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Figure 1. Our morphable eyeglasses supports the exchange of eyeglasses on face. Our relightable appearance correctly models glasses

with different materials, and interactions between face and eyeglasses. In addition, our model enables lens insertion with appealing lens

reflection and refraction effects. Once trained, our model can reconstruct and re-light an unseen eyeglasses with only a few inputs.

Abstract

Eyeglasses play an important role in the perception of

identity. Authentic virtual representations of faces can ben-

efit greatly from their inclusion. However, modeling the

geometric and appearance interactions of glasses and the

face of virtual representations of humans is challenging.

Glasses and faces affect each other’s geometry at their con-

tact points, and also induce appearance changes due to

light transport. Most existing approaches do not capture

these physical interactions since they model eyeglasses and

faces independently. Others attempt to resolve interactions

as a 2D image synthesis problem and suffer from view and

temporal inconsistencies. In this work, we propose a 3D

compositional morphable model of eyeglasses that accu-

rately incorporates high-fidelity geometric and photometric

interaction effects. To support the large variation in eye-

glass topology efficiently, we employ a hybrid representa-

tion that combines surface geometry and a volumetric rep-

resentation. Unlike volumetric approaches, our model natu-

rally retains correspondences across glasses, and hence ex-

plicit modification of geometry, such as lens insertion and

frame deformation, is greatly simplified. In addition, our

model is relightable under point lights and natural illumi-

nation, supporting high-fidelity rendering of various frame

materials, including translucent plastic and metal within a

* Work done while Junxuan Li was an intern at Reality Labs Research.

single morphable model. Importantly, our approach mod-

els global light transport effects, such as casting shadows

between faces and glasses. Our morphable model for eye-

glasses can also be fit to novel glasses via inverse rendering.

We compare our approach to state-of-the-art methods and

demonstrate significant quality improvements.

1. Introduction

Humans are social animals. How we dress and acces-

sorize is a key mode of self-expression and communication

in daily life [11]. As social media and gaming has expanded

social life into the online medium, virtual presentations of

users have become increasingly focal to social presence,

and with it, the demand for the digitization of clothes and

accessories. In this paper, we focus on modeling eyeglasses,

an everyday accessory for billions of people worldwide.

In particular, we argue that to achieve realism it is not

sufficient to model eyeglasses in isolation: their interactions

with the face have to be considered. Geometrically, glasses

and faces are not rigid, and they mutually deform one an-

other at the contact points. Thus, the shapes of eyeglasses

and faces cannot be determined independently. Similarly,

their appearance is coupled via global light transport, and

shadows as well as inter-reflections may appear and affect

the radiance. A computational approach to model these in-

teractions is therefore necessary to achieve photorealism.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Photorealistic rendering of humans has been a focus of

computer graphics for over 50 years, and yet the realism

of avatars created by classical authoring tools still requires

extensive manual refinement to cross the uncanny valley.

Modern realtime graphics engines [10] support the compo-

sition of individual components (e.g., hair, clothing), but

the interaction between the face and other objects is by

necessity approximated with overly simplified physically-

inspired constraints or heuristics (e.g., “no interpenetra-

tions”). Thus, they do not faithfully reconstruct all geomet-

ric and photometric interactions present in the real world.

Another group of approaches aims to synthesize the

composition of glasses in the image domain [28, 66, 69]

by leveraging powerful 2D generative models [25]. While

these approaches can produce photorealistic images, anima-

tion results typically suffer from view and temporal incon-

sistencies due to the lack of 3D information.

Recently, neural rendering approaches [56] achieve pho-

torealistic rendering of human heads [14, 17, 35, 36, 48] and

general objects [40, 44, 60, 70] in a 3D consistent manner.

These approaches are further extended to generative mod-

eling for faces [6] and glasses [39, 64], such that a sin-

gle morphable model can span the shape and appearance

variation of each object category. However, in these ap-

proaches [6, 39, 64] interactions between objects are not

considered, leading to implausible object compositions.

While a recent work shows that unsupervised learning of a

3D compositional generative model from an image collec-

tion is possible [43], we observe that the lack of structural

prior about faces or glasses leads to suboptimal fidelity. In

addition, the aforementioned approaches are not relightable,

thus not allowing us to render glasses on faces in a novel il-

lumination.

In contrast to existing approaches, we aim at model-

ing the geometric and photometric interactions between

eyeglasses frames and faces in a data-driven manner from

image observations. To this end, we present MEGANE

(Morphable Eyeglass and Avatar Network), a morphable

and relightable eyeglass model that represents the shape

and appearance of eyeglasses frames and its interaction with

faces. To support variations in topology and rendering effi-

ciency, we employ a hybrid representation combining sur-

face geometry and a volumetric representation [37]. As

our hybrid representation offers explicit correspondences

across glasses, we can trivially deform its structure based

on head shapes. Most importantly, our model is conditioned

by a high-fidelity generative human head model [6], allow-

ing it to specialize deformation and appearance changes to

the wearer. Similarly, we propose glasses-conditioned de-

formation and appearance networks for the morphable face

model to incorporate the interaction effects caused by wear-

ing glasses. We also propose an analytical lens model that

produces photorealistic reflections and refractions for any

prescription and simplifies the capture task, enabling lens

insertion in a post-hoc manner.

To jointly render glasses and faces in novel illumina-

tions, we incorporate physics-inspired neural relighting into

our proposed generative modeling. The method infers out-

put radiance given view, point-light positions, visibility, and

specular reflection with multiple lobe sizes. The proposed

approach significantly improves generalization and sup-

ports subsurface scattering and reflections of various mate-

rials including translucent plastic and metal within a single

model. Parametric BRDF representations can not handle

such diverse materials, which exhibit significant transmis-

sive effects, and inferring their parameters for photorealistic

relighting remains challenging [41, 74, 77].

To evaluate our approach, we captured 25 subjects us-

ing a multi-view light-stage capture system similar to Bi et

al. [3]. Each subject was captured three times; once with-

out glasses, and another two times wearing a random se-

lection out of a set of 43 glasses. All glasses were cap-

tured without lenses. As a preprocess, we separately recon-

struct glasses geometry using a differentiable neural SDF

from multi-view images [60]. Our study shows that care-

fully designed regularization terms based on this precom-

puted glasses geometry significantly improves the fidelity

of the proposed model. We also compare our approach with

state-of-the-art generative eyeglasses models, demonstrat-

ing the efficacy of our representation as well as the pro-

posed joint modeling of interactions. We further show that

our morphable model can be fit to novel glasses via inverse

rendering and relight them in new illumination conditions.

In summary, the contributions of this work are:
• the first work that tackles the joint modeling of ge-

ometric and photometric interactions of glasses and

faces from dynamic multi-view image collections.

• a compositional generative model of eyeglasses that

represents topology varying shape and complex ap-

pearance of eyeglasses using a hybrid mesh-volumetric

representation.

• a physics-inspired neural relighting approach that sup-

ports global light transport effects of diverse materials

in a single model.

2. Related Work

We discuss related work in facial avatar modeling, eye-

glasses modeling, and image-based editing.

Facial Avatar Modeling. Modeling photorealistic human

faces is a long standing problem in computer graphics and

vision. Early works leverage multi-view capture systems to

obtain high-fidelity human faces [2, 4, 5, 12, 13, 22, 49, 75].

While these approaches provide accurate facial reflectance

and geometry, photorealistic rendering requires significant

manual effort [50] and typically not real-time with physics-

based rendering. Later, the prerequisites of facial avatar
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modeling are reduced to monocular videos [7, 16, 23, 57],

RGB-D inputs [58] or a single image [19, 42]. However,

these approaches do not provides authentic reconstruction

of avatars. Lombardi et al. [35] demonstrate photorealistic

rendering of dynamic human faces in a data-driven manner

using neural networks. The learning-based avatar model-

ing is later extended to volumetric representations [36], a

mesh-volume hybrid representation [37], and a tetrahedron-

volume hybrid representation [15]. Bi et al. [3] enable

high-fidelity relighting of photorealistic avatars in real-time.

While the aforementioned approaches require multi-view

capture systems, recent works show that modeling of pho-

torealistic avatars from monocular video inputs is also pos-

sible [1,14,17]. Cao et al. [6] recently extend these person-

specific neural rendering approaches to a multi-identity

model, and demonstrates the personalized adaptation of the

learned universal morphable model from a mobile phone

scan. Notably, these learning-based photorealistic avatars

neither study nor demonstrate the accurate composition of

accessories including eyeglasses.

Eyeglasses Modeling. Eyeglasses are one of the most com-

monly used accessories in our daily life, and virtual try-on

has been extensively studied [20, 21, 30, 45, 54, 73, 76]. An

image-based eyeglasses try-on is possible by composing a

glasses image onto a face using Poisson blending [30]. 3D-

based solutions have been also proposed for virtual real-

ity [45] or mixed reality [73] by leveraging predefined 3D

eyeglasses models. Zhang et al. [76] enable lens refrac-

tion and reflection in their proposed try-on system. How-

ever, these approaches rely on predefined 3D glass models,

and cannot represent novel glasses. In addition, supported

frames are limited to non-transparent reflective materials

and the fidelity is limited by real-time graphics engines.

Recent progress in neural rendering [40, 56, 60] enables

photorealistic modeling of general 3D objects. Several

works extend the neural rendering techniques to genera-

tive models to represent various shapes and materials of ob-

jects in the same category using a single model [39, 64].

GeLaTO [39] presents a billboard-based neural rendering

method to represent different glasses. Fig-NeRF [64] ex-

tends neural radiance fields (NeRF) [40] to generative mod-

eling. However, these methods individually model glasses

and are not conditioned by the information of the wearers.

Thus, the complex geometric and photometric interactions

are not incorporated in the composition. More recent ap-

proaches learn to decompose multiple 3D objects in an un-

supervised manner, allowing us to compose them with dif-

ferent combination [43, 62, 68]. GIRAFFE [43] models the

scene as composition of multiple NeRFs using adversarial

training. While these approaches are promising, we observe

that lack of explicit structural prior leads to suboptimal de-

composition, failing to model photorealistic interactions.

Generative Models. Generative models have demonstrated

remarkable ability in synthesizing photorealistic images, in-

cluding human faces [25]. Recent work has extended these

models to add intuitive semantic editing, such as synthesis

of glasses on faces [18,28,33,66,69]. Fader Networks [28]

disentangle the salient image information, and then gen-

erate different images by varying attribute values, includ-

ing glasses on faces. Subsequent work has proposed two

decoders for modeling latent representations and facial at-

tributes [18], selective transfer units [33], and geometry-

aware flow [72] to further improve editing fidelity. Yao et

al. [69] extend facial attribute editing to video sequences

via latent transformation and a identity preservation loss,

which is further improved by Xu et al. [66], incorporating

flow-based consistency. More recent works propose 3D-

aware generative models to achieve view-consistent syn-

thesis [8, 9, 46, 51, 59, 63, 67]. In particular, IDE-3D [52]

proposes a 3D-aware semantic manipulation. However,

the precise modeling and relighting of interactions between

glasses and faces has been neither studied nor demonstrated.

Image-based Relighting. Various image-based solutions

have been proposed to enable human face relighting [47,53,

55, 61, 71]. Sun et al. [53] enables image-based relighting

using an encoder-decoder network. StyleRig [55] proposes

a method to invert StyleGAN [25] with explicit face prior,

allowing the synthesizing pose or illumination changes for

an input portrait. Wang et al. [61] and Total Relighting [47]

infer skin reflectances such as surface normal and albedo

in the image space, and use them to generate shading and

reflection, which are fed into network for better generaliza-

tion. Lumos [71] trains a relighting network on large-scale

synthesized data and proposes several regularization terms

to enable domain transfer to real portraits.

While these image-based approaches successfully syn-

thesize photorealistic interaction and relighting of glasses

and faces, lack of 3D information including contact and

occlusion leads to limited fidelity and incoherent results in

motion and changing views.

3. Method

Our method consists of two components, morphable ge-

ometry and relightable appearance, as shown in Fig. 2.

3.1. Morphable Geometry

Our approach is based on Mixture of Volumetric Prim-

itives (MVP) [37], a distinct volumetric neural rendering

approach that achieves high-fidelity renderings in real-time.

Compared to neural fields approaches [65], it contains ex-

plicit volumetric primitives that move and deform to ef-

ficiently allow expressive animation with semantic corre-

spondences across frames. Also unlike mesh-based ap-

proaches [35], it supports topological changes in geometry.

To model faces without glasses, we adopt the pretrained

face encoder Ef and decoder Gf from Cao et al. [6]. Given
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(a) Isolated

Morphable Geometry

Eq. (1)

Eq. (2)

Eq. (3)

Eq. (4)

(b) Interactions (c) Composed

Eq. (6)

(e) Relightable Face (f) Full Relighting

(d) Light Features

Relightable Appearance

Eq. (8)

Eq. (7)

Figure 2. Overview. Our approach learns (a) separate latent spaces to model variations in faces and eyeglasses, as well as (b) their

geometric interactions such that the models can be (c) composed together. Additionally, to accurately render relightable appearance, we

compute features (d) that represent light interactions with (e) a relightable face model to allow for (f) joint face and eyeglass relighting.

an encoding of the facial expression zf
e , and face identity

encoding of geometry zf
geo and textures z

f
tex, the face prim-

itive geometry and appearance are decoded as:

Gf ,Of ,Cf = Gf (z
f
e , z

f
geo, z

f
tex), (1)

where Gf = {t,R, s} is the tuple of the position t ∈
R

3×Nfprim , rotation R ∈ R
3×3×Nfprim and scale s ∈ R

3×Nfprim

of face primitives; Of ∈ R
M3

×Nfprim is the opacity of face

primitives; Cf ∈ R
3×M3

×Nfprim is the RGB color of face

primitives in fully-lit images. Nfprim denotes the number

of face primitives and M denote the resolution of each

primitives. We follow previous work [6] and use Nfprim =
128× 128 and M = 8.

To model glasses, we propose a generative morphable

eyeglass network that consists of a variational auto-encoder

architecture: zg
geo, z

g
tex = Eg(w

g
id), where Eg is a glasses

encoder that takes a one-hot-vector w
g
id of glasses at input,

and generates both geometry and appearance latent codes

for the glasses zg
geo, z

g
tex as output. We then use the latent

codes for a morphable glasses geometry decoder:

Gg,Og,Cg = Gg(z
g
geo, z

g
tex), (2)

where Gg = {tg,Rg, sg} is the tuple of the position, ro-

tation and scale of the eyeglasses primitives, with posi-

tion tg ∈ R
3×Ngprim , rotation Rg ∈ R

3×3×Ngprim and scale

sg ∈ R
3×Ngprim ; Og ∈ R

M3
×Ngprim the opacity of glasses

primitives; Cg ∈ R
3×M3

×Ngprim is the RGB color of glasses

primitives in fully-lit images. Ngprim denotes the number of

glasses primitives; we use Ngprim = 32× 32.

We model the deformation caused by the interaction as

residual deformation of the primitives:

Gδf = Gδf (z
f
e , z

g
geo, z

f
geo), (3)

Gδg = Gδg(z
f
e , z

g
geo, z

f
geo), (4)

where Gδf = {δt, δR, δs},Gδg = {δtg , δRg
, δsg

} are the

residuals in position, rotation and scale from their values in

the canonical space. Specifically, the interaction influences

the eyeglasses in two different ways: non-rigid deforma-

tions caused by fitting to the head, and rigid deformations

caused by facial expressions. We found that individually

modeling these two effects better generalize to a novel com-

bination of glasses and an identity. Therefore, we model the

deformation residuals as

Gδg(·) = Gdeform(z
g
geo, z

f
geo) + Gtransf(z

f
e , z

g
geo) (5)

where Gdeform takes facial identity information to deform the

eyeglasses to the target head, and Gtransf takes expression

encoding as input to model the relative rigid motion of eye-

glasses on face caused by different facial expressions (e.g.,

sliding up when wrinkling the nose).

3.2. Relightable Appearance

The appearance model in previous works based on vol-

umetric primitives [6, 37] integrates the captured light-

ing environment as part of appearance, and cannot relight

the avatar to novel illuminations. The appearance values

of primitives under the uniform tracking illumination in

Sec. 3.1, Cf and Cg are only used for learning geometry

and the deformation by interactions. To enable relighting of

the generative face model, we train a relightable appearance

decoder that is additionally conditioned on view direction v

and light direction l following [3]:

Af = Af (z
f
e ,v, l, z

f
tex,Cf ), (6)

where Af ∈ R
3×M3

×Nfprim is the appearance slab consists

of RGB colors under a single point-light.

To model the photometric interaction of eyeglasses on

faces, we consider it as residuals conditioned by a eye-

glasses latent code, similarly to the deformation residuals.

Additionally, we observed that the most noticeable appear-

ance interactions of eyeglasses on the face are from cast

shadows. We explicitly provide shadow feature as an input

to facilitate shadow modeling:

Aδf = Aδf (l, z
g
tex, z

f
tex,Ashadow) (7)
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Figure 3. Datasets for Eyeglasses (a-c), Faces (d-f), and Faces

with Eyeglasses (g-i). See text for description.

where Aδf ∈ R
3×M3

×Nfprim is the appearance residual for

the face; and Ashadow ∈ R
M3

×Nfprim is the shadow fea-

ture computed by accumulating opacity while ray-marching

from each of the light sources to the primitives, representing

light visibility [34]. Thus, the shadow feature represents the

first bounce of light transport on both the face and glasses.

We model the relightalble glasses appearance similarly

to the relightable face. Since this work focuses on modeling

eyeglasses on faces, we define it as a conditional model with

face so that occlusion and multiple bounces of lights by an

avatar’s head is already incorporated in the appearance:

Ag = Ag(v, l, z
g
tex, z

g
geo,Ashadow,Aspec,Cg). (8)

where Ag ∈ R
3×M3

×Ngprim is the glasses appearance slab,

and Aspec ∈ R
3×M3

×Ngprim is the specular feature; Ashadow is

the shadow feature computed in the same way as in Eq. (7),

which encodes face information. We compute specular fea-

ture Aspec at every point on primitives based on normal,

light and view directions with a specular BRDF parameter-

ized as Spherical Gaussians [29] with three different lobes.

We observe that explicitly conditioning specular reflection

significantly improves fidelity of relighting and generaliza-

tion to various frame materials. Similar observations have

been made for recent portrait relighting approaches [47,71].

3.3. Differentiable Volumetric Rendering

We render the predicted volumetric primitives following

previous work [37]. Denote the position of all primitives in

the space as G, when only render the face without wearing

any eyeglasses, G = Gf ; and when wearing glasses G =
{Gf +Gδf ,Gg+Gδg}. Denote the opacity of all primitives

as O, it takes form O = Of or O = {Of ,Og} for without

and with glasses. Denote the color of all primitives as C,

C = Cf and C = {Cf ,Cg} in fully-lit images, while

C = Af and C = {Af +Aδf ,Ag} in relighting frames.

We then use volumetric aggregation [37] to render images.

3.4. Data Acquisition

We aim to learn a generative model of eyeglasses and

faces as well as the interactions between them. There-

fore, we capture three types of data: Eyeglasses, Faces, and

Faces with Eyeglasses. To decouple learning frame style

from lens effects (which vary across prescriptions), we re-

move the lenses from the eyeglasses for all datasets.

Eyeglasses. We selected a set of 43 eyeglasses to cover a

wide range of sizes, styles, and materials, including metal

and translucent plastics of various colors. For each eye-

glasses instance, we capture approximately 70 multi-view

images using a hand-held DSLR camera (Fig. 3(a)). We

apply a surface reconstruction method [60] to extract 3D

meshes of the eyeglasses (Fig. 3(c)). These 3D meshes will

later provide supervision for the eyeglasses MVP geome-

try. However, because the glasses will change geometrically

once they are worn, we use Bounded Biharmonic Weights

(BBW) [24] to define a coarse deformation model that will

be used to fit these meshes to the Face With Eyeglasses

dataset using keypoint detections (Fig. 3(b)). Please see

our supplementary material for details of eyeglasses mesh

reconstruction and registration.

Faces and Faces with Eyeglasses. We capture a dataset

of faces without eyeglasses and the same set of faces with

eyeglasses. This dataset consists of 25 subjects captured us-

ing a multi-view light-stage capture system with 110 cam-

eras. Participants are instructed to perform various facial

expressions, yielding recordings with changing expressions

and head pose ((Fig. 3(d)). Each subject was captured three

times: once without glasses, and another two times wearing

a random selection out of the set of 43 glasses (Fig. 3(g)).

To allow for relighting, this data is captured under differ-

ent illumination conditions. Similar to Bi et al. [3], the cap-

ture system uses time-multiplexed illuminations. In partic-

ular, fully-lit frames, i.e. frames for which all lights on the

lightstage are turned on, are interleaved every third frame

to allow for tracking, and the remaining two thirds of the

frames are used to observe the subject under changing light-

ing conditions where only a subset of lights (“group” lights)

are turned on (Fig. 3(e)).

Similar to prior work [6,37], we first pre-process the data

using a multiview face tracker to generate a coarse but topo-

logically consistent face mesh for each frame (Fig. 3(f)).

Tracking and detections are performed on fully lit frames

and interpolated to partially lit frames when necessary. Ad-

ditionally, for the Faces with Eyeglasses portion, we detect

a set of 20 keypoints on the eyeglasses [31] (Fig. 3(h)) as

well as face and glasses segmentation masks [27] (Fig. 3(i)),

which are used to fit the eyeglasses BBW mesh deformation

model to match the observed glasses.

3.5. Training and Losses

We train the networks in two stages. In the first stage we

use the fully-lit images to train the geometry of faces and

glasses. Then, we use the images under group lights to train

the relightable appearance model.
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Morphable Geometry Training We denote the parameters

of the expression encoder in Ef , glasses encoder Eg , and

decoders Gf ,Gg,Gδf ,Gδg as Φg , and optimize them using:

Φ′

g = argmin
Φg

∑

NI

∑

NFi

∑

NC

Lfully-lit(Φg, I
i,r), (9)

over NI different subjects; NFi
different fully-lit frames in-

cluding with and without glasses; and NC different camera

view points; and Ii denotes all the ground truth camera im-

ages and associated processed assets for a frame, includ-

ing face geometry, glasses geometry, face segmentation,

and glasses segmentation; likewise, Ir denotes the recon-

structed images from volumetric rendering and the corre-

sponding assets. Our fully-lit loss function consists of three

main components:

Lfully-lit(·)=Lrec(I
i,r)+Lgls(I

i,r)+Lreg(Φg, I
i,r), (10)

where the Lrec are photometric reconstruction losses:

Lrec(·) = LL1(I
i,r) + Lvgg(I

i,r) + Lgan(I
i,r), (11)

where LL1 is the l1 loss between observed images and re-

construction; Lvgg,Lgan are the VGG and GAN loss in [6].

We also propose a geometry guidance loss Lgls using the

separately reconstructed glasses (Sec. 3.4) to improve the

geometric accuracy of glasses, leading to better separations

of faces and glasses in the joint training:

Lgls(·) = Lc(I
i,r) + Lm(I

i,r) + Ls(I
i,r) (12)

including chamfer distance loss Lc; glasses masking loss

Lm; and glasses segmentation loss Lk. These losses en-

courage the network to separate identity-dependent defor-

mations from glasses intrinsic deformations, thus helping

the networks to generalize on different identities. Please re-

fer supplementary for details.

In addition, we propose a regularization loss Lreg for

training: we use LKL(·) the KL-divergence loss between

the prior Gaussian distribution and the distribution of the

glasses latent space; we also use a l2-norm for suppressing

the delta deformation of face to reduce large displacements

of face primitives.

Lreg(·) = LKL(Φg) + LL2(Φg, I
i,r). (13)

During training, we set the weights of each loss term as

λL1 = 1, λvgg = 1, λgan = 1, λc = 0.01, λm = 10, λs =
10, λKL = 10−4, λL2 = 10−3. We train the first stage on

a Nvidia Tesla V100 GPU with a batch size of 4 for 300k

iterations using Adam optimizer [26] with a learning rate of

10−3, which takes around four days.

Relightable Appearance Training Once the geometry

module is trained, we freeze the parameters Φg and start

Components l1(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

w/o Geo 2.374 32.55 0.8764 0.1712

w/o Ashadow 1.870 36.63 0.9227 0.1171

w/o Aspec 1.577 37.69 0.9377 0.1087

Full method 1.558 37.98 0.9388 0.1034

Table 1. Quantitative ablation of each part of our model.

training the relightable appearance Af , Aδf , and Ag . We

denote their parameters as Φa, We optimize the parameters

Φa as follows:

Φ′

a = argmin
Φa

∑

NI

∑

NGi

∑

NC

Lgroup-lit(Φa, I
i,c), (14)

over NI different subjects; NC different cameras; and NGi

different group-light frames including with and without

wearing glasses on face.

For frames illuminated by group-lights, we take the two

nearest fully-lit frames to generate face and glasses geom-

etry using Gf ,Gg,Gδf ,Gδg , and linearly interpolate to get

face and glasses geometry for the group-light image.

The objective function for the second stage is mean-

square-error photometric loss Lgroup-lit(·) = ||Ii−Ic||2
2
. The

VGG and GAN loss are not used in relightable appearance

training since we observe that these loss introduced block-

like artifacts in the reconstruction. We use the same opti-

mizer and GPU as in the previous stage. We train the sec-

ond stage with a batch size of 3 for 200k iterations, which

takes around four days.

4. Experiments

In this section, we evaluate each component of our

method using the dataset of Faces with Eyeglasses and com-

pare extensively with SOTA approaches. We exclude a set

of frames and cameras for evaluation.

4.1. Ablation Study

Geometry Guidance. We first show that the proposed

geometry-guided losses, including surface normal and seg-

mentation, is essential for achieving crisp and sharp eye-

glasses reconstruction. As shown in Fig. 4 and Tab. 1,

the model without using geometry guidance is only trained

with image-based reconstruction and regularization losses.

And it fails to reconstruct the detailed geometry of the eye-

glasses, such as the nose pads. In comparison, the model

with geometry guidance achieves higher geometric fidelity.

Geometry Interaction. Eyeglasses and faces deform each

other at contact points. We show in Fig. 5 that without mod-

eling such deformations, the legs of eyeglasses are rendered

incorrectly and penetrate into the head. With the modeling

of geometric interactions, our method learns and faithfully

represents the deformation of the head as well as the nose.
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w/o Geo Full Method GT

Figure 4. Ablation study on geometry guidance. Without geom-

etry guidance lead to blurry results while our full model generates

sharp and accurate eyeglasses.

w/o Deformation w/ Deformation Deformation Heatmap

Figure 5. Effectiveness of deformation. Face deformation mod-

eling is critical for correctly rendering eyeglasses and face.

Physics-inspired features for neural relighting. Here,

we evaluate the effectiveness of the proposed specular and

shadow feature on neural relighting. As shown in Fig. 6,

the one without using specular features fails to reconstruct

specular highlights on the frame. Furthermore, the model

without appearance interaction fails to reconstruct correct

shadows on the face. We test and evaluate these compo-

nents on held-out frames and present the quantitative results

on Table 1. Adding each component effectively improves

the performance on all metrics.

4.2. Comparison

GeLaTO [39]. Previous work [39, 64] enables genera-

tive modeling of eyeglasses, but assume that everything ex-

cept the glasses are static in the scene. In particular, Fig-

NeRF [64] is not applicable to our setup with severe occlu-

sions and head motion. For comparison, we reimplement

GeLaTO [39] and train with our datasets. Since GeLaTO

w/o Full Method GT

w/o Full Method GT

Figure 6. Ablation study on specular feature and appearance

interaction. Top row: w/o using specular feature and full model.

Bottom row: w/o appearance interaction and full model.

GeLaTO Ours GT

Figure 7. Comparison with GeLaTO [39]. Due to the simplified

geometry representation, GeLaTO lacks geometry details and suf-

fers from inconsistent occlusions.

Methods l1(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

GeLaTO [39] 16.561 18.91 0.6479 0.2576

Ours 9.202 21.80 0.7690 0.1614

Table 2. Quantitative comparison with GeLaTO.

does not support relighting, we compare only on fully-lit

frames. Fig. 7 shows that while GeLaTO lacks geometric

details and generates incorrect occlusion boundaries due to

the billboard-based geometry, our method achieves high-

fidelity results and correctly handles occlusions. Tab. 2

shows that our method also outperforms in all metrics.

GIRAFFE [43] proposed a compositional neural radiance

field that supports adding and changing objects in a scene.

However, the official implementation only supports objects

within the same category. For a fair comparison, we adapt

their method to support adding generative objects in multi-

ple categories. Fig. 8 shows that compositional generative

modeling in an unsupervised manner still leads to subopti-

mal fidelity with limited resolution.

VideoEditGAN [66] is a SOTA image-based editing

method that allows us to insert glasses on face images. As
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Figure 8. Comparison with GIRAFFE [43] and VideoEdit-

GAN [66]. Compared with our method, other methods fail to

render view consistent results.

InputLumos Ours

Figure 9. Comparison with Lumos [71]. Due to the 3D-aware

lighting features, our method yields realistic shadows on the face.

shown in Fig. 8, the image-based approach fails to maintain

color and view consistency. Moreover, the approach cannot

choose a specific type of glasses. In contrast, our proposed

representation enables the accurate reproduction of glasses

and faces with consistent rendering in both view and time.

Relighting Comparison with Lumos [71]. All the meth-

ods mentioned above do not support relighting of faces and

eyeglasses. We compare our relighting results with Lu-

mos [71], a SOTA approach for portrait relighting. Due to

the lack of 3D information, Lumos has difficulty render-

ing non-local light transport effects such as shadows cast

by eyeglasses. In contrast, our method generates plausi-

ble soft shadows and accurately models photometric inter-

actions between faces and glasses.

4.3. Applications

Generative Eyeglasses. Our model is able to generate new

eyeglasses via latent code modification (see supplementary

video for more results). Fig. 10 shows that our method sup-

ports replacing relightable materials while retaining shapes.

Few-Shot Reconstruction. Our generative glasses model

supports differentiable rendering, enabling few-shot recon-

struction from a few-view images via inverse rendering.

Notably, our non-relightable and relightable appearance

S
h

ap
e

Material

Figure 10. Material swapping. Our generative model supports

changing materials and shape.

models share the same latent codes. Thus, as shown in

Fig. 1, the few-shot reconstruction using only fully-lit il-

lumination can be rendered from novel illuminations.

Lens Insertion. Since our model retains correspondences

between primitives, inserting a lens in generated glasses is

trivial by selecting control points for the lens contour on a

single template. We further incorporate physically-accurate

refraction and reflection based on prescription as shown in

Fig. 1. Please refer to supplemental for details.

5. Conclusions

We introduced MEGANE, a 3D morphable and re-

lightable model of eyeglasses to create photorealistic com-

positions of eyeglasses on volumetric head avatars from

any view point under novel illuminations. Our experi-

ments show that reproducing geometric and photometric

interactions in the real world is now possible by leverag-

ing neural rendering with a hybrid mesh-volumetric gener-

ative model. By explicitly controlling the motion of primi-

tives, our approach achieves, for the first time, the learning-

based modeling of geometric interactions between glasses

and faces. We also examined the effectiveness of physics-

inspired lighting features as inputs for neural relighting, and

demonstrate that our approach enables relighting with a di-

verse set of materials that are both transmissive and re-

flective using a single generative model. Lastly, we show

that our generative model allows few-shot fitting to novel

glasses, allowing relighting without additional OLAT data.

Future work includes few-shot fitting to in-the-wild im-

ages by adopting a test-time finetuning as in [6], or physi-

cally accurate fitting of lenses via inverse rendering [32,38].
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