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Abstract

Occluded and long-range objects are ubiquitous and
challenging for 3D object detection. Point cloud sequence
data provide unique opportunities to improve such cases, as
an occluded or distant object can be observed from differ-
ent viewpoints or gets better visibility over time. However,
the efficiency and effectiveness in encoding long-term se-
quence data can still be improved. In this work, we propose
MoDAR, using motion forecasting outputs as a type of vir-
tual modality, to augment LiDAR point clouds. The MoDAR
modality propagates object information from temporal con-
texts to a target frame, represented as a set of virtual points,
one for each object from a waypoint on a forecasted tra-
jectory. A fused point cloud of both raw sensor points and
the virtual points can then be fed to any off-the-shelf point-
cloud based 3D object detector. Evaluated on the Waymo
Open Dataset, our method significantly improves prior art
detectors by using motion forecasting from extra-long se-
quences (e.g. 18 seconds), achieving new state of the arts,
while not adding much computation overhead.

1. Introduction
3D object detection is a fundamental task for many appli-

cations such as autonomous driving. While there has been
tremendous progress in architecture design and LiDAR-
camera sensor fusion, occluded and long-range object de-
tection remains a challenge. Point cloud sequence data pro-
vide unique opportunities to improve such cases. In a dy-
namic scene, as the ego-agent and other objects move, the
sequence data can capture different viewpoints of objects
or improve their visibility over time. The key challenge
though, is how to efficiently and effectively leverage se-
quence data for 3D object detection.

Existing multi-frame 3D object detection methods often
fuse sequence data at two different levels. At scene level,
the most straightforward approach is to transform point
clouds of different frames to a target frame using known
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Figure 1. 3D detection model performance vs. number of input
frames. Naively adding more frames to existing methods, such as
CenterPoint [59] and SWFormer [40], quickly plateaus the gains
while our method, MoDAR, scales up to many more frames and
gets much larger gains. L2 3D mAPH is computed by averaging
vehicle and pedestrian L2 3D APH.

ego motion poses [3, 40, 55, 59]. Each point can be dec-
orated with an extra time channel to indicate which frame
it is from. However, according to previous studies [7, 33]
and our experiments shown in Fig. 1, it is difficult to fur-
ther improve the detection model by including more input
frames due to its large computation overhead as well as in-
effective temporal data fusion at scene level (especially for
moving objects). On the other side, 3D Auto Labeling [33]
and MPPNet [7] propose to aggregate longer temporal con-
texts at object level, which is more tractable as there are
much less points from objects than those from the entire
scenes. However, they also fail to scale up temporal con-
text aggregation to long sequences due to efficiency issues
or alignment challenges.

In our paper, we propose to use motion forecasting to
propagate object information from the past (and the future)
to a target frame. The output of the forecasting model can be
considered another (virtual) sensor modality to the detector
model. Inspired by the naming of the LiDAR sensor, we
name this new modality MoDAR, Motion forecasting based
Detection And Ranging (see Fig. 2 for an example).

Traditionally 3D object detection is a pre-processing step
for a motion forecasting model, where the detector boxes
are either used as input (for past frames) or learning targets
(for future frames). In contrast, we use motion forecasting
outputs as input to LiDAR-MoDAR multi-modal 3D object
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9329



An occluded objectA long-range object

Caption: Red & Blue points: MoDAR points from motion forecasting; Gery points: 
LiDAR points from raw sensor

MoDAR points (red)
from forward prediction
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from reverse prediction

LiDAR points (gary)
from LiDAR

Figure 2. 3D object detection from MoDAR and LiDAR points.
MoDAR points (red and blue) are predicted object centers with ex-
tra features such as sizes, semantic classes and confidence scores.
Compared to LiDAR-only detectors, a multi-modal detector taking
both LiDAR (gray) and MoDAR points can accurately recognize
occluded and long-range objects that have few observed points.

detectors. There are two major benefits of using a MoDAR
sensor for 3D object detection from sequence data. First,
motion forecasting can easily transform object information
across very distant frames (8 seconds or longer). Such prop-
agation is especially robust to occlusions as the forecast-
ing models do not assume successful tracking for trajectory
forecasting. Second, considering forecasting output as an-
other sensor data source for 3D detection, it is a lightweight
sensor modality, making long-term sequence data process-
ing possible without much computation overhead.

Specifically, in MoDAR, we represent motion forecast-
ing output at the target frame as a set of virtual points
(named as MoDAR points), one for each object from a way-
point on a forecasted trajectory. The predicted object loca-
tion is the 3D coordinate of the virtual point, while addi-
tional information (such as object type, size, predicted head-
ing, and confidence score) is encoded into the virtual point
features. Each virtual point is appended with a time channel
to indicate the context frames it uses for the motion fore-
casting. For a target frame, we can use forecasted outputs
from multiple context frames easily through a union of cor-
responding virtual points. In an offboard/offline detection
setup, we can use both forward prediction and reverse pre-
diction (use future frames as input to the forecasting model)
to combine information from the past and the future. For de-
tection, we fuse the raw sensor points (from LiDARs) and
the virtual points (from forecasting), and feed them to any
off-the-shelf point cloud based 3D detector.

In experiments, we use a MultiPath++ [42] motion
forecasting model trained on the Waymo Open Motion
Dataset [9] to generate MoDAR points from past 9 seconds
for online detection; and from past and future 18 seconds for
offline detection. With minimum changes, we adapt Cen-
terPoints [59] and SWFormer [40] detectors for LiDAR-
MoDAR 3D object detection. 1 Evaluated on the Waymo

1Although we experiment with point-cloud based detectors, MoDAR

Open Dataset [39], we show that adding MoDAR signifi-
cantly improves detection quality, improving CenterPoints
and SWFormer by 11.1 and 8.5 mAPH respectively; and
it especially helps detection of long-range and occluded
objects. Using MoDAR with a 3-frame SWFormer detec-
tor, we have achieved state-of-the-art mAPH on the Waymo
Open Dataset. We further provide extensive ablations and
analysis experiments to validate our designs and show im-
pacts of different MoDAR choices.

2. Related Work
3D object detection on point clouds. Most work focuses
on using single-frame input. They can be categorized to
methods using different representations such as voxels or
pillars [8, 14, 15, 17, 36, 38, 45, 46, 50, 52, 57, 63], point
clouds [26,31,34,35,53,54], range images [2,18,24,41], etc.
Liu et al. [21] did a review to put those methods in a uni-
fied framework. Among those methods, CenterPoint [59]
using anchor-free detection heads [62] becomes one of the
popular single-stage 3D detectors. On the other hand, more
recent methods explore to use transformers for 3D detec-
tion [10, 40]. For example, SWFormer [40] used sparse
window based transformers to achieve new state-of-the-art
performance. In this work we use these two representative
detector architectures for our experiments.
Multi-frame 3D object detection. Early multi-frame 3D
detectors aggregate features from different frames using
convolution layers [23]. More recent methods use a sim-
ple point concatenation strategy, which transform short-
term point cloud sequences into the same coordinate (using
ego-car poses) and then feed the merged points to deep net-
works [11, 19, 40, 41, 59]. They usually use point cloud se-
quences that are up to 5 frames due to memory/computation
costs. Another drawback of point concatenation is that it
cannot align moving objects. Later methods explore how to
use more frames and model alignment at the intermediate
feature level. For example, 3D-MAN [55] uses an attention
module to align different frames while MPPNet [7] designs
both intra-group feature mixing and inter-group feature at-
tention. However, these methods are difficult to scale up to
more frames due to their large computation overhead. On
the other hand, recent methods take bounding boxes from
all frames and points from a small set of context frames
(for moving objects) as input, but not explicitly handling
the alignment issue [33, 51].
Multi-modality fusion for 3D object detection. A robotics
system (such as an autonomous driving car) often has mul-
tiple sensors, such as LiDARs, cameras, and radars, which
provide complementary information. LiDAR-camera fu-
sion is arguably the most common and well-studied modal-
ity fusion configuration [19, 29, 32, 43, 44]. There is also

can be fused with perspective view or camera or radar based detectors as
using MoDAR can be considered as a sensor fusion process.
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Caption: MF:t means running motion forecasting to predict at t second. 
R-MF means reverse motion forecasting (predicting history positions).
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Figure 3. Using MoDAR for 3D object detection. Given a point cloud sequence around a target frame, our goal is to estimate 3D object
bounding boxes at the target frame T=0. To generate MoDAR points, we run motion forecasting (MF) on various subsequences of the
input. MF:m means given a subsequence of frames T=-m-10:-m (11 frames), we run motion forecasting to predict object locations m
frames ahead of the subsequence, i.e. predict object location and states at frame T=0. R-MF means reverse motion forecasting, which is
only used in the offline use case. The bottom right figure shows how motion forecasting typically works – it involves running a pre-trained
point cloud based detector, a multi-object tracker and a pre-trained motion forecasting model (output colors to indicate different instances).
The motion forecasting outputs at the target frame (T=0) from various subsequences are concatenated to form the final set of MoDAR
points (with the color indicating from which frame they are predicted). We then union the LiDAR and MoDAR points and train/use a
LiDAR-MoDAR multi-modal 3D detector (can be any off-the-shelf 3D detector) to get final detection results at the target frame.

work on camera-radar fusion [13]. Fusion methods gener-
ally combine information at input level (early fusion), fea-
ture level, or decision level (late fusion) [30]. Input level fu-
sion is usually computationally cheap but needs good cross
modality alignment [43]. Specifically, people usually con-
vert camera images to virtual points and fuse virtual points
and lidar points as the input [49, 58]. On the other ex-
treme, decision level fusion can tolerate modality misalign-
ment, but has to a large compute cost or sub-optimal perfor-
mance [6]. Our work considers motion forecasting as an ad-
ditional modality for 3D detection, which provides comple-
mentary (temporal) information to LiDAR. By carefully de-
signing the format of MoDAR, it aligns well to LiDAR and
can be exploited using the efficient input level fusion strate-
gies. Our proposed MoDAR point can be considered as a
variant of virtual point, but different from previous works,
our MoDAR points are generated from motion forecasting
model, and with rich point features.

Motion forecasting. Given past observations of objects in
a dynamic scene, motion forecasting aims to predict future
trajectories of the objects. Current state-of-the-art meth-
ods [12,22,25,27,42,56,60] learn the complex and nuanced
interactions from data through deep neural networks. Some
other methods study joint 3D object detection and motion
forecasting [1, 4, 5, 20, 23, 28, 48, 61], where detection can
be an intermediate task. Among them, Fast and Furious [23]
relates to our work as they used motion forecasting to im-
prove detection. In their tracklet decoding module, they ag-
gregate motion forecasting and detector boxes through di-
rect box averaging, which can be considered as a late fu-
sion of motion forecasting and detection results. Compared

to them, this paper proposes an early fusion approach to
leverage both motion forecasting (as MoDAR points) and
LiDAR data and demonstrate superior performance to the
late fusion alternative.

3. Using MoDAR for 3D Object Detection
In this section, we first introduce how to produce the vir-

tual modality MoDAR, and then discuss how to fuse this
new modality with a LiDAR point cloud for 3D object de-
tection. Fig. 3 illustrates the entire pipeline.

3.1. MoDAR Point Generation

We propose a virtual sensor modality, MoDAR, which
represents object information propagated from past (or/and
from future, in an offline setting) to the current frame. As
shown in Fig. 3, MoDAR points at T = 0 are generated
from motion forecasting on a set of history subsequences
(in the online setting) or/and a set of future subsequences
(in the offline setting). Specifically, given a history subse-
quence of frames T = −m − K : −m (K + 1 context
frames), forward motion forecasting predicts future trajec-
tories of all detected objects at frame T = −m. We pick
predictions that are m frames into the future as the MoDAR
points at the current frame. A MoDAR point’s XY Z co-
ordinates are the predicted object center locations while the
point features can include object bounding box size, head-
ing, semantic class as well as other metadata from the mo-
tion forecasting model (e.g. confidence scores). In an of-
fline setting, we can access future sensor data, which allows
us to take a future subsequence and run reverse motion fore-
casting to predict object locations backwards.
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Motion forecasting (MF). To predict object locations into
the future (or past), the motion forecasting (MF) involves
three typical steps as shown in the bottom right of Fig. 3: de-
tection, tracking, and prediction. We firstly run a pre-trained
LiDAR based 3D object detector to localize and classify
objects at every frame in the subsequence (results can be
cached for overlapping subsequences), then we run multi-
object tracking using a Kalman-filter based tracker [47]. Fi-
nally, a trajectory prediction model takes the tracked ob-
ject boxes and predicts future object locations and headings.
The trajectory prediction (or motion forecasting model) can
be as simple as a constant velocity model [9]. It can
also be a pre-trained deep network model such as Multi-
Path++ [42] (MP++), which is more accurate especially for
moving agents in a complex scene. Note that although the
motion forecasting output is later used for detection, there is
no cyclic dependency of the LiDAR-MoDAR detector and
the motion forecasting, as we use a separate pre-trained Li-
DAR detector to generate the motion forecasting input. It
is possible to share the same detector for LiDAR-MoDAR
detection and motion forecasting input but requires iterative
re-training to converge the detector and motion forecasting
model – see supplementary for more discussion and results.
Extensions beyond a single prediction. To make our pro-
posed MoDAR virtual modality more informative, we pro-
pose another two extensions. First, to fully leverage the
point cloud sequence data, we can combine motion fore-
casting from separate history (or/and future) subsequences
by taking a union of the MoDAR points generated from
each subsequence. To distinguish their sources, we add an
extra channel of the closet frame timestamp (in the subse-
quence) to the current frame. Second, given an object track,
data-driven motion forecasting models can predict several
future trajectories, to handle the uncertainty in object be-
haviors. For example, MultiPath++ [42] predicts 6 possible
trajectories with different confidence scores. MoDAR can
include all these predictions. To distinguish them, the tra-
jectory confidence can be added as an addition field of the a
MoDAR point.

3.2. LiDAR-MoDAR 3D Object Detection

The generated MoDAR points can be combined with Li-
DAR points at the current frame (or from a short time win-
dow around the current frame) for LiDAR-MoDAR multi-
modal 3D object detection. Since MoDAR is based on
motion forecasting, it provides less accurate information
than LiDARs for areas with good visibility. Therefore a
MoDAR-only detection model would have unfavorable de-
tection quality. However, we observe that MoDAR can pro-
vide complementary information to the LiDAR sensor espe-
cially when LiDAR points are sparse (long-range) or when
objects are occluded. For example, when it is hard to esti-
mate an object’s size and heading when there are very few

points, MoDAR points can help provide such information
propagated from history (or future frames). When an object
becomes occluded, the motion forecasting can still generate
a virtual MoDAR point at the occluded region.

To leverage both LiDAR and MoDAR, we use an early
fusion at the input level, for two reasons: First, compared
to feature level fusion that often requires non-trival detec-
tor architecture update, early fusion is more flexible and
can be easily adapted to nearly any off-the-shelf 3D object
detectors; Second, compared to late fusion, early fusion is
more effective in combining the complementary informa-
tion from MoDARs and LiDARs. Besides early fusion, we
find that adding another late fusion on top of it can further
improve pedestrian detection, see Sec. 4.3.5 for more dis-
cussion and results.

As MoDAR points are light-weight, we can use many
more context frames for our MoDAR-LiDAR detector than
alternative methods that rely on point cloud based tem-
poral data fusion. Compared to the number of LiDAR
points in a single frame (around 200K in a frame from the
Waymo Open Dataset [39]), the number of MoDAR points
is marginal. There are (N × J) MoDAR points from one
motion forecasting prediction, where N is the number of
objects (usually less than 100), and J is the number of tra-
jectories for each object (e.g. 6). Therefore, to representing
information from one frame, MoDAR is around 300× more
efficient than LiDAR. Due to its efficiency, MoDAR helps
to include information from more context frames — we use
up to 180 frames (18 seconds: 9 seconds in history and 9
seconds in future) in our experiments.

4. Experiments
We evaluate LiDAR and MoDAR fusion detectors on

the Waymo Open Dataset (WOD) [39], a large scale au-
tonomous driving dataset with challenging measurements
covering different visibility levels. It contains 798 train-
ing sequences and 202 validation sequences. Each se-
quence is around 20 seconds (with around 200 frames at
10Hz). We evaluate and compare methods with the recom-
mended metrics, Average Precision (AP) and Average Pre-
cision weighted by Heading (APH), and report the results
on both LEVEL 1 (L1, easy only) and LEVEL 2 (L2, easy
and hard) difficulty levels for both vehicles and pedestrians.

4.1. Implementation Details

Generating MoDAR points. To generate the proposed vir-
tual modality MoDAR, we need to prepare (1) a detection
and a tracking model to recognize objects from past (and
future) point cloud sequences, and (2) a motion forecasting
model to predict the future (and past) trajectories.

To prepare the training data for the motion forecasting
model, we train LiDAR-only detectors (CenterPoint [59] or
SWFormer [40]) on the Waymo Open Dataset train set and
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Model
Frame Offline Veh. L1 3D Veh. L2 3D Ped. L1 3D Ped. L2 3D L2 3D mAPH
[-p, +f] Method? AP APH AP APH AP APH AP APH

3D-MAN [55] [-15, 0] 74.5 74.0 67.6 67.1 71.7 67.7 62.6 59.0 63.1
MPPNet [7] [ -3, 0] 81.5 81.1 74.1 73.6 84.6 81.9 77.2 74.7 74.2
MPPNet [7] [-15, 0] 82.7 82.3 75.4 75.0 84.7 82.3 77.4 75.1 75.1
MVF++ [33]† [ -4, 0] 79.7 - - - 81.8 - - - -
3DAL [33] [-∞, ∞] 3 84.5 84.0 75.8 75.3 82.9 79.8 73.6 70.8 73.1

CenterPoint [59]∗ [ 0, 0] 72.9 72.3 64.7 64.2 71.9 58.3 64.3 51.9 58.1
+MoDAR [-91, 0] 76.1 75.6 68.9 68.4 73.8 68.7 66.9 62.1 65.3 (+7.2)
+MoDAR [-91, 91] 3 80.1 79.5 73.7 73.2 76.4 71.4 69.9 65.0 69.2 (+11.1)

SWFormer [40]∗ [ 0, 0] 77.0 76.5 68.3 67.9 80.9 72.3 72.3 64.4 66.2
+MoDAR [-91, 0] 80.6 80.1 72.8 72.3 83.5 79.5 75.7 71.8 72.1 (+5.9)
+MoDAR [-91, 91] 3 82.9 82.3 75.6 75.1 85.2 81.3 78.0 74.3 74.7 (+8.5)

SWFormer [40]∗ [ -2, 0] 78.5 78.1 70.1 69.7 82.0 78.1 73.8 70.1 69.9
+MoDAR [-91, 0] 81.0 80.5 73.4 72.9 83.5 79.4 76.1 72.1 72.5 (+2.6)
+MoDAR [-91, 91] 3 84.5 84.0 77.5 77.0 86.3 82.5 79.5 75.8 76.4 (+6.5)

Table 1. 3D object detection results on the WOD val set. Complementary to LiDAR, our proposed virtual modality MoDAR signifi-
cantly improves state-of-the-art 3D object detection models, CenterPoint and SWFormer. Our proposed method achieves state-of-the-art
compared to previous methods. The Frame column illustrates the indices of the frames that are used for detection. We also mark a method
as offline if it uses information from the future. †: ensemble with 10 times test-time-augmentation. ∗: our re-implementation.

then run inference to get detection results on all frames at
both train set and validation set frames. Then, to get ob-
ject tracks, we use a simple Kalman Filter as the multi-
object tracker to associate detection results across frames.
Finally we apply a data-driven motion forecasting model
MultiPath++ [42] on the object tracks to predict their future
(and past) trajectories.

The MultiPath++ [42] is trained on the Waymo Open
Motion Dataset (WOMD) [9] train set which has more than
70K sequences. Roadgraphs are not used because they are
not available in WOD for inference. MultiPath++ takes
tracked object boxes from 10 past frames and 1 current
frames as input, and predicts object trajectories for the fu-
ture 80 frames. To run inference on WOD, we pad and re-
segment each WOD sequence to 91 frames in an overlap-
ping manner. Therefore, given a 200 frame WOD sequence,
we take each frame as a current frame to construct a 91-
frame segment, obtaining 200 91-frame segments. Instead
of using the original track sampling strategy in WOMD, we
use all tracks during both training and testing. We train two
models: a forward MultiPath++ that takes the past tracks to
predict the future, and a backward MultiPath++ that takes
the future tracks to predict the past. Note that the back-
ward model is only used for the offline setting, while the
forward model is used for both online and offline models.
On the WOD val set, the 8 second Average Displacement
Error (ADE) [9] are 1.17 and 1.11 for the forward model
and the backward model, respectively (see supplementary
for more details).

Fusing MoDAR and LiDAR. We will firstly introduce the
details of the MoDAR points, and then introduce how we

fuse MoDAR and LiDAR together.

A MoDAR point is structurally similar to a LiDAR point,
including a 3D point coordinate and its feature. Specifically,
MoDAR points are placed at the center of the predicted ob-
ject location, and its feature has 13 channels that including
object size (normalized by prec-omputed mean and std val-
ues), heading (represented by a unit vector), class (one hot
encoding with depth 3), object tracking score (i.e., the aver-
age of object detection scores over 11 past/current frames),
trajectory score, trajectory standard deviation (normalized
by its mean and std values), and the timestamp of the closest
frame in the input track. In the offline setting, the MoDAR
points for a current frame are generated from 160 motion
predictions (80 for future prediction, 80 for past prediction)
that take different 11-frame input tracks. Therefore, we
use the information from 181 frames. In the online setting,
the MoDAR points for a current frame are from 80 motion
predictions. Besides, the motion forecasting model, Multi-
Path++ [42], predicts 6 trajectories for each input track.

When fusing MoDAR with LiDAR, we first pad the Li-
DAR features and MoDAR features to the same length,
and then add an additional field (0 for LiDAR and 1 for
MoDAR) to indicate the modality of a point.

Detection Models. We re-implemented two popular 3D
point cloud detection models, the convolution-based Cen-
terPoint [59] and the transformer-based SWFormer [40].
For CenterPoint, we train 160k steps with a total batch size
of 64. For SWFormer, we train 80k steps with a total batch
size of 256. The fusion of both LiDAR and MoDAR points
are fed into these two models. During training, we apply
data augmentations to both LiDAR and MoDAR points.
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Predictor
L2 APH Veh. L2 APH

Veh. Ped. STN FST VFST

- 64.2 51.9 60.5 73.3 79.9

Stationary 73.0 62.1 72.0 73.2 77.6
Constant Velocity 69.2 61.4 67.5 74.6 79.0
1 traj. MP++ [42] 73.5 64.4 71.4 75.5 82.3
6 traj. MP++ [42] 73.2 65.0 70.5 76.2 81.3

Table 2. Effects of motion forecasting model choices. The met-
rics are vehicle L2 3D APH on the WOD val set. The first row is
the CenterPoint detector using LiDAR data only. The other four
rows are the same detector using LiDAR and MoDAR points (with
different trajectory predictors). Results are also broken down by
object speed (STN: stationary. FST: fast. VFST: very fast).

4.2. Main Results

Tab. 1 shows adding MoDAR points can improve off-
the-shelf 3D object detectors and compares our LiDAR-
MoDAR detectors with prior art methods.

From the bottom half of Tab. 1, we see adding MoDAR
points to two popular and powerful 3D detectors, Center-
Point [59] and SWFormer [40], leads to significant gains
across all metrics for both vehicle and pedestrian detection
and in both online and offline settings. For example, adding
MoDAR points to the 1-frame CenterPoint base detector,
we see 13.1 L2 APH improvement (from 51.9 to 65.0) on
pedestrians and 9.0 L2 APH gains (from 64.2 to 73.2) on
vehicles. The large gains apply to more powerful base de-
tectors too. For the 3-frame SWFormer detector, adding
MoDAR points can still lead to 7.3 L2 APH improvement
(from 69.7 to 77.0) for vehicles, and 5.7 L2 APH improve-
ment (from 70.1 to 75.8) for pedestrian.

The improvement on L2 metric is more significant than
the L1 metric. For example, MoDAR improves the 3-frame
SWFormer by 7.3 L2 APH and 5.9 L1 APH (for vehicle),
and by 5.7 L2 APH and 4.4 L1 APH (for pedestrian). Since
L1 only considers relatively easy objects (usually more than
5 LiDAR points on them) while L2 considers all objects,
this shows that MoDAR helps more in detecting difficult
objects with low visibility (more breakdowns in Sec. 4.3.4
and visualizations in Fig. 5).

Tab. 1 also compares our LiDAR-MoDAR detectors with
prior art methods that leverage point cloud sequences for
online/offline 3D object detection. Our method based on
the 3-frame SWFormer gets the best mAPH results among
all methods and achieves state-of-the-art numbers on all ve-
hicle and pedestrian metrics. Note that although 3D Auto
Labeling (3DAL) from Qi et al. [33] uses a stronger base
detector (MVF++ with 5-frame input and test time augmen-
tation) than our 3-frame SWFormer base detector, we can
still achieve on par or stronger results than it with the extra
input from MoDAR. In appendix, we demonstrate MoDAR
can further improve a stronger baseline, LidarAug [16].

4.3. Ablations and Analysis Experiments

This section ablates the MoDAR design and provides
more analysis results. Unless otherwise specified, all exper-
iments in this section are based on the 1-frame CenterPoint
detector using predictions from past and future 160 frames
in total, and using early LiDAR-MoDAR fusion.

4.3.1 Effects of motion forecasting models

In Tab. 2, we compare detection results using MoDAR
points generated from different motion forecasting models.
We ablate 4 different motion forecasting models. (1) Sta-
tionary predictor: it aggressively assumes all objects are
stationary, predicting objects’ future positions as their most
recent positions. (2) Constant velocity predictor: it assumes
all objects are moving at the constant velocity estimated
from the observed frames. (3) MultiPath++ [42] (MP++)
predicting the most confident trajectory (1 traj.); (4) Multi-
Path++ predicting the top 6 confident trajectories (6 traj.).

We see that MoDAR improves the CenterPoint base-
line with all four predictors. The data-driven MultiPath++
model shows the best overall performance compared to
other predictors. When looking into the velocity breakdown
metrics (provided by WOD), we observe that stationary pre-
dictor achieves the best performance (72.0 L2 APH) for the
stationary (STN) vehicles, regresses on very fast (VFST)
vehicles (from 79.9 to 77.6). The constant velocity model
is better than stationary predictor for fast (FST) and very
fast (VFST) objects. Note that the constant velocity model
does not perform as well as the stationary predictor because
the input track is noisy: even though the objects are not
moving, detection noises can lead to wrong velocity esti-
mation. Finally, the MP++ predictors perform the best for
moving (i.e., fast and very fast) vehicles. 1-trajectory and
6-trajectory MP++ models lead to similar detection results.
Note that we use 6-trajectory MP++ model as our final ver-
sion. To seek higher model efficiency, 1-trajectory MP++
predictor can be selected which only includes 1/6 MoDAR
points compared to 6-trajectory MP++ model.

4.3.2 Effects of different MoDAR point features

Tab. 3 ablates the importance of different object states in
MoDAR points. Most information, includes object location,
size, heading, type, confidence scores (from both tracking
and motion forecasting), help improve the detection quality.
By taking a closer look, we observe that the most impor-
tant information is the object location, which improves 5.5
L2 APH (from 64.2 to 69.7) for vehicles and 10.7 L2 APH
(from 51.9 to 61.2) for pedestrians. Since vehicle heading
is relatively easy to estimate, adding headings to MoDAR
features mainly helps pedestrian detection. For our main
results, we used all features to get the best performance.
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Location Size Heading Class Scores Veh. L2 Ped. L2
APH APH

7 7 7 7 7 64.2 51.9

3 7 7 7 7 69.7 61.2

3 3 7 7 7 71.2 62.7

3 3 3 7 7 70.9 64.0

3 3 3 3 7 71.3 64.1

3 3 3 3 3 73.2 65.0

Table 3. Effects of different object state features in MoDAR
points. The metric is L2 3D APH on the WOD val set.

4.3.3 Are long-term point cloud sequences helpful?

In Fig. 4, we show the impact of the temporal ranges (what
frames are used for motion forecasting) of MoDAR points
on detection. We split the study to two settings: online and
offline. In the online setting, only past frames are used to
generate MoDAR points. For the offline setting, both past
and future frames are used. We include the same number
of future frames as past frames for the offline setting. For
the cases of using K past predictions, we select past sub-
sequences from T=-11:-1 to T=-K=10:-K (K subsequences)
and use the forward motion forecasting from them to gen-
erate MoDAR points. Similarly for the reverse prediction
from future subsequences.

The results are shown in Fig. 4. The red bars are the
performance of the online setting, while the green bars are
for the offline setting. We observe that for both setting,
adding MoDARs from more past or future predictions gen-
erally lead to better detection and this improvement does
not saturate until using MoDARs from 80 past and 80 fu-
ture predictions. It is also noteworthy that the future frames
provide unique information that significantly improves the
results compared to only using past frames.
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Figure 4. Effects of MoDAR temporal context sizes on 3D ob-
ject detection. The metrics are vehicle L2 3D APH on the WOD
val set. The (left) red bars are the performance of models using
only MoDAR points generated from the past frames, while the
(right) green bars are the performance of models that use the same
number of past and future frames for MoDAR point generation.

Model 0-30m 30-50m 50m+ All

LiDAR only 90.4 69.7 45.6 69.7
LiDAR + MoDAR 92.2 76.9 58.5 77.0

(+1.2) (+7.2) (+12.9) (+7.3)

Table 4. Distance breakdown for LiDAR-based and LiDAR-
MoDAR based detection. The metrics are vehicle L2 3D APH
on the WOD val set across different ground-truth depth ranges.
The base detector is a 3-frame SWFormer.

4.3.4 Performance breakdown by object distances

To better understand how MoDAR improves the LiDAR-
based 3D object detection models, we provide both qual-
itative and quantitative analysis based on the 3-frame
SWFormer model and our MoDAR variant.

Following previous works [19, 33], we divide the vehi-
cles into three groups based on their distance to the ego-
car: within 30 meters (short-range), from 30 to 50 meters
(mid-range), and beyond 50 meters (long-range). Tab. 4
shows the relative gains by using MoDAR. MoDAR im-
proves the results in all distance ranges. In particular, it
achieves a much more significant gains for long-range ve-
hicles (by 12.9 APH, 28.3% relatively) than short-range ve-
hicles (by 1.8 APH, 2.0% relatively). This is likely because
long-range objects have very sparse points in their observa-
tions, making it difficult to estimate their locations, head-
ings and sizes. MoDAR fills this gap to a large extent.

4.3.5 Comparing LiDAR-MoDAR fusion methods

In Tab. 5, we compare detection results using a sin-
gle modality and results using both LiDAR and MoDAR
modalities using different fusion strategies.

For LiDAR-only detection, we train a 3-frame
SWFormer that only takes LiDAR points as input. For
MoDAR-only, we directly use the motion forecasted boxes
as the detection output (assuming constant box sizes and
box elevation). Note that motion predictions from nearby
frames (e.g. 1 or 2 frames away) can give very similar re-
sults as to detection from the current frame, as the scene
does not change dramatically between nearby frames. With
some hyper parameter tuning, we select MoDAR points
from the closest 10 predictions (5 past and 5 future) for
the MoDAR-only detection and then apply a weighted 3D
box fusion [37] to aggregate overlapping boxes (see sup-
plementary for more details and ablations). From Tab. 5
first two rows, we can see that LiDAR-based detection gets
more accurate results than MoDAR-based ones especially
for pedestrians, for which motion forecasting can be noisy.

Fast and Furious [23] used a late fusion approach to com-
bine detector and motion forecasting results through box av-
eraging. To implement a late fusion method, we compute
weighted box averaging [37] of boxes from current frame
LiDAR detection and motion predictions from nearby 10
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Figure 5. Qualitative results of 3D object detection on the WOD val set. Blue boxes: model predictions; Green boxes: ground truth
boxes. We used a 3-frame SWFormer as the base detector architecture and used MoDAR points generated from 180 context frames
(offline setting). Comparing the results from LiDAR-MoDAR multi-modal detector versus the LiDAR only detector, we can see that the
LiDAR-MoDAR detector can recognize more heavily occluded objects or estimate their shapes and headings more accurately.

LiDAR MoDAR
Fusion Veh. L2 Ped. L2
Method AP APH AP APH

3 7 - 70.1 69.7 73.8 70.1
7 3 - 67.4 66.8 69.6 63.8

3 3 Early 77.5 77.0 77.8 74.4
3 3 Late 70.9 70.4 76.4 72.3
3 3 Early+Late 77.6 77.1 79.5 75.8

Table 5. Compare detection results with different modalities
and different fusion methods. The metrics are 3D and BEV L2
APH on the WOD val set. We use a 3-frame SWFormer.

predictions (past 5 and future 5). For the early fusion, we
use motion forecasting from 160 predictions (past 80 and
future 80) to generate MoDAR points. In Tab. 5 third and
fourth rows, we can see that early fusion achieves signifi-
cantly better results than the late fusion. In the last row, we
show that if we combine the early and late fusion by fus-
ing forecasted boxes from nearby 10 frames with LiDAR-
MoDAR detection, we can further improve detection qual-
ity. For our main results in Tab. 1, we take advantages of
late fusion for pedestrian detection (early+late fusion).

5. Conclusions
In this paper, we proposed MoDAR, a virtual sensor

modality that uses motion forecasting to propagate object

states from past and future frames to a target frame. Each
MoDAR point represents a prediction of an object’s location
and states on a forecasted trajectory. The MoDAR points
generated from a point cloud sequence can be fused with
other sensor modalities such as LiDAR to achieve more ro-
bust 3D object detection especially for cases with low vis-
ibility (occluded) or in long range. Due to its simplicity,
the MoDAR idea can be applied to a wide range of exist-
ing detectors not even restricted to point-cloud-based ones.
Evaluated on the Waymo Open Dataset, we have demon-
strated the effectiveness of the MoDAR points for two pop-
ular 3D object detectors, achieving state-of-the-art results.
We have also provided extensive analysis to understand dif-
ferent components of the MoDAR modality.

We believe this work provides another perspective of the
relationship between detection and motion forecasting. In
the future, it would be appealing to study how to jointly op-
timize motion prediction and detection, as well as revisiting
the interface design between them.
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