.7 68.6 55.4 33.5 54.0 64.8 235 137 47M
Lite-DINO H2L2-(2+1)x3 (ours) 36 49.9 68.2 54.6 32.3 52.9 64.7 130 30 47M
Lite-DINO H3L1-(6+1)x1(ours) 36 50.2 68.6 54.3 33.0 53.4 66.0 141 41 47M
Lite-DINO H3L1-(2+1)x3(ours) 36 50.4 68.5 54.6 33.5 53.6 65.5 151 53 47M

H-DETR [11] 36 50.0 68.3 54.4 32.9 52.7 65.3 226 137 47M
Lite-H-DETR H3L1-(2+1)x3 (ours) 36 49.5 67.6 53.9 32.0 52.8 64.0 142 53 47M

Table 4. Results for Deformable DETR-based models to improve efficiency with our light encoder design. We also compare with some
efficient CNN-based models and other efficient DETR-based models. All models except EfficientDet and YOLO series are based on
ResNet-50 and Swin-T pre-trained on ImageNet-1K. Percentage in the model name indicates the percentage of our compressed tokens
compared to the original features. The meaning of different model variants is described in Sec. 4.1.

Deformable DETR. We achieve comparable performance as
Deformable DETR with around 40% of the original encoder
GFLOPs. We can also observe that DETR-based models
with a single scale of larger feature maps are computationally
inefficient and inferior to multi-scale models. In iterative
high-level cross-scale fusion, we can effectively adopt high-
level maps with only two or three high-level maps, which can
reduce the queries in an encoder layer to 5% ∼ 25% of the
original tokens. Compared with other efficient variants based
on Deformable DETR, we achieve better performance under
the same computational cost. For example, we outperform
Sparse DETR-rho-0.3 by 0.7 AP with fewer GFLOPs. In
addition, Sparse DETR is based on an improved baseline
that combines Efficient DETR and Deformable DETR. By
contrast, our Lite-Deformable DETR is simple and effective.

4.3. Efficiency Improvements on Other DETR-
based Models

Compared with other efficient variants, our efficient de-
sign is not constrained to a specific detection framework and
can be easily plugged into other DETR-based models. We
take DINO [36] and H-DETR [11] as examples to show the
effectiveness of our efficient encoder. The results are shown
in Table 4. Compared with other recently proposed efficient
DETR-like models [8, 35], our model achieves significantly
better performance with comparable computational cost. In

addition, after plugging in our efficient encoder, the encoder
GFLOPs can be reduced by 78% ∼ 62% compared to the
original ones while keeping 99% of the original performance.
Specifically, based on Swin-Tiny, our Lite-DINO achieves
53.9 AP with only 159 GFLOPs, which also outperforms
YOLO series models [12, 30] under the same GFLOPs.

4.4. Visualization of KDA

We also provide the visualization of our KDA attention
in our interleaved encoder in Fig. 5. Compared with de-
formable attention, as we introduce keys, our KDA attention
can predict more reliable weights, especially on low-level
feature maps. For example, in Fig. 5(a), the sampled loca-
tions of deformable attention in S4 (denoted with triangles)
are less reliable compared to KDA. In Fig. 5(b) and (c), we
observe that it is difficult for deformable attention to focus
on meaningful regions on the largest scale map S4 in our
interleaved encoder. KDA effectively mitigates this phe-
nomenon, which helps extract better local features to bring
the performance of small objects back.

4.5. Ablation Studies

Effectiveness of each proposed component. In Table
5, we show the effectiveness of our proposed components.
We choose DINO-3scale and DINO-2scale as our baseline,
which only uses the first three and two high-level feature
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(b) Attention map of all queries on scale S3 (c) Attention map of all queries on scale S4

Figure 5. Visualization of KDA attention in our interleaved encoder. The first and second row are the attention maps of using deformable
and our KDA attention. (a) We use the the center of an object from S1 (marked with "+" in green) as query and draw top 100 sampling
locations on all four scales according to their attention weights. The sampling locations on S4 are marked with a triangle shape. (b)&(c)
We show top 200 sampling locations on scale S3 (b) and S4 (c) for all query tokens. The visualization shows that KDA can produce more
reliable attention weights on high-resolution maps. For clarity, we only draw the locations of top 200 attention weights out of all sampling
locations (Nq ×M ×K, Nq is the total number of multi-scale query tokens) on S3 and on S4. More visualizations are shown in Appendix.

HL LL KDA AP ↑ APs ↑ GFLOPs ↓ Encoder
GFLOPs↓

DINO-4scale [36] 50.7 33.5 235 137

3s
ca

le

− − − 48.2 30.1 122 31
− − ✓ 49.0(+0.8) 31.5 125 34
✓ − − 49.0(+0.8) 31.1 128 37
✓ ✓ − 49.8(+0.8) 33.0 147 49
✓ ✓ ✓ 50.4(+0.6) 33.5 151 53

2s
ca

le − − − 45.2 24.1 113 14
✓ ✓ − 49.2(+4.0) 31.8 126 26
✓ ✓ ✓ 49.9(+0.7) 32.3 130 30

Table 5. Effectiveness of each component on COCO val2017
trained with 36 epochs. The results are based on DINO with a
ResNet-50 backbone trained for 36 epochs. HL means iterative
high-level feature cross-scale fusion, LL means efficient low-level
feature cross-scale fusion, and KDA is key-aware deformable atten-
tion.

Model AP↑ APs ↑
Encoder
GFLOPs ↓

Deformable DETR-4scale [37] 46.8 29.8 90
Deformable DETR-2scale 40.3 20.4 9
Lite-Deformable DETR H2L2-(2+1)x3 (ours) 45.8(+5.5) 27.7(+7.3) 23
Deformable DETR-3scale 44.0 26.6 16
Lite-Deformable DETR H2L2-(6+1)x1 (ours) 45.9 27.9 28
Lite-Deformable DETR H3L1-(3+1)x2(ours) 46.2 28.2 32
Lite-Deformable DETR H3L1-(2+1)x3(ours) 46.7(+2.7) 29.1(+2.5) 36
Lite-Deformable DETR H3L1-(2+1)x4(ours) 46.6 29.6 50

Table 6. Ablation study on stacking different number of each
module in our efficient encoder block. All the models are built
upon Deformable DETR-ResNet50 and trained for 50 epochs.

maps. The results indicate that each of our proposed compo-
nents requires a small computational cost while improving
the model performance by a decent margin. KDA mainly
helps improve DINO performance. Specifically, these com-
ponents effectively bring the performance on small objects
back, for example, the APs of our efficient DINO-3scale is
comparable with the original DINO-4scale model.
Influence of stacking the different number of modules.

In Table 6, we explore the optimal choice to stack each mod-
ule in our proposed efficient block. Based on Deformable
DETR [37] with a ResNet-50 backbone, we vary three ar-
guments that influence the computational complexity and
detection performance, including the number of high-level
scales H used as high-level features, efficient encoder block
B, and iterative high-level feature cross-scale fusion A. The
performance improves when we use more high-level feature
scales and more encoder blocks to update the low-level fea-
tures. However, further increasing the module number to
(2 + 1)× 4 will not improve the performance.

5. Conclusion

In this paper, we have analyzed that multi-scale features
with excessive low-level features in the Transformer en-
coder are the primary cause of the inefficient computation in
DETR-based models. We have presented Lite DETR with
an efficient encoder block, which splits the encoder tokens
into high-level and low-level features. These features will
be updated in different frequency with cross-scale fusion
to achieve precision and efficiency trade-off. To mitigate
the effects of asynchronous feature, we further proposed a
key-aware deformable attention, which effectively brings the
detection performance of small objects back. As a result, our
proposed efficient encoder can reduce computational cost by
60% while keeping 99% of the original performance. In ad-
dition, this efficient design can be easily plugged into many
DETR-based detection models. We hope Lite DETR can pro-
vide a simple baseline for efficient detection in DETR-based
models to benefit other resource-constrained applications.
Limitations: In this paper we mainly focus on reducing the
computational complexity and do not optimize the run-time
implementation of DETR-based model. We leave this to our
future work.
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