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Abstract

Generative modeling and representation learning are
two key tasks in computer vision. However, these models
are typically trained independently, which ignores the po-
tential for each task to help the other, and leads to training
and model maintenance overheads. In this work, we pro-
pose MAsked Generative Encoder (MAGE), the first frame-
work to unify SOTA image generation and self-supervised
representation learning. Our key insight is that using vari-
able masking ratios in masked image modeling pre-training
can allow generative training (very high masking ratio)
and representation learning (lower masking ratio) under
the same training framework. Inspired by previous gen-
erative models, MAGE uses semantic tokens learned by
a vector-quantized GAN at inputs and outputs, combining
this with masking. We can further improve the represen-
tation by adding a contrastive loss to the encoder output.
We extensively evaluate the generation and representation
learning capabilities of MAGE. On ImageNet-1K, a single
MAGE ViT-L model obtains 9.10 FID in the task of class-
unconditional image generation and 78.9% top-1 accuracy
for linear probing, achieving state-of-the-art performance
in both image generation and representation learning. Code
is available at https://github.com/LTH14/mage.

1. Introduction

In recent years, we have seen rapid progress in both gen-
erative models and representation learning of visual data.
Generative models have demonstrated increasingly spectac-
ular performance in generating realistic images [3,7,15,46],
while state-of-the-art self-supervised representation learn-
ing methods can extract representations at a high seman-
tic level to achieve excellent performance on a number of
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Figure 1. Linear probing and class unconditional generation per-
formance of different methods trained and evaluated on ImageNet-
1K. MAGE achieves SOTA performance in linear probing and es-
tablishes a new SOTA in class unconditional generation.

downstream tasks such as linear probing and few-shot trans-
fer [2, 6, 8, 13, 25, 26].

Currently, these two families of models are typically
trained independently. Intuitively, since generation and
recognition tasks require both visual and semantic under-
standing of data, they should be complementary when com-
bined in a single framework. Generation benefits represen-
tation by ensuring that both high-level semantics and low-
level visual details are captured; conversely, representation
benefits generation by providing rich semantic guidance.
Researchers in natural language processing have observed
this synergy: frameworks such as BERT [14] have both
high-quality text generation and feature extraction. Another
example is DALLE-2 [43], where latents conditioned on
a pre-trained CLIP representation are used to create high-
quality text-to-image generations.

However, in computer vision, there are currently no
widely adopted models that unify image generation and
representation learning in the same framework. Such uni-
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Figure 2. Reconstruction results using MAE and MAGE with 75% masking ratio. MAE reconstructs blurry images with low quality,
while MAGE can reconstruct high-quality images with detail, and further improves quality through iterative decoding (see subsection 3.2
for details). With the same mask, MAGE generates diverse reconstruction results with different random seeds. Note that the mask for
MAGE is on semantic tokens whereas that of MAE is on patches in the input image.

fication is non-trivial due to the structural difference be-
tween these tasks: in generative modeling, we output
high-dimensional data, conditioned on low-dimension in-
puts such as class labels, text embeddings, or random noise.
In representation learning, we input a high-dimensional im-
age and create a low-dimensional compact embedding use-
ful for downstream tasks.

Recently, a number of papers have shown that represen-
tation learning frameworks based on masked image mod-
eling (MIM) can obtain high-quality representations [2, 18,
26,31], often with very high masking ratios (e.g. 75%) [26].
Inspired by NLP, these methods mask some patches at the
input, and the pre-training task is to reconstruct the origi-
nal image by predicting these masked patches. After pre-
training, task-specific heads can be added to the encoder to
perform linear probe or fine-tuning.

These works inspire us to revisit the unification question.
Our key insight in this work is that generation is viewed as
“reconstructing” images that are 100% masked, while rep-
resentation learning is viewed as “encoding” images that are
0% masked. We can therefore enable a unified architecture
by using a variable masking ratio during MIM pre-training.
The model is trained to reconstruct over a wide range of
masking ratios covering high masking ratios that enable
generation capabilities, and lower masking ratios that en-
able representation learning. This simple but very effec-
tive approach allows a smooth combination of generative
training and representation learning in the same framework:
same architecture, training scheme, and loss function.

However, directly combining existing MIM methods

with a variable masking ratio is insufficient for high qual-
ity generation because such methods typically use a simple
reconstruction loss on pixels, leading to blurry outputs. For
example, as a representative of such methods, the recon-
struction quality of MAE [27] is poor: fine details and tex-
tures are missing (Figure 2). A similar issue exists in many
other MIM methods [11, 36].

This paper focuses on bridging this gap. We propose
MAGE, a framework that can both generate realistic im-
ages and extract high-quality representations from images.
Besides using variable masking ratio during pre-training,
unlike previous MIM methods whose inputs are pixels,
both the inputs and the reconstruction targets of MAGE are
semantic tokens. This design improves both generation
and representation learning, overcoming the issue described
above. For generation, as shown in Figure 2, operating in
token space not only allows MAGE to perform image gen-
eration tasks iteratively (subsection 3.2), but also enables
MAGE to learn a probability distribution of the masked to-
kens instead of an average of all possible masked pixels,
leading to diverse generation results. For representation
learning, using tokens as inputs and outputs allows the net-
work to operate at a high semantic level without losing low-
level details, leading to significantly higher linear probing
performances than existing MIM methods.

We evaluate MAGE on multiple generative and repre-
sentation downstream tasks. As shown in Figure 1, for
class-unconditional image generation on ImageNet-1K, our
method surpasses state of the art with both ViT-B and ViT-
L (ViT-B achieves 11.11 FID [29] and ViT-L achieves 9.10
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FID), outperforming the previous state-of-the-art result by
a large margin (MaskGIT [7] with 20.68 FID). This signif-
icantly push the limit of class-unconditional generation to a
level even close to the state-of-the-art of class-conditional
image generation (∼6 FID [7, 46]), which is regarded as a
much easier task in the literature [38]. For linear probing on
ImageNet-1K, our method with ViT-L achieves 78.9% top-
1 accuracy, surpassing all previous MIM-based represen-
tation learning methods and many strong contrastive base-
lines such as MoCo-v3 [13]. Moreover, when combined
with a simple contrastive loss [9], MAGE-C with ViT-L
can further get 80.9% accuracy, achieving state-of-the-art
performance in self-supervised representation learning. We
summarize our contributions:

• We introduce MAGE, a novel method that unifies genera-
tive model and representation learning by a single token-
based MIM framework with variable masking ratios, in-
troducing new insights to resolve the unification problem.
• MAGE establishes a new state of the art on the task of

class-unconditional image generation on ImageNet-1K.
• MAGE further achieves state of the art in different down-

stream tasks, such as linear probing, few-shot learning,
transfer learning, and class-conditional image generation.

2. Related Work
Self-supervised Learning in Computer Vision. Early

work on unsupervised representation learning has focused
on designing pretext tasks and training the network to pre-
dict their pseudo labels. Such tasks include solving jigsaw
puzzles [39], restoring a missing patch [41], or predicting
image rotation [23]. These pretext tasks result in represen-
tations that significantly trailed supervised training.

Contrastive learning [8, 10, 34, 40] has proven to be a
competitive and systematic method to learn effective repre-
sentations without human supervision, getting performance
very close to that of supervised pre-training. A number
of variants of contrastive learning have been proposed:
SimCLR [8] uses a large batch size, and samples nega-
tive pairs within each batch; momentum-contrastive ap-
proach (MoCo) [28] leverages a moving-average encoder
and a queue to store negative samples during training;
Contrastive-Multiview-Coding [50] maintains a memory-
bank to store features and generate negative samples. Some
recent methods, like BYOL, do not rely on negative pairs
[12, 25]. Instead, they use two neural networks that learn
from each other to boost performance.

Recently, vision researchers have found that masked im-
age modeling (MIM), modeled after techniques in NLP e.g.
[14], is a very effective task for self-supervised learning.
BEiT [2] recovers discrete visual tokens from masked in-
puts. PeCo [18] further regards MoCo-v3 [13] as the per-
ceptual model in VQGAN training to get a better tokenizer.

MAE [26] considers MIM as a denoising pixel-level recon-
struction task, and CMAE [31] further combines MAE with
a contrastive loss. Some other methods such as MaskFeat
[52] and MVP [53] predict features generated from teacher
models.

However, current self-supervised learning methods
based on MIM favor the performance of the representa-
tions on downstream tasks instead of the quality of the re-
constructed images, leading to poor reconstructive results
[2, 26]. Our paper for the first time shows that a single
model can not only learn high-level fine-grained represen-
tations, but also be used to generate images of high visual
fidelity.

Generative Models for Image Synthesis. Recent years
have witnessed tremendous progress in deep generative
models for image synthesis. One major stream of generative
models is built on top of generative adversarial networks
(GANs) [4,24,32,56,57]. GAN-based models can generate
realistic images in various domains, but suffer from train-
ing instabilities and mode collapse issues. Another stream
is based on a two-stage scheme [7, 33, 44, 51, 55]: first to-
kenize the image into a latent space and then apply maxi-
mum likelihood estimation and sampling in the latent space.
VQVAE-2 [44] first shows this two-stage scheme can gen-
erate more diverse samples than GANs. ViT-VQGAN [55]
uses ViT-based [19] encoder and decoder to get the latent
code and then apply autoregressive generation in the latent
space. MaskGIT [7] explores using a bidirectional trans-
former for token modeling and proposes parallel decoding
for faster inference speed. Very recently, diffusion mod-
els [15, 30, 46, 49] have also achieved superior results on
image synthesis.

However, the above generative models lack the ability to
extract high-quality semantic representations from images.
Prior works [16,17,21,54,55] explore the possibility of us-
ing latent features as representations, but their performance
is sub-optimal. Our method surpasses previous generative
models on both class unconditional generation and repre-
sentation learning by a large margin, showing that a unified,
high-performance framework is feasible.

3. Method
MAGE is a unified framework for both generative tasks

and representation learning. To enable such unification, we
first use a pre-trained VQGAN model [22] to quantize input
images into semantic tokens. Then we randomly mask out
some input tokens using a variable masking ratio ranging
from 0.5 to 1 (see Figure 3), and apply an encoder-decoder
transformer architecture on the remaining (unmasked) to-
kens to predict the masked tokens. We can further improve
the separability of the learned representation by adding a
simple yet effective contrastive loss similar to SimCLR [9]
on the output of the encoder (MAGE-C). Below, we de-
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Figure 3. MAGE Framework: we first use a VQGAN tokenizer to tokenize the input image into a sequence of semantic tokens. We then
sample a masking ratio (see text for details on the sampling strategy) and randomly mask out tokens according to this sampled ratio. A
ViT encoder-decoder structure processes the unmasked tokens. A reconstructive cross-entropy loss encourages the model to reconstruct
masked tokens. We can also add an optional contrastive loss at the output of the encoder to further improve the linear separability of the
learned latent feature space.

scribe our design in detail.

3.1. Pre-training

Tokenization. We first tokenize the input image into a
sequence of semantic tokens using a tokenizer. The tok-
enizer employs the same setup as the first stage in the VQ-
GAN model [22]. This tokenization step allows our model
to operate on semantic tokens instead of raw pixels, which
is beneficial for both generation and representation learning
as shown in Figure 2 and Figure 6.

Masking Strategy. To further bridge the gap between
generative modeling and representation learning, we adopt
a masking strategy with variable masking ratios. Specifi-
cally, we first randomly sample the masking ratio mr from
a truncated Gaussian distribution centered at 0.55, left trun-
cated by 0.5, and right truncated by 1. If the length of the
input sequence of tokens is l, we randomly mask out mr · l
tokens and replace them with a learnable mask token [M]
(Figure 3). Since mr ≥ 0.5, we further randomly drop out
0.5 · l tokens from those masked tokens. Dropping a large
fraction of masked tokens significantly reduces overall pre-
training time and memory consumption, while helping both
generation and representation performance. This is consis-
tent with the findings in MAE [26] for representation per-
formance.

Encoder-Decoder Design. After masking and dropping
input tokens, following [20], we concatenate a learnable
“fake” class token [C0] to the input sequence. The con-
catenated sequence is then fed into a Vision Transformer
(ViT) [20] encoder-decoder structure. Specifically, the ViT
encoder takes the sequence of tokens after masking and
dropping as input and encodes them into latent feature
space. Before decoding, the output of the encoder is first
padded to the full input length using the class token feature
[C] learned by the encoder. As shown in MAE [26], the
class token position can summarize global features of the
input image. Thus, instead of using a learnable masking to-
ken that is shared across different images, we use [C] that
is specific to each image to pad the encoder outputs. We

show in the Appendix that this design improves both gen-
eration and representation learning performance over using
a masking token (as done in MAE [26]). The decoder then
takes the padded features to reconstruct the original tokens.

Reconstructive Training. Let Y = [yi]
N
i=1 denote the

latent tokens obtained from the tokenizer, where N is the
token sequence length, and M = [mi]

N
i=1 denotes a corre-

sponding binary mask determining which tokens are to be
masked. The training objective is to reconstruct the masked
tokens from the unmasked tokens. Therefore, we add a
cross-entropy loss between the ground-truth one-hot tokens
and the output of the decoder. Specifically,

Lreconstructive = −EY ∈D
( ∑
∀i,mi=1

log p(yi|YM )
)
, (1)

where YM are the (subset of) unmasked tokens in Y
and p(yi|YM ) is the probability predicted by the encoder-
decoder network, conditioned on the unmasked tokens. Fol-
lowing MAE, we only optimize this loss on masked tokens
(optimizing the loss on all tokens reduces both generation
and representation learning performance, similar to the ob-
servations in [26]).

Contrastive Co-training. As shown in [35] and [31],
adding a contrastive loss in MIM method can further im-
prove its representation learning performance. In our
MAGE framework, we can also add a contrastive loss to
force better linear separability of the learned feature space.
Similar to SimCLR [10], we add a two-layer MLP on top of
the feature obtained by globally average pooling the output
of the encoder. We then add an InfoNCE loss [40] on the
output of the MLP head:

Lcontrastive = −
1

B

B∑
i=1

log
ez

T
i ·z

+
i /τ

B∑
j=1

ez
T
i ·zj/τ

, (2)

where z denotes the normalized features after the two-layer
MLP, B denotes the batch size, and τ denotes the temper-
ature. The positive pairs zi, z+i are from two augmented
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views of the same image, and the negative samples zj are
all other samples in the same batch. Our final loss is:

L = Lreconstructive + λ · Lcontrastive (3)

where λ = 0.1 balances the scale of the two losses. We
do not use the extensive augmentations typically used in
contrastive learning, such as color jitter, random grey scale,
or gaussian noise. This is because the reconstructive loss
acts as a regularizer that prevents the encoder from learn-
ing shortcut solutions [45]. Our approach achieves supe-
rior performance on both generative tasks and representa-
tion learning even without the contrastive loss, and repre-
sentation learning performance can be further boosted with
the contrastive loss.

3.2. Post-training Evaluation

To generate images for generative model evaluation, we
use a iterative decoding strategy similar to MaskGIT [7].
We start from a blank image with all the tokens masked out.
At each iteration, our model first predicts the tokens for the
remaining masked tokens. Then we sample some of the pre-
dicted tokens (tokens that have a higher predicted probabil-
ity are of higher probability to be sampled) and replace the
corresponding masked tokens with these sampled predicted
tokens. The number of masked tokens to be replaced in each
iteration follows a cosine function, i.e., we replace fewer
masked tokens in the early iterations and more masked to-
kens at later iterations. We use a total of 20 steps to generate
an image. For representation learning, we globally average
pool the features output from the ViT encoder, and use the
pooled features as the input features for the classification
head. A detailed description of our pre-training and evalu-
ation implementations and architectures is provided in the
Appendix.

4. Results
MAGE is a unified framework for both generative model

and representation learning. In this section, we conduct ex-
tensive experiments to evaluate the generation as well as vi-
sual representation capabilities. To evaluate MAGE’s gen-
erative performance, we conduct experiments on ImageNet-
1K dataset [47] for the task of class-unconditional image
generation. To evaluate the quality of the learned represen-
tations, we conduct experiments on ImageNet-1K dataset
[47] under two protocols: first is linear probing, where we
add a linear classification head on top of the learned repre-
sentations and only train the classification head, while keep-
ing the backbone frozen; second is fine-tuning, where we
fine-tune the whole parameters for the classification task.
We also include results on few-shot learning and transfer
learning to better evaluate the quality of the representations.
More results and ablation studies can be found in the Ap-
pendix.

4.1. Pre-training Setup

We set the input image resolution as 256x256 to be
consistent with previous generative models. After passing
through the VQGAN tokenizer, the token sequence length
is 16x16 (256 tokens). Following MAE [26], we use strong
random crop and resize (0.2 to 1) and random flipping as
our default augmentations. We also trained models with
a weaker version of random crop and resize (range from
0.8 to 1), which we call “w.a.” in the results. We pre-train
base- and large-size vision Transformers [20], i.e., ViT-B
and ViT-L, respectively. We use AdamW to train the model
for 1600 epochs with batch size of 4096 for ViT-B, and
batch size of 2048 for ViT-L. We use a cosine learning rate
schedule with an 80-epoch warmup. The base learning rate
is 1.5×10−4 for both ViT-B and ViT-L, and is further scaled
by batchsize/256. More details are in the Appendix.

4.2. Image Generation

Table 1. Quantitative comparison with state-of-the-art generative
models on ImageNet 256x256 for class-unconditional generation.
We train LDM-8 [46] on ImageNet by ourselves using the official
codebase. All baselines are reported without classifier guidance as
it requires class label during training. Classifier-free guidance can-
not improve unconditional generation because the guidance itself
is generated by unconditional generation.

Methods RES FID↓ IS↑ #params

Self-Conditioned GAN [37] 128 40.3 15.82 -
BigGAN [17] 256 38.6 24.70 ∼70M
BigGAN [17] 128 30.9 23.56 ∼70M
BigGAN+Clustering [38] 128 22.0 23.5 ∼70M
HiT [58] 128 30.8 21.64 ∼30M
LDM [46] 256 39.1 22.83 395M
ADM [15] 256 26.2 39.70 554M
MaskGIT [7] 256 20.7 42.08 227M

MAGE (ViT-B) 256 11.1 81.17 200M
MAGE (ViT-B, w.a.) 256 8.67 94.8 200M
MAGE (ViT-L) 256 9.10 105.1 463M
MAGE (ViT-L, w.a.) 256 7.04 123.5 463M

Class-Unconditional Image Generation. Our pre-
trained model can naturally perform class-unconditional
image generation without any fine-tuning on the model pa-
rameters. Table 1 compares the class-unconditional im-
age generation results of our model and SOTA generative
models on ImageNet, reporting Frechet Inception Distance
(FID) [29] and Inception Score (IS) [48] as standard met-
rics. As shown in the table, our method outperforms all
previous image generation methods by a large margin. The
previous SOTA can only achieve 20.7 FID and 42.08 IS,
while our ViT-B model can achieve 11.1 FID and 81.17
IS with similar number of parameters. This is likely be-
cause our framework can extract much better representa-
tions than all previous generative models as shown in Ta-
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(a) Default augmentation (b) Weak augmentation
Figure 4. Images generated by MAGE (ViT-L). (a) images gen-
erated from MAGE trained with default strong augmentation, i.e.,
crops out larger portion of the image. (b) images generated from
MAGE trained with weak augmentations, i.e., crops out smaller
portion of the image. We see that visual fidelity and diversity are
very good for both models.

ble 2, leading to superior generative performance. Our
ViT-L model further achieves 9.10 FID and 7.04 FID when
trained with weak augmentation, which is very close to the
class-conditional generation performance of transformer
models (e.g. 6.18 FID in MaskGIT [7]), a much easier task
than class-unconditional generation [38].

We also note that the augmentations used to train the to-
kenizer and the encoder-decoder model can affect the eval-
uation scores. As shown in Table 1 and Figure 4, with de-
fault “strong” augmentation (i.e. random resized crop scale
from 0.2 to 1), the FID and IS of the model are worse than
using a weaker augmentation (random resized crop scale
from 0.8 to 1). One possible reason is that the ImageNet
validation set used to compute the FID is resized to 256
and center cropped. Since FID is computed based on the
similarity between the generated image and the images in
ImageNet validation set, it will be higher if the scale of the
generated image is smaller. However, this does not neces-
sarily mean that the visual quality of the generated image is
worse. As shown in Figure 4, images generated with default
augmentation can be much more zoomed in and off-center,
but the images are still realistic and of high quality. We
include more results in the Appendix, including for class
conditional generation and image editing tasks such as in-
painting.

4.3. Image Classification

Linear Probing. Linear probing is a primary evaluation
protocol for self-supervised learning. As shown in Table 2,
MAGE outperforms MAE [26] by 6.7% on ViT-B and 3.1%
on ViT-L for ImageNet-1K linear probe top-1 accuracy,
achieving state-of-the-art results among all MIM methods.
Moreover, a simple contrastive loss similar to SimCLR [8]
can further boost our performance. We do not use color jit-
ter, random grey scale, or multi-crop augmentations used in
SwAV [5], DINO [5] and iBOT [59]. Multi-crop augmen-
tation typically brings 3%-5% improvements on accuracy,

Table 2. Top-1 accuracy of linear probing on ImageNet-1k. †

denotes methods which require additional teacher model (CLIP)
trained from image-text data. ∗ denotes methods using multi-crop
augmentations. RN is short for ResNet. The number of parameters
for MAGE includes VQ-GAN tokenizer and ViT encoder.

Methods Model #params Acc.

Generative models
BigBiGAN [17] RN50 23M 56.6
MaskGIT [7] BERT 227M 57.4
ViT-VQGAN [55] VIM-Base 650M 65.1
ViT-VQGAN [55] VIM-Large 1697M 73.2

MIM methods
BEiT [2] ViT-B 86M 56.7
MAE [26] ViT-B 86M 68.0
Ge2-AE [36] ViT-B 86M 75.3
MAGE ViT-B 24M+86M 74.7

MAE [26] ViT-L 304M 75.8
MAGE ViT-L 24M+304M 78.9

Contrastive methods
SimCLRv2 [10] RN50w2 94M 75.6
BYOL [25] RN50w2 94M 77.4
CAE [11] ViT-B 86M 70.4
CMAE [31] ViT-B 86M 73.9
MoCo v3 [13] ViT-B 86M 76.7
DINO [59] ViT-B 86M 72.8
iBOT [59] ViT-B 86M 76.0
MAGE-C ViT-B 24M+86M 78.2

SimCLRv2 [10] RN152w2 233M 77.4
BYOL [25] RN200w2 250M 79.6
MoCo v3 [13] ViT-L 304M 77.6
CAE [11] ViT-L 304M 78.1
MoCo v3 [13] ViT-H 632M 78.1
MAGE-C ViT-L 24M+304M 80.9

Additional Data/Aug.
MVP† [53] ViT-B 86M 75.4
BEiT v2† [42] ViT-B 86M 80.1
SwAV∗ [5] RN50w5 586M 78.5
DINO∗ [6] ViT-B 86M 78.2
iBOT∗ [59] ViT-B 86M 79.5
iBOT∗ [59] ViT-L 304M 81.0

but introduces large computational overheads. In spite of no
multi-crop, MAGE-C achieves 78.2% accuracy with ViT-B
and 80.9% accuracy with ViT-L. Our ViT-B performance
surpasses that of ViT-H in MoCo v3 (632M parameters),
indicating that the extra parameters (24M) in the tokenizer
are not the reason for our good performance.

Few-shot Learning. The premise of self-supervised
learning is to learn representations on unlabeled data that
can be effectively applied to prediction tasks with few la-
bels [10]. Following [19], we freeze the weights of the pre-
trained model and train a linear classifier on top using a
few labeled samples. As shown in Table 3, our methods
with ViT-B outperform MAE [26] by a very large margin
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Figure 5. Transfer learning performance of ViT-B and ViT-L pre-trained on ImageNet-1K using different methods. Our methods outper-
forms SimCLR [9] and MAE [26] on 6 of the 8 datasets.

Table 3. Few-shot evaluation on ImageNet-1K. We report the top-
1 accuracy with different self-supervised methods and different
numbers of the ImageNet-1K labels used. We report the accu-
racy of MAE under our implementation (denoted by †). Note that
MSN [1] uses multi-crop augmentation.

Method Training images per ImageNet Class
5 10 13 25

ViT-B
MAE† [26] 29.2 34.5 - 38.7
MSN [1] 65.5 - 69.6 -
MAGE 53.5 58.4 59.7 61.7
MAGE-C 62.7 66.9 67.8 69.1

ViT-L
MAE† [26] 42.2 47.7 - 51.7
MSN [1] - - 70.1 -
MAGE 60.3 66.1 67.8 69.6
MAGE-C 68.1 71.9 73.0 74.2

and achieves similar performance as MSN [1], which is the
state-of-the-art method for self-supervised label-efficient
learning. Moreover, the performance of MAGE-C with ViT-
L even surpasses the performance of MSN using 13 images
per class (1% of ImageNet-1K), even though MSN uses
multi-crop augmentation.

Transfer Learning. Another important property of
self-supervised representation is its transferability to differ-
ent datasets. Following the protocol in [19], we evaluate
the transfer learning performance of MAGE pre-trained on
ImageNet-1K on 8 datasets under a few-shot setting (25
samples per class). Results are shown in Figure 5: we
see that MAGE’s superior performance on ImageNet-1K
translates to strong performance on other tasks. Since our
method operates on quantized semantic tokens instead of
raw pixels, it is likely to be more robust to domain shift.

Fine-tuning. Table 4 shows the fine-tuning perfor-
mance of MAGE and other self-supervised learning meth-

Table 4. Fine-tuning performance on ImageNet-1K. We report the
top-1 accuracy and the improvement over training-from-scratch
for different methods (other numbers taken from the respective
papers). The ViT models trained from scratch on semantic tokens
follow the exact same training setting as the ViT models trained
from scratch on original image pixels in [26].

Method ViT-B ViT-L

scratch on pixels 82.3 82.6
DINO [6] 82.8 (+0.5) -
MoCo v3 [13] 83.2 (+0.9) 84.1 (+1.5)
BEiT [2] 83.2 (+0.9) 85.2 (+2.6)
MAE [26] 83.6 (+1.3) 85.9 (+3.3)
CAE [11] 83.9 (+1.6) 86.3 (+3.7)
MVP [53] 84.4 (+2.1) 86.3 (+3.7)
PeCo [18] 84.5 (+2.2) 86.5 (+3.9)

scratch on tokens 80.7 80.9
MAGE 82.5 (+1.8) 83.9 (+3.0)
MAGE-C 82.9 (+2.2) 84.3 (+3.4)

ods, when we can change all the pre-trained encoder pa-
rameters. Our method achieves performance at par with
DINO [5] and slightly under MoCo-v3 [13]. We believe that
the use of quantized tokens leads to a subpar from-scratch
and fine-tune performance, and leave further investigations
of this phenomenon to future work. We note, however,
that our method still improves over our supervised training-
from-scratch baseline by as large a margin as other methods.

4.4. Analysis

In this section, we analyze the two key components of
MAGE that enables the unification of generative model-
ing and representation learning: variable masking ratio and
quantized tokenization. All experiments are conducted on
ViT-B. Experiments on variable masking ratio are all trained
for 400 epochs, and experiments on quantized tokenization
are all trained for 1600 epochs. More analysis and ablation
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Table 5. Top-1 accuracy of linear probing and class unconditional generation FID of MAGE on ImageNet-1k with different masking ratio
distribution. µ denotes the mode and σ the standard deviation of the truncated Gaussian distribution. When σ = 0, the masking ratio is
fixed and generation has poor quality with very high FID (>50). Therefore we put N/A for FID in such cases.

µ = 0.7
σ = 0

µ = 0.6
σ = 0

µ = 0.55
σ = 0

µ = 0.5
σ = 0

µ = 0.45
σ = 0

µ = 0.55
σ = 0

µ = 0.55
σ = 0.15

µ = 0.55
σ = 0.25

µ = 0.55
σ = 0.5

Linear Probing 69.7 70.1 71.5 70.9 70.4 71.5 72.0 72.2 71.8
FID N/A N/A N/A N/A N/A N/A 12.5 12.2 13.0

Table 6. Reconstruction loss and linear probe accuracy of
MAGE with unquantized features and quantized tokens as input.
Using unquantized features makes it much easier to infer masked
tokens, and hence results in worse linear probe performance.

inputs recon. loss linear probe (%)

Unquantized features 3.31 49.5
Quantized tokens 5.76 74.7

studies are in the Appendix.
Masking Design. Variable masking ratio is one of our

key components. We find that the quality of the learned
representation can also be affected by the distribution used
to sample our masking ratio. We compare the results of
MAGE on linear probing and class unconditional genera-
tion on ImageNet-1k using different masking ratio distri-
butions in Table 5. We denote the mode of the truncated
Gaussian distribution as µ, and the standard deviation of
the truncated Gaussian distribution as σ. Note that σ = 0
indicates a fixed masking ratio. The left 5 columns ablate
µ, and the right 4 columns ablate σ. The results show that
a variable masking ratio is necessary to enable generation.
Moreover, using a variable masking ratio also enables repre-
sentation learning to learn better features and achieve better
linear probe performance.

Tokenization. Previous self-supervised learning meth-
ods on images typically directly use raw images as the in-
puts of the transformer. However, in MAGE we use quan-
tized semantic tokens as both inputs and reconstruction tar-
gets. We elaborate the benefits of this design as follows:

• First, during generation, it allows the network to itera-
tively use its output as the input in the next iteration,
which enables high-quality and diverse image reconstruc-
tion and generation, as shown in Figure 2 and Figure 4.
• Second, it allows the whole network to operate at a se-

mantic level without losing low-level details and thus
extract better representations. We demonstrate this by
comparing the linear probe performance on features from
each transformer block of ViT-B trained using MAE and
MAGE. As shown in Figure 6, the linear probe accuracy
of MAGE at each transformer block is always higher than
MAE throughout the encoder.
• Third, the quantizer prevents shortcuts created by the VQ-

GAN CNN encoder. If we directly use features extracted
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Figure 6. Linear probe accuracy of MAE and MAGE at different
transformer blocks of ViT-B. MAGE consistently has higher ac-
curacy across all transformer blocks due to the semantic nature of
the quantized tokens.

by the VQGAN encoder without quantization as input to
the transformer, since the receptive fields of neighboring
feature pixels have significant overlap, it is much easier to
infer masked feature pixels using nearby unquantized fea-
ture pixels. As shown in Table 6, with the same masking
strategy, using unquantized features achieves much lower
reconstructive loss (3.31 vs. 5.76), but also a much lower
linear probe accuracy (49.5% vs. 74.7%). This suggests
that the pre-training task is too easy, leading to shortcut
solutions, and hence to poor representations. The quanti-
zation step is therefore necessary to learn good represen-
tations.

5. Discussion
We have presented MAGE, a masking-based approach

that unifies image generation and representation learning in
a simple and effective framework. The key to our method
is the use of quantized tokens and the use of variable mask-
ing ratios that adapt smoothly to both tasks (generation and
representation). We have shown extensive results on linear
probing, few-shot transfer learning, and unconditional im-
age generation. To the best of our knowledge, this is the first
model that achieves close to SOTA results for both tasks us-
ing the same data and training paradigm. A natural future
extension is to pre-train on larger unlabeled datasets such as
JFT300 to further improve performance.
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