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Abstract

Many low-level computer vision tasks are desirable to
utilize the unprocessed RAW image as input, which remains
the linear relationship between pixel values and scene ra-
diance. Recent works advocate to embed the RAW im-
age samples into sRGB images at capture time, and recon-
struct the RAW from sRGB by these metadata when needed.
However, there still exist some limitations in making full
use of the metadata. In this paper, instead of following
the perspective of sRGB-to-RAW mapping, we reformulate
the problem as mapping the 2D coordinates of the meta-
data to its RAW values conditioned on the corresponding
sRGB values. With this novel formulation, we propose to
reconstruct the RAW image with an implicit neural function,
which achieves significant performance improvement (more
than 10dB average PSNR) only with the uniform sampling.
Compared with most deep learning-based approaches, our
method is trained in a self-supervised way that requiring no
pre-training on different camera ISPs. We perform further
experiments to demonstrate the effectiveness of our method,
and show that our framework is also suitable for the task of
guided super-resolution.

1. Introduction
Low-level computer vision tasks benefit a lot from the

scene-referred RAW images [7, 39, 19, 17, 16], which is
rendered to the display-referred standard RGB (sRGB) im-
ages via camera image signal processors (ISPs). Compared
with sRGB images, typical RAW images has the advantages
of linear relationship between pixel values and scene ra-
diance, as well as higher dynamic range. However, RAW
images occupy obviously more memory than the sRGB im-
ages in common format like JPEG, which is unfavourable
for transferring and sharing. Moreover, since most dis-
play and printing devices are designed for images stored
and shared in sRGB format, it is inconvenient to directly re-
place sRGB with RAW. Consequently, mapping sRGB im-
ages back to their RAW counterparts, which is also called
RAW reconstruction, is regarded as the appropriate way to
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Figure 1. As RAW images are beneficial to many low-level com-
puter vision tasks, we aim to reconstruct the RAW image from
the corresponding sRGB image with the assistance of extra meta-
data. In this figure, the reconstructed RAW images are visual-
ized through error maps. As can be seen, our method remarkably
outperforms other related methods with the improvement of more
than 10 dB PSNR. We owe this performance boost to the effec-
tiveness of our proposed implicit neural function (INF) .

utilize the advantage of RAW data [23, 25, 36, 10, 28, 24].
Early RAW reconstruction methods focus on building

standard models to reverse ISPs, which is parameterized
by either explicit functions [4, 18, 14, 5] or neural net-
works [23, 36, 10]. However, these approaches are faced
with the same issue that a parameterized model is only
suitable for a specific ISP. Meanwhile, a series of meth-
ods [25, 26, 28, 24] propose to overcome this problem by
embedding extra metadata into sRGB images at capture
time. For such methods, the main challenge is to improve
the accuracy with lower metadata generation cost. RIR [25]
implements complex optimization algorithm to estimate the
global mapping parameters as metadata, but suffers high
computational cost. SAM [28] adopts a uniform sampling
on RAW images to generate the metadata, which is further
replaced with a sampler network by CAM [24].

For the metadata-based methods of SAM [28] and
CAM [24], the embedded RAW samples stores partial infor-
mation of ISPs which helps to reconstruct the RAW images
better; also, by conditioning the reconstruction algorithm on
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these metadata, the recovery of the RAW data turns into a
conditional mapping function instead of a function fitted to
a specific case, enabling the potential to achieve better gen-
eralization. Therefore, we adopt this strategy in the paper.

Despite the progress that SAM [28] and CAM [24] have
made, there still exist some limitations for the metadata-
based RAW reconstruction methods. SAM utilizes RBF in-
terpolation [3], the main idea of which is to calculate the
difference between sampling and target points by a kernel
function. However, a fixed kernel function lacks the flexi-
bility to model various sRGB-to-RAW mappings. CAM di-
rectly uses a neural network for reconstruction but requires
pre-training on pairs of sRGB and raw data from different
types of ISPs. Also, we observe that the results of these
methods fail to recover the saturated regions [26] (i.e., pix-
els with any channel value close to the maximum), as is
shown in Figure 1.

To address the limitation, we propose a two-way RAW
reconstruction algorithm based on an implicit neural func-
tion (INF). Previously, RAW reconstruction is formulated
as mapping a sRGB image and the metadata to its RAW im-
age. In this paper, we reformulate the problem as mapping
the 2D coordinates of the metadata to its RAW values con-
ditioned on the corresponding sRGB values, i.e. an implicit
function. With this novel formulation, we can also decom-
pose the problem into two aspects: a mapping function from
the sRGB values to the corresponding raw values; a super-
resolution function to interpolate the RAW image from the
sparse samples. We observe that the super-resolution part
usually exhibits much higher errors, indicating the latter a
more challenging task. Accordingly, two branches are de-
signed for each task inside an implicit neural network and
the hyper-parameters for these branches are tuned to accom-
modate the difficulty of the tasks. Also, notice that with this
formulation, the network can be trained in a self-supervised
way, without the need of corresponding RAW images.

Our contribution can be summarized as follows:

• We reformulate the RAW reconstruction problem as
a RAW image approximation problem that learns the
2D-to-RAW mapping of image coordinates to RAW
values conditioned on its sRGB image.

• We decompose the reconstruction into two aspects and
design the implicit neural network accordingly.

• We conduct extensive experiments on different cam-
eras and demonstrate our algorithm outperforms exist-
ing work significantly.

2. Related Work

Blind RAW reconstruction. Early works of RAW recon-
struction were blindly taken sRGB images as input without
extra metadata. Since the processing stages of modern ISPs

are designed more complicated, more complex models are
proposed [4, 18, 14, 5]. However, these methods suffer the
inconvenient calibration procedures that need to be repeated
on each camera or even each camera setting. Deep learning-
based methods (e.g., [23, 36]), similarly, are faced with the
parallel issues of camera-specific models, which required
abundant training data captured for each camera. Recent
methods that simulate ISP architectures by assuming a clas-
sical set of ISP operations, such as [37, 10], cannot handle
different camera settings as they take fixed parameters (e.g.,
gamma correction) and ISP length as a priori knowledge.

RAW reconstruction with metadata. Compared with
blind RAW reconstruction, a series of recent methods [25,
26, 28, 24] benefit from additional metadata embedded into
sRGB images at capture time. Nguyen and Brown [25, 26]
propose to extract and store the necessary parameters for re-
covering a RAW image from the sRGB counterpart. These
parameters model the specific sRGB-to-RAW mapping and
are restricted to a small memory (e.g., 128KB). However,
their main algorithm deployed on the device has high com-
putational cost and only considers the global tone mapping.
Punnappurath and Brown [28], on the contrary, implement
a uniform sampling on RAW images to save as metadata.
They employ radial basis function (RBF) interpolation us-
ing sRGB pixel values and coordinates as input to recon-
struct the RAW values. Nevertheless, the fixed type of RBF
interpolation does not take full use of the information of
sampled data. A further work [24] improves the effective-
ness of sampling and recovering by taking a U-Net archi-
tecture [29] as both sampler and reconstruction networks,
but their method requires to run a deep neural network on
the device, which would lead to high computational cost
and additional memory cost to save the pixel positions into
metadata. We follow the uniform sampling in [28], but im-
prove the reconstruction performance by INF.

Implicit neural representation. Implicit neural represen-
tation (INR) has recently been introduced to represent 2D
images and 3D objects using coordinate-based multi-layer
perceptron (MLP). To overcome the problem that conven-
tional MLPs are incapable of representing high-frequency
details of signals, two methods have been proposed. Sitz-
mann et al. [31] introduce SIREN, which replace ReLU ac-
tivation with periodic activation (e.g., sine function). They
demonstrate that the representation power of SIREN comes
from the derivation invariance of sine function, and provide
a number of potential applications and future works. A con-
current work [32] leverages random Fourier feature map-
ping on input coordinates to enable the MLP with ReLU to
learn high-frequency details. It indicates that a Fourier fea-
ture mapping can beneficially address the spectral bias of a
conventional MLP. Based on these breakthroughs, INR has
been successfully adopted in various tasks [8, 1, 6, 35]. In
this work, the proposed INF is based on [31], which shows
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remarkably improvement in reconstruction accuracy.
Guided super-resolution. Another topic similar to
RAW reconstruction with metadata is guided image super-
resolution, which aims to convert a low-resolution (LR)
source image to the high-resolution (HR) target with a
guided HR image [20, 30, 33]. The difference of these
two topics is that RAW reconstruction has obvious map-
ping of pixel values between two HR images. On this as-
pect, PixTransform [20] is more related to our method. It
uses an MLP with ReLU to learn the pixel-to-pixel map-
ping of guided HR image to target HR image, where the LR
image is treated like the metadata in RAW reconstruction.
Our method differs in the MLP layer, where we use SIREN
layer [31] to enhance the expressive power [38].

3. Method
3.1. Problem Formulation with Implicit Function

Let S and R denote an sRGB image and the correspond-
ing RAW image, respectively. Since R is converted to S
through a series of operations in the camera ISP, classical
methods aim to build a model g to map S back to R, i.e.,
R = g (S). However, the model g is specific to a cam-
era ISP or even a set of ISP parameters. Metadata-based
methods introduce extra data M for RAW reconstruction,
i.e., R = f (S,M). Here f is supposed to be a general
function, and M includes the image-specific information
generated at capture time, which is commonly implemented
by sampling on the RAW images for low computation cost.
Hence M = {pi, ri}Ni=0, where pi = (xi, yi) is the co-
ordinate of a sampled RAW pixel and ri = (rRi

, rGi
, rBi

)
its RAW value. N represents the number of sampled RAW
pixels and i refers to the ith sampling one.

In contrast to previous work that establishes a mapping
from RGB to RGB values, f : (r, s) → r, we reformulate
the problem as a mapping from the 2D coordinates to the
RAW values conditioning on the sRGB value

f : (p; s) → r, (1)

where r, s, p denote the variables for the RAW value, the
sRGB value and coordinates. They can either represent the
value for a pixel or a patch, or a set of coordinates.

Specifically, for the sRGB image, we only use the the
sRGB value (sRi

, sGi
, sBi

) at pi, queried by S(pi). There-
fore we aim to learn an implicit neural function fθ taking a
coordinate pi and its sRGB value and output ri.

fθ : (pi; si) → ri. (2)

To learn the function, we define the loss function below
to find the best configuration for the parameters θ of f

L =

N∑
i=1

∥fθ (si,pi)− ri∥, (3)

RAW (GT) (a) f : si → ri (b) f : pi → ri

Figure 2. Illustration of the two aspects of reconstruction. It can
be observed that the reconstruction from (a) pixel value mapping is
much more accurate than (b) spatial super-resolution. Our method
utilizes the information from both si and pi, but give a different
constraint to them to control their impacts.

R G B

R G BX Y
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256

128 128

256

Input 
coordinates

Output 
RAW values

Input 
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Figure 3. The network structure of our proposed implicit neural
function (INF). The inputs are divided into sRGB values and coor-
dinates, as their branches are regularized with different parameters
of weight decay. Each cube represents the output of each linear
layer with sine activation proposed in [31].

The overview of our method is shown in Figure 4. As
mentioned above, considering the on-device computational
cost, we follow SAM [28] to implement a uniform sam-
pling on the RAW image to get the metadata M . For the
reconstruction stage, we implement the same sampling on
the sRGB image, which is used to train the implicit neural
function (INF) together with M . The sRGB image is then
processed by the trained INF to reconstruct the RAW image.

3.2. Two-way Raw Reconstruction

We note that Equation (2) contains the reconstruction
from two aspects: (a) a pixel values mapping (i.e., f : si →
ri) and (b) a spatial super-resolution (i.e., f : pi → ri).
Since M will cost additional memory, the sampling rate is
required to be constrained (e.g., no more than 1.5%), which
limits the accuracy of (b). On the contrary, the sRGB-to-
RAW mapping is piece-wise smooth [27], hence only such
small amount of samples is able to model the whole map-
ping function theoretically. We provide an example in Fig-
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Figure 4. Overview of our proposed RAW reconstruction method. At capture stage, we follow [28] to implement an uniform sampling on
the RAW image to generate the metadata, which does not require to store the pixel positions. The metadata is then embedded into the sRGB
image for storage and transmission. At reconstruction stage, the metadata together with corresponding sRGB samples are used to train the
implicit neural functions (INFs), which then convert the sRGB image to the RAW. Compared with the state-of-the-art metadata-based RAW
reconstruction approach [24], our method achieves both lower on-device computational cost and much higher reconstruction accuracy.

INF

Training

Inference

RAW sRGB

Figure 5. Illustration of the patch-specific INF. Inspired by [28],
we split the image into patches, and train the INF for each patch
with its neighbours to make it robust to the local mapping. We
further discuss the impact of patch-size in the ablation study.

ure 2 to intuitively illustrate this phenomenon. Therefore
(a) is supposed to be more significant than (b) in f .

Based on the analysis of the sub-tasks, we design an im-
plicit neural network consisting of two branches as shown
in Figure 3. INF is an MLP structure built with SIREN lay-
ers [31], where the inputs are separated into two branches
and then concatenated into the output branch. Each branch
contains 4 layers, with 256 channels for the hidden layer.
The output channels of two input branches are reduced to
half, which are then concatenated into the output branch.
Here θ refers to the network weights, and Equation (4) can
then be solved by training the INF.

Also, considering the difficulty of the tasks, we intro-
duce regularisation parameters to Equation (3) to control

the complexity of different branches. That is,

θ̂ = argmin
θ

N∑
i=1

∥fθ (si,pi)− ri∥+ λc ∥θc∥2 , (4)

where c ∈ {s,p, r} and λc is a hyper-parameter to control
the strength of regularisation for different parts of M .

We note that the structure of INF is most similar to the
network of [20]. However, instead of merging the two input
branches by adding their output, we first reduce the output
size of these two branches and then concatenate them as
the next input. This is because the output of SIREN Layers
Xl is distributed in Xl ∼ Arcsin (−1, 1) [31], and adding
the outputs would let the output branch treat them equally.
Hence we use concatenation to enable the network to learn
different weights for the outputs of pi and si branches.
Reconstruction conditioned on sRGB patches. Addition-
ally, it is worth noting that local tone mapping is commonly
applied as a favourable part of the ISP pipeline, which is
adopted on local images to enhance the special objects (e.g.,
food, flower, sky). In order to make our method robust to
local tone mapping, we split the input image into patches,
and then train the INF for each patch. Moreover, inspired
by [28], considering that the mapping of each patch and its
neighbours are supposed to have strong relationship, we use
the samples from each patch together with its eight neigh-
bour patches to train the patch-specific INF. Therefore the
mapping in Eq. (2) becomes

fθ : (pi; {sj}j∈N (i)) → ri. (5)

where N (i) represents neighbour patches of current pixel
pi. Figure 5 illustrates the training strategy of INF for such
patch-wise RAW reconstruction.
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4. Experiments

4.1. Experimental Setup

Baselines. We take three metadata-based RAW reconstruc-
tion methods for comparison: RIR [25], SAM [28] and
CAM [24]. The RIR method computes the parameters of
global sRGB-to-RAW mapping as metadata. The SAM
and CAM methods adopt different sampling approaches on
RAW images to generate metadata. We follow the uniform
sampling as SAM [28], and show that it is enough to get
much higher performance using uniform samples with the
proposed method. Note that neither RIR nor SAM make
their source codes publicly available, and only CAM reports
their results reproduced on its own dataset. Therefore we
only give a comparison with RIR and SAM on the dataset
of CAM by inheriting its results in Table 1 and Figure 6.

Dataset. We deploy the same dataset of the previous
work [24] to test our proposed method, which contains
the preprocessed [13] and downsampled (with a downsam-
pling factor of 4) images of three cameras from the NUS
dataset [9]—Samsung NX2000, Olympus E-PL6 and Sony
SLT-A57. Note that as our method does not require any pre-
training step, the training and validation sets are not used in
our method. Besides, since our method is able to directly
process full-resolution images, we also compare it with
CAM [24] on the original NUS dataset [9]. Additionally,
as the NUS dataset [9] includes JPEG-compressed sRGB
images rendered by real camera ISPs, we also conduct the
experiments on these RAW-JPEG image pairs. These re-
sults are reported in the supplementary.

Implementation details. For capture stage, we use the
same sampling rate of 1.5% like [24] in all experiments
for fair comparison with other metadata-based methods.
With respect to reconstruction stage, we split the image
into different patches—(228, 272) for Samsung NX2000,
(216, 288) for Olympus E-PL6 and (204, 304) for Sony
SLT-A57—to make the resolution divisible. The proposed
INF is trained by Adam optimizer [15] with L2 loss in 500
iterations. We set the initial learning rate to 0.0001, and
reduce it to half every 200 iterations. The regularisation pa-
rameters are set to λs = 0.0001, λp = 0.1, λr = 0.001
to produce the final results. It is worth noting that the re-
construction network is only trained for each specific patch,
and will be re-initialized for the training of other patches.

4.2. Results

Quantitative results. We report the quantitative compari-
son results against other three baselines in Table 1. It can
be observed that our method makes a remarkably improve-
ment in both PSNR and SSIM metrics, especially outper-
forms the closest competitor CAM [24] by more than 10 dB
in average PSNR. This indicates the effectiveness of INF to

modeling the sRGB-to-RAW mapping.

Qualitative results. We also provide examples of the qual-
itative comparison in Figure 6, which gives an intuitive ex-
plain of the success of our method. As can be seen from
the error maps, our method significantly reduces the recon-
structed error on the whole images, especially the saturated
regions [26]. We note that recovering saturated regions is
the most difficult problem for all RAW reconstruction meth-
ods, and is the only case of our method getting large errors
(⩾ 1%). We attribute this to the expressive power [38] of
INF, which is further discussed in Section 4.4.

4.3. Ablation study.

RBF vs. INF. We first compare RBF and INF with dif-
ferent input, which is shown in Table 2. As can be seen,
the proposed INF outperforms the RBF interpolation [28]
whatever the input is. We attribute the main performance
boost to the basic structure, i.e. SIREN [31], as INF is able
to modelling the sRGB-to-RAW mapping more accurately
(59.62dB) only with the pixel value as input. Moreover,
compared with RBF, our proposed INF can make further
improvement by splitting the input into separate branches
and regularize them with different weights.

The structure of INF. We also conduct experiments on the
structure of INF, which is reported in Figure 7. We com-
pare the different activation functions and the layer loca-
tion where two input branches are merged. It is obviously
shown that the INF with sine activation remarkably outper-
forms the INF with ReLU function, which can be attributed
to the expressive power of INRs [38]. As to the location of
fusion layer, we find there is no significant difference ex-
cept the final layer for the INF with sine activation, since
it directly maps the merged vector to the output by a fully
connection layer without activation. Therefore, we merge
the two branches at fourth layer to balance the complexity
of each branch1. On the contrary, due to lack of such ex-
pressive power, the INF with ReLU requires more layers to
model the mapping. Hence the performance increases when
the input branch goes deep.

Regularisation parameters. We further discuss the influ-
ence of key setups to INF, which mainly focuses on the reg-
ularisation parameters and patch size. As is shown in Ta-
ble 3, it is obvious that the regularisation parameters play
a vital role in the final accuracy. Here we use the grid
search with a commonly-used tuner TPE [2] (implemented
by [22]) in a grid of

[
1, 10−1, . . . , 10−5

]
to determine each

parameter. In our experiments, we find the regulation pa-
rameters are mainly related to the complexity of camera
ISP rather than data dependent, which means we only need

1In fact, we find the fusion at third layer would achieve a slightly higher
performance, but which can be ignored compared with the instability of
random initialization. See more detail in supplementary material.
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Dataset Method Samsung NX2000 Olympus E-PL6 Sony SLT-A57
PSNR SSIM PSNR SSIM PSNR SSIM

CAM [24]

RIR [25] 45.66 0.9939 48.42 0.9924 51.26 0.9982
SAM [28] 47.03 0.9962 49.35 0.9978 50.44 0.9982
CAM [24] 49.57 0.9975 51.54 0.9980 53.11 0.9985

Ours 53.53 0.9985 56.71 0.9991 58.36 0.9992

NUS [9] CAM [24] 49.51 0.9937 52.87 0.9961 53.34 0.9959
Ours 61.48 0.9991 63.38 0.9993 63.80 0.9995

Table 1. Quantitative comparison with [25, 28, 24]. Here CAM dataset [24] involves downsampling operation (with the factor of 4) on the
original NUS dataset [9], which undermines the strength of local mapping. For CAM dataset, we conduct the experiments on their test set
to inherit the results of [24]. For NUS dataset, we report the results tested on the whole dataset. The best score for each column is in bold.

Input Ground truth RIR [25] SAM [28] CAM [24] Ours

Figure 6. Qualitative comparison with [25, 28, 24]. Each two rows from top to bottom are respectively selected from Olympus E-PL6,
Samsung NX2000 and Sony SLT-A57. The GT RAW images are processed with a gamma function for better visualization, and the
reconstructed RAW images are visualized through error maps. This figure is best viewed in the electronic version.

to tune it for different ISPs, e.g., digital camera ISP, smart
phone ISP, or software ISP. It also means we just need to

use one or quite a few images for tuning, resulting in a fast
tuning process—within 2 hours on a single RTX3090. The
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Method Input PSNR

RBF [28] s 29.10
RBF [28] p 21.71
RBF [28] (s,p) 49.69

INF s 59.62
INF p 31.09
INF (s,p) 60.91
INF {s;p} 62.24

Table 2. Ablation study on different reconstruction methods. The
best score is in bold and the second in italic. (s,p) refers to com-
bine s and p into a single input vector, while {s;p} denotes sep-
arating them as different input. For the RBF interpolation, we use
the linear RBF kernel as proposed in [28].

1 2 3 4 5 6 7
The layer where two branches are merged
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INF with sine activation
INF with ReLU activation

Figure 7. Ablation study on the structure of INF. The abscissa
value represents the layer where we merge the two input branches,
e.g., the branches are merged at fourth layer in Figure 3.

tuned parameters can then be used for all scenes and all
other images from the ISPs with similar complexity, hence
we use the same parameters for the three reported cameras.

As shown in Table 3, the proposed INF achieves the best
performance at λs = 0.0001, λp = 0.1, λr = 0.001, which
indicates the spatial branch is not supposed to be more com-
plex. This is because the output r has weaker relationship
with the coordinates p than sRGB values s, and regular-
isation could help to control the contribution of s and p.
Therefore when we set λp = 0, the reconstruction perfor-
mance dramatically drops down due to inaccurate informa-
tion from p is expanded. We believe such intuitive relation-
ship would be helpful to set the initial values for regulari-
sation parameters. Besides, for different ISPs with similar
complexity, the results are insensitive to the parameters in a
wide range (for example, where all branches are regularized
by λ ⩾ 10−4). In this sense, the risk of over-fitting due to
these hyper-parameter settings is very small.

Impact of patch size. Moreover, we find that different size
of the patch would lead to an obvious accuracy gap. For the

Patch size (λs, λp, λr) PSNR

×1 47.48
×2 (0, 0, 0) 49.17
×4 50.53

×1 61.13
×2 (0.0001, 0.001, 0.0001) 60.38
×4 57.80

×1 62.58
×2 (0.0001, 0.1, 0.001) 62.24
×4 59.64

Table 3. Ablation study on the patch size and regularisation pa-
rameters. The best score is in bold and the second in italic. For
the patch size, ×2 refers to the sizes we report in our main experi-
ments, and the rescale factor of 1, 2, 4 corresponds to the length of
patch sides. We note that the accuracy gap less than 0.5dB can not
represent an improvement, which may be caused by the different
calculations of PSNR and the random initialization of INF. This is
further discussed in our supplementary material.

case of all regularisation parameters set to 0, we find small
patch would lead to accuracy reduction. When the regular-
isation is correctly set, reconstruction on a small patch is
more accurate than on a large one. This can be explained
by the various local mapping functions in different image
regions, which means modelling the local mapping for a
small patch would be more accurate than a larger one. Note
that though reducing the patch size would be helpful to the
reconstruction accuracy, it would take much more time to
recover an image. Therefore, we compromise to use the
patch size around 200-300 in the main experiments.

4.4. Discussion

Why INF works in sRGB-to-RAW mapping. We first re-
think the RBF interpolation [3] used in SAM [28], by which
the sRGB-to-RAW mapping is built in the following form:

ŷ = MtestM−1y (6)

where M denotes the RBF interpolation matrix with linear
kernel function [27], and test refers to the pixels that need
to be reconstructed. As discussed in [32], the output of an
MLP can be approximated as:

ŷ(t) = KtestK−1
(
I − e−ηKt

)
y (7)

where K denotes the NTK matrix [12] and t refers to train-
ing iterations. In our experiments, an MLP (typical with
ReLU activation) tends to behave like RBF when t is large
enough (e.g., t > 1000), which meets the results of Equa-
tion (6) and Equation (7). The reason why RBF interpola-
tion works can be attributed to that sRGB-RAW mapping
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Method ×4 ×8 ×16

Bicubic 2.62 4.19 6.68
PixTransform [20] 3.51 3.94 4.94

INF 2.50 3.06 5.23
INF with ReLU 2.39 2.69 3.57

Table 4. Quantitative comparison on guided depth super-
resolution. We use the Middlebury dataset provided by [33] for
testing. The results are reported in terms of average RMSE.

is piecewise smooth [27], but there still exits errors when
using a linear kernel function, which is also suffered by
MLPs with ReLU. On the other hand, Sitzmann et al. [31]
demonstrate that MLPs with periodic activation functions
(i.e., SIRENs) are more suitable for representing compli-
cated signals and their derivatives compared with the typi-
cal MLP architectures. SIRENs have the advantage of rep-
resenting the derivatives of the signal [31], which is more
helpful to reconstruct fine details. Therefore, recovering
RAW images by SIRENs can effectively improve the per-
formance, which is also proved by Table 2.

Limitations and future research. One of the unresolved
problem of our method is that the regularisation parame-
ters of weight decay require pre-experiments to determine.
These three parameters play a significant role to control the
final result by limiting the complexity of network. In our
experiments, we find the parameters are strongly related to
the correlation of input and output data. For example, com-
pared with the coordinates, sRGB values have a more ob-
vious relationship with the RAW values, where the regu-
larisation parameters are respectively set to λp = 0.1 and
λs = 0.0001. Such correlation is suitable for modelling
with another neural network, and would lead to the perfor-
mance improvement with optimized parameters. Therefore,
learning the regularisation parameters from the input and
output is supposed to be a valuable topic of future work.

4.5. Applications

Guided depth super-resolution As mentioned in Sec-
tion 2, our framework is related to guided super-resolution,
therefore we also provide an experiment to illustrate the ap-
plicability of our framework. Considering that our method
is only self-supervised without any priori knowledge, we
give a comparison with another self-supervised method Pix-
Transform [20]. As shown in Table 4, INF with ReLU out-
performs other methods, which indicates the ReLU activa-
tion is more suitable for this task than the sine activation.
The reason for ReLU working better can be attributed to the
sharp changes of the depth near the object edges, as ReLU is
piecewise and discontinuous, which fits this depth disconti-

Source Guide Target

PixTransform [20] INF INF with ReLU

Figure 8. Qualitative comparison on guided depth super-
resolution.

nuity. In contrast, the discontinuity in RAW-to-sRGB map-
ping is moderate and the smooth sine activation function is
a better option. We also provide qualitative comparison in
Figure 8. which shows that the result of INF, though does
not achieve higher accuracy, obtains better visual quality
compared with the result of INF with ReLU.

Low-light image enhancement. As a potential application
of RAW reconstruction, we test our method on low-light im-
age enhancement (LLIE) task. We find that the LLIE task
can be simplified into a linear degradation problem (e.g., en-
larging the pixel values by the same multiple) on the recon-
structed RAW images, which achieves equal visual quality
compared with the state-of-the-art deep learning-based ap-
proaches [11, 34, 21]. The results are reported in our sup-
plementary. Note that such comparison is merely aimed to
illustrate the effectiveness of executing low-light enhance-
ment on reconstructed RAW images.

5. Conclusion

We propose a method for recovering the RAW image
from the sRGB counterpart with assistance of additional
metadata, which is sampled from the RAW image at cap-
ture time. We introduce the implicit neural function (INF)
to remarkably improve the reconstruction accuracy (10 dB
average PSNR) only with uniform sampling. We prove that
the structure of INF is beneficial to merging the informa-
tion from both pixel values and coordinates. Further exper-
iments indicate that our framework is also suitable for the
task of guided super-resolution.
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