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Figure 1. Sample LEGO models and RGBD images in the MobileBrick dataset. The left and right column shows instances in the “real-

world model set” and the “random model set” respectively. We overlay the 3D models after pose alignment to RGB images.

Abstract

High-quality 3D ground-truth shapes are critical for 3D

object reconstruction evaluation. However, it is difficult to

create a replica of an object in reality, and even 3D re-

constructions generated by 3D scanners have artefacts that

cause biases in evaluation. To address this issue, we in-

troduce a novel multi-view RGBD dataset captured using

a mobile device, which includes highly precise 3D ground-

truth annotations for 153 object models featuring a diverse

set of 3D structures. We obtain precise 3D ground-truth

shape without relying on high-end 3D scanners by utilising

LEGO models with known geometry as the 3D structures for

image capture. The distinct data modality offered by high-

resolution RGB images and low-resolution depth maps cap-

tured on a mobile device, when combined with precise 3D

geometry annotations, presents a unique opportunity for fu-

ture research on high-fidelity 3D reconstruction. Further-

more, we evaluate a range of 3D reconstruction algorithms

on the proposed dataset.

1. Introduction

High-fidelity 3D object reconstruction from images has

always been a “holy grail” in computer vision. It is also

the key to enabling immersive and realistic Augment Re-

ality applications. For instance, a virtual object would not

blend in the physical environment realistically even if it is

a few millimetres off because the lighting is reflected incor-

rectly. Many approaches (e.g., Visual SLAM [13], Depth

Fusion [24], Multi-View Stereo [27]) have been proposed

to address this problem. Neural fields have also emerged

as a promising technique for 3D reconstruction [33,39] and

novel view synthesis [23]. Advances in most of these algo-

rithms are made possible with reliable datasets for bench-

marking.

However, building the exact 3D model of an object for

benchmarking is extremely difficult. Some datasets [17, 19,

29] resort to high-end 3D scanners to create pseudo-ground-

truth models for evaluation, but these 3D models still suf-

fer from artefacts due to noisy measurements, as shown

in Fig. 2. Therefore, the DTU dataset [17], a widely-used

dataset for multi-view stereo, is reluctant to call their recon-

structed models ground truth, but chose the term “evalua-

tion reference”. This deviation from the actual ground-truth

shape can cause significant biases when evaluating high-

fidelity object reconstruction, where millimetres matters.

In addition to the lack of 3D ground-truth, most exist-

ing datasets in multi-view reconstruction are not captured
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Figure 2. Evaluation references provided by DTU [17] and

Shrestha et al. [29], shown on the left and right column respec-

tively. Artefacts can be observed despite using a high-end 3D

scanner to reconstruct the models. An RGB image for reference is

at the top-right corner of each sample.

on mobile devices, which possess a distinctive data modal-

ity from other devices. Apple equipping its iPhones and

iPads with a compact LiDAR scanner marks a new level of

accessibility of depth information alongside RGB informa-

tion after the rise of commodity-level depth sensors (e.g.

Kinect and Intel RealSense). However, the LiDAR scanner

on these mobile devices provides low-quality depth maps

compared to those of commodity-level sensors. How to ef-

fectively use low-quality yet easily accessible depth maps

in 3D object reconstruction is largely unexplored due to the

lack of data.

In this paper, we introduce the MobileBrick dataset,

which contains a large collection of object-centric video

clips featuring a diverse set of 3D structures. We use an iOS

device with a LiDAR scanner [2] (e.g. iPhone 13 Pro, iPad

Pro) as an image capture device that can provide calibrated

high-resolution RGB images accompanying low-resolution

depth maps. The camera poses of images are tracked using

ARKit [1].

More importantly, we provide the exact 3D model of the

structure that is aligned to the image sequence without rely-

ing on high-end scanning devices. The key to acquiring the

ground-truth 3D model for the object of interest in a video

is LEGO models. The fact that LEGO models are modular

structures connected by primitive and well-defined bricks

allows us to acquire the exact 3D ground-truth shape1 with

no accuracy loss in measurement.

In order to align the 3D ground-truth shape to the image

sequence, we design a human-in-the-loop pose alignment

procedure with three steps. First, we align the 3D model to

a single image in the sequence by solving a Perspective-n-

1subject to manufacturing tolerance of LEGO bricks, which is as small

as 0.01 millimetres

Point problem with annotated keypoints. Second, we verify

and refine the alignment by maximising the overlap between

the 3D model’s projections on a few sampled images and

its observed location in those images. Third, we use bun-

dle adjustment to refine the camera poses of all images in

the sequence such that they are consistent with the aligned

object pose and to alleviate motion drift caused by ARKit.

Overall, our contributions in this paper are as follows:

• We propose MobileBrick, a large-scale dataset of 153
diverse object shapes focusing on detailed 3D object

reconstruction with a unique data modality of high-

resolution RGB images with low-resolution depth

maps captured on a mobile device.

• We provide exact ground-truth 3D models by building

the digital replica of each object and we design an ef-

ficient annotation pipeline to align the 3D models to

image sequences.

• We demonstrate the usefulness of the proposed dataset

by training and evaluating various methods on the

tasks of multi-view surface reconstruction, novel view

synthesis, and colour-guided depth enhancement.

2. Related Work

2.1. Datasets for Multi­view Reconstruction

DTU [17] and Tanks and Temples [20] datasets are often

used to benchmark multi-view reconstruction algorithms in

the computer vision community. While they acquire 3D

models using high-end 3D scanners, the models are subject

to artefacts, as shown in Fig. 2. In contrast, we align the

exact 3D ground-truth model to the image sequence in Mo-

bileBrick. Furthermore, devices used for data collection in

these datasets are notably different from the mobile devices

we use nowadays. We provide RGBD images whereas they

have RGB images only.

Some datasets [4, 25] comprise a significantly larger

number of sequences or models, which are particularly use-

ful for training deep neural networks. However, the lack

of accurate and dense 3D ground-truth hampers their use

to benchmark reconstruction algorithms. While synthetic

datasets [9, 15, 22, 26] offer a large number of images asso-

ciated with exact 3D models, the domain gap between real

and synthetic images causes a significant discrepancy when

testing on real images [41].

Aligning a 3D CAD model to images, as a way of gener-

ating 3D ground truth, has been explored in previous object-

centric datasets. Pascal3D [37] and ObjectNet3D [36] ask

annotators to pair images with an object in a pre-defined

object database. This annotation process cannot guarantee

that an object that appears in an image is matched exactly

unless the object is also included in the object database.
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Redmond-OS [11] CO3D [25] DTU [17] T & T [20] Shrestha et al. [29] Pix3D [32] Ours

Exact 3D model × × ⋆ ⋆ ⋆ ✓ ✓

Mobile depth maps × × × × × × ✓

Multiple views ✓ ✓ ✓ ✓ ✓ × ✓

Models/Scenes 100 19k 80 14 900 300 153

Table 1. Comparison between different datasets. Redmond-OS and CO3D provide 3D models that are reconstructed by TSDF-Fusion

and COLMAP respectively, which are too inaccurate to be used in 3D reconstruction benchmark. DTU, Tanks and Temples, and Shrestha

et al. [29] resort to 3D scanners to capture higher-quality 3D models, but still not error-free (hence denoted as ⋆). Only Pix3D and ours

provide exact 3D models, but Pix3D has only a single image associated to each 3D model. Furthermore, we are the only dataset that

provides depth maps captured on a mobile device.

To solve this issue, Pix3D [32] collects images of IKEA

furniture exclusively. They then align an IKEA CAD model

to each image to acquire the precise 3D ground truth. Be-

cause they align a CAD model to a single image, they are

limited to evaluate single-view reconstruction mainly driven

by deep learning algorithms, and it is impossible to be used

for multi-view reconstruction.

The closest to our dataset is Shrestha et al. [29]. Both

datasets provide object-centric RGBD sequences with a

few key differences as follows. First, Shrestha et al. [29]

use a 3D scanner to acquire evaluation reference, which

shares limitations presented in the DTU [17] and Tanks and

Temples [20] datasets. Second, while they also provide

depth maps alongside the RGB images, they capture high-

resolution depth maps using a LiDAR depth camera instead

of the one on a mobile device. This conceals the challenges

that low-resolution depth maps captured by mobile devices

bring in 3D reconstruction.

2.2. Datasets with Depth Maps

Various RGBD datasets [8,11,12,30] for 3D reconstruc-

tion and 3D scene understanding have been proposed thanks

to the rise of commodity-level depth sensors (e.g. Kinect,

and Intel RealSense) in the last decade. However, as noted

in ARKitScene [6], the gap in depth sensing technology be-

tween the commodity-level depth sensors and mobile de-

vices is so significant that algorithms that are developed us-

ing these datasets are difficult to be used on data captured

on mobile devices. Furthermore, most RGBD datasets offer

data and annotations for scene-level understanding, while

the proposed dataset provides RGBD images captured on a

mobile device, with the focus on 3D object reconstruction.

3. Data Acquisition and Annotation

We first describe how we capture images given a col-

lection of physical LEGO models and a mobile device

(Sec. 3.1) and how we acquire the digital replica of each

model (Sec. 3.2). We then introduce a model alignment pro-

cedure, where the 3D models are registered to the sequence

coordinate system (Sec. 3.3). The aligned 3D models are

pre-processed for evaluation in Sec. 3.4. Finally, we con-

clude this section with statistics of the dataset (Sec. 3.5).

3.1. Image Collection

We record video clips on an iPhone moving around an

object of interest. We maintain a distance of 20-50 cm and

move in a circular motion because 1) the low-resolution

LiDAR sensor needs to be in proximity to the object to

capture geometry details, and 2) the LiDAR sensor fails

when it is very close the object. At around 10 frames per

second (fps), ARKit provides high-resolution RGB images

at 1440 × 1920 pixels and low-resolution depth maps at

192 × 256 pixels. It also outputs both the extrinsic and in-

trinsic parameters of each frame.

3.2. 3D Model Acquisition

We need both digital and physical 3D models for evalua-

tion and image capturing, respectively. The modular struc-

ture of LEGO models guarantees that the physical and dig-

ital version would match exactly if they are built following

the instructions strictly. This is the key to aligning RGBD

images of a model to the exact 3D ground-truth shape.

There are two types of 3D models in the dataset that can be

categorised as “real-world model set” and “random model

set” depending on how a model is built.

The real-world model set refers to official LEGO models

that are created by human designers. They are resized repli-

cas of renowned objects or landmarks (e.g., the UK par-

liament, the Hubble Space Telescope) or fiction (e.g., the

Hogwarts Castle in Harry Potter, the Millennium Falcon in

Star Wars). The digital models in this category are available

on LEGO modelling websites2 or are created in BrickLink

studio [3] by following the building instructions.

Loose parts of a model that are hard to align, such as

the hands of the clock on Big Ben, are removed. If mis-

alignments are found, we either modify the digital version

to match the physical one or discard this model if such a

modification is not feasible. Fig. 1 illustrates several exam-

ples of LEGO models in this category.

2https://www.mecabricks.com/ and http://omr.ldraw.org/
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2D-3D Keypoints Annotation

Building LEGO Models

Physical Version

Digital Version

RGBD Image Collection

Manual Pose Refinement

Bundle Adjustment for 
Camera Poses

A Subset of Images & 
Camera Poses

A Single Image

Initial Object Pose

Refined Object Pose

All Images & Camera 
Poses

Figure 3. The data collection and annotation pipeline. After image capture, the digital model is first aligned to the world coordinate

system by solving the PnP problem using annotated 2D-3D keypoints correspondences. The object pose is further refined manually by

maximising the projections of the digital model on the object foreground on a subset of images. Lastly, we finetune all camera poses by

bundle adjustment.

The number of models in the real-world model set is lim-

ited and subject to the accessibility of the physical LEGO

models for image collection. Therefore, we propose a ran-

dom model set that comprises a large collection of models

that are randomly generated. Following [34], we use proce-

dural generation to create a large amount of digital LEGO

models using 72 primitive LEGO bricks randomly. After

the digital models are created, we use BrickLink Studio [3]

to generate the building instructions for the physical mod-

els. To build the physical LEGO model, each volunteer is

assigned a collection of LEGO bricks that are needed to

build the model accompanied by the building instructions.

A concern of using randomly generated models is

whether the knowledge learnt from these models is gener-

alisable to real-world objects. To this end, we conduct ex-

periments on multi-view reconstruction and depth enhance-

ment to demonstrate that training on the random model set

can improve the network performance when testing on the

real-world model set.

3.3. 3D Model Alignment

The most important procedure for building the proposed

dataset is aligning a digital 3D model to an image se-

quence, so that the aligned model can be used for eval-

uation. We propose a three-stage alignment pipeline to

achieve highly accurate alignment. In the first stage, we for-

mulate the alignment as a Perspective-n-Point (PnP) prob-

lem that aligns the object pose to an image in the video us-

ing manually annotated 2D-3D keypoint correspondences.

We recognise that it is impossible to achieve pixel-perfect

2D-3D correspondences with human annotations, so this

alignment is only a rough estimation. In the second stage,

we manually refine the object pose by minimising the repro-

jection error from a few sampled viewpoints in the video us-

ing a Graphical User Interface (GUI). Lastly, to ensure the

pose alignment is consistent in all images and alleviate cam-

era drift caused by ARKit, we perform a bundle adjustment

to refine all camera poses.

PnP alignment The annotators are asked to annotate 10-20
3D keypoints and their projections on an image given a user

interface—See “2D-3D Keypoints Annotation” in Fig. 3.

They are encouraged to annotate distinctive positions (e.g.,

corners and studs on LEGO bricks) and avoid only annotat-

ing coplanar points, which would cause the PnP algorithm

to fail. In the case where the projections of some 3D key-

points are not visible on the image, they have the option to

select another image where all 3D keypoints are visible.

Multi-view manual refinement Since acquiring pixel-

perfect correspondences is difficult, it is necessary to fur-

ther refine the object pose. We provide a user interface that

shows the projections of the 3D model using the pose from

the first stage on 8 different images sampled uniformly in
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Figure 4. The left shows the native mesh provided by the LEGO

modelling website. The right is the processed mesh for evaluation.

Note that surfaces that are invisible from images are removed.

the image sequence (visualised in “Manual Pose Refine-

ment” in Fig. 3). Note that we do not need to repeat the PnP

step for these 8 images because relative camera poses are

tracked by ARKit. The annotators can adjust the 6 Degree-

of-Freedom (DoF) transformation parameterised by 3 DoF

translation and 3 DoF Euler angles, such that the overlap

between the model projections and the object foreground in

the images is maximised.

Bundle adjustment After the aforementioned steps, the ob-

ject is aligned well with a subset of image frames that are

used for manual refinement. To propagate the object align-

ment to the rest of the sequence and rectify the camera drift

caused by ARKit, we refine the camera poses by minimis-

ing reprojection errors. We first extract features from all im-

ages and match them across neighbouring images. Unlike a

normal structure from motion problem where the 3D geom-

etry is also unknown, we take advantage of the aligned 3D

model to 1) determine the 3D position of each feature point

(instead of triangulation), 2) determine its visibility from

other images, and 3) filter out incorrect matchings. Specif-

ically, if the Euclidean distance between the 3D points un-

projected from two matched pixels is larger than 2cm, this

matching is discarded. After removing outliers, the camera

poses P1,P2, ...,Pn of n images are refined by minimising

the following cost function:

F (P1,P2, ...,Pn) =

n∑

i=1

m∑

j=1

∥xij −Proj(Xj ,Pi,Ki)∥
2,

(1)

where Xj denotes the jth 3D keypoint, xij is the observed

position of the jth keypoint from the ith image, Ki is the

intrinsic matrix of the ith camera, and Proj(·) describes the

rigid transformation and perspective projection.

RGB GT

DVGO

NeRF

NeuS

Figure 5. Novel view synthesis visualisation.

3.4. Preprocessing for Evaluation

The digital models cannot be used for evaluation directly

because 1) they include the internal structures of LEGO

bricks that are invisible after the bricks are connected, and

2) some surfaces are not visible during the image capture

(see left in Fig. 4). The evaluation for multi-view recon-

struction should not expect a method to reconstruct invisible

surfaces. Therefore, it is necessary to compute a visibility

mask of the 3D space so that only the visible regions are

evaluated.

To compute the visibility mask and extract the external

surfaces of a model, we place a virtual camera that shares

the same extrinsic and intrinsic parameters at each frame

and render a depth map of the aligned 3D model using the

virtual camera. Following DTU [17], there are two criteria

we use to define the visible mask given a rendered depth

map. First, the space between the camera centre and the

3D points unprojected from the depth map should be visi-

ble. Second, we add a +10mm offset to the depth values

so that the visibility mask extends beyond the object sur-

face, which sets the space slightly behind the object surface

to be visible. This is necessary so that we can penalise in-

correct reconstruction located behind the ground-truth ob-

ject surface. The visibility mask of the entire space can be

computed by taking the union of all visibility masks gener-

ated by all depth maps. A dense point cloud representing

only the external surfaces of the 3D model for evaluating

3D reconstruction can be acquired by fusing all depth maps

rendered from all viewpoints.

3.5. Dataset Statistics

The dataset comprises 153 models in total, 18 of which

belong to the “real-world model set” and the rest are ran-

dom models. The number of LEGO bricks used in the mod-
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Methods Input
σ = 2.5mm σ = 5mm

Chamfer (mm) ↓
Accu. (%) ↑ Rec. (%) ↑ F1 ↑ Accu. (%) ↑ Rec. (%) ↑ F1 ↑

TSDF-Fusion [42] Depth 42.07 22.21 28.77 73.46 42.75 53.39 13.78

BNV-Fusion [21] Depth 41.77 25.96 33.27 71.20 47.09 55.11 9.60

Neural-RGBD [5] RGBD 20.61 10.66 13.67 39.62 22.06 27.66 22.78

COLMAP [28] RGB 74.89 68.20 71.08 93.79 84.53 88.71 5.26

Vis-MVSNet [40] RGB 79.83 47.25 58.32 97.35 65.90 77.49 9.27

Vis-MVSNet [40]

(finetuned)
RGB 75.64 53.64 62.01 96.03 72.42 81.89 9.52

NeRF [23] RGB 47.11 40.86 43.55 78.07 69.93 73.45 7.98

NeuS [33] RGB 77.35 70.85 73.74 93.33 86.11 89.30 4.74

Table 2. Multi-view reconstruction experiment. NeuS achieves the state-of-the-art performance. Vis-MVSNet (finetuned) outperforms

the baseline by a large margin. Compared to neural-field-based approaches, methods using Multi-View Stereo (e.g., COLMAP and Vis-

MVSNet) can reconstruct accurately, but suffer from surface coverage as shown in Fig. 6.

Methods PSNR↑ SSIM↑ LPIPS↓

NeRF [23] 20.66 0.64 0.49

DVGO [31] 20.64 0.67 0.44

NeuS [33] 21.49 0.67 0.48

Table 3. Novel view synthesis experiment. NeuS and NeRF out-

perform DVGO by a large margin.

els varies significantly. Models in the “real-world model

set”, some of which take thousands of bricks to build, are

generally more complex than the “random model set”. To

ensure models in the “random model set” have diverse ge-

ometry, we only use random models with at least 25 bricks.

Although the first two stages of the annotation pipeline re-

quire labour effort for the keypoint annotation, and pose re-

finement, with the help of the GUI, it takes about 10 minutes

per sequence.

4. Experiments

We evaluate three tasks using the proposed dataset: 1)

multi-view surface reconstruction; 2) novel view synthesis;

3) and colour-guided depth map enhancement. 18 models in

the real-world model set are used for evaluation, and models

and images in the random model set are used for training.

To show that the random model set can generalise to the

real-world model set when evaluating methods that require

training data, we report results of two versions: one that is

provided by the authors and pretrained on external datasets,

and one that is finetuned on the random model set.

4.1. Evaluating Dataset Annotations

We provide analyses on the quality of the ground-truth

shape annotations and camera alignment. Despite the

ground-truth shapes theoretically are the replicas of the ac-

tual objects used for image capture, shape errors still exist in

the model construction process. To investigate the effect of

accumulated error of model building, we measure the 3D di-

mensions of 20 models randomly selected from the dataset

using a micrometre with an accuracy of 0.05mm. The dif-

ference in average is 0.2mm (200.5µm).

We also evaluate quantitatively the accuracy of cam-

era alignment. Since the exact ground-truth camera poses

are impossible to attain for sequences captured on a mo-

bile phone, we use camera poses obtained from the cam-

era calibration algorithm as ground-truth poses to compare

with the poses given by the proposed alignment algorithm

ARKit respectively. Specifically, we record 10 calibration

sequences, where a randomly selected LEGO model is put

on a ChArUco calibration board, which is robust to occlu-

sions caused by the LEGO model. We then use the camera

calibration algorithm in the OpenCV library [7] to compute

the reference camera poses for evaluation.

We report the pairwise Root Mean Square Error for

translation and degree difference for rotation in Tab. 5. The

proposed algorithm reduces the errors in translation and ro-

tation by almost 100% and 12% respectively. However, the

metrics on camera poses do not reveal how the 3D recon-

struction would be affected by the imperfect camera poses.

Therefore, we run COLMAP for each sequence to recon-

struct the 3D shapes using three sets of camera poses: 1)

the reference camera poses (from camera calibration); 2)

the refined poses proposed in the paper; and 3) the poses

from ARKit. We then compare the shapes reconstructed

using the refined poses and ARKit poses against the ones

using the reference poses, such that we can quantify the ef-

fect of imperfect poses on 3D reconstruction. The results

are reported in Tab. 5, showing that the proposed algorithm

outperforms ARKit in metrics for 3D reconstruction.

We further evaluate on synthetic data to eliminate the po-

tential bias on the calibration sequences as the presence of

the calibration board might improve the camera tracking.

We first render ground-truth depth maps using ground-truth

poses for each LEGO model. The ground-truth poses are
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Methods Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ<1.25 ↑ δ<1.252 ↑ δ<1.253 ↑

NN-interpolation 0.0845 0.0177 0.0663 0.1327 0.9360 0.9748 0.9878

MSPF (baseline) 0.0806 0.0144 0.0588 0.1231 0.9413 0.9787 0.9902

MSPF (finetuned) 0.0678 0.0056 0.0413 0.0920 0.9441 0.9932 0.9983

Table 4. Depth map enhancement experiment. The improvement brought by finetuning on our dataset is larger than the improvement from

NN-interpolation to the MSPF baseline in most of the evaluation metrics.

RMSE

(mm)
↓

rotation diff.

(in ◦)
↓

Acc.

(1mm)
↑

Rec.

(1mm)
↑

ARKit 4.454 0.581 90.1% 91.3%

Ours 2.060 0.522 93.7% 93.8

Table 5. Pose evaluation and shape deviation caused by imperfect

poses on calibration sequences.

Acc.(1mm) ↑ Rec.(1mm) ↑

85.9% 84.0%

Table 6. Impact of perturbed poses on shape reconstruction on

synthetic data.

then perturbed based on the publicly available error statis-

tics of ARKit tracking [18]. We then run TSDF-Fusion us-

ing the GT depth maps with these two sets of poses and

compare the reconstructions, as reported in Tab. 6. Similar

to the results on the real calibration sequences, most of the

points are within 1mm, which is well below the thresholds

used in the experiments.

4.2. Multi­view Reconstruction

Setup We investigate the performance of a wide range of

multi-view reconstruction algorithms with different types

of input data. We take the state-of-the-art approach in each

category in the evaluation. Specifically, COLMAP [28], a

popular framework in the community for Multi-view Stereo

(MVS), is chosen as a representative for methods based on

traditional multi-view geometry. NeuS [33] and NeRF [23]

are selected to represent the neural field based approaches.

Vis-MVSNet [40] is a representative of deep-learning-based

MVS solutions. In addition to these RGB-only methods,

we also include an RGBD approach, RGBD neural surface

reconstruction [5], and two depth-only fusion algorithms,

TSDF-Fusion [42], and BNV-Fusion [21], to investigate the

effect of low-resolution depth maps captured by a mobile

device in multi-view reconstruction. Among all methods

in this experiment, only Vis-MVSNet requires a training

stage. Therefore, we report the results of two versions of

Vis-MVSNet, one that is pretrained on BlendedMVS [38],

a popular MVS benchmark, provided by the author, and the

other one that is finetuned on the random model set. Follow-

ing common practice in MVS, we use Chamfer Distance,

precision, recall, and F1 score as evaluation metrics. We set

two thresholds (2.5mm, 5mm) for precision and recall.

Results Tab. 2 details the quantitative results, and we visu-

alise some reconstructions in Fig. 6. NeuS achieves state-

of-the-art performance, outperforming traditional MVS,

learning-based MVS and depth map fusion approaches.

However, note that NeuS takes more than 10 hours to op-

timise each 3D object. NeRF, the other representative of

the neural field based approach, performs worse than NeuS

because it represents a scene using volume density rather

than SDF as used in NeuS. Therefore, NeRF suffers from

extracting high-quality surfaces.

MVS solutions, compared to neural-field-based ap-

proaches, are penalised heavily in Recall (i.e. surface cov-

erage), as they struggle to reconstruct homogeneous re-

gions where texture is insufficient for MVS, as visualised

in Fig. 6. Vis-MVSNet that is finetuned on our random

model set performs substantially better than its baseline

which is only trained on an external MVS dataset. This

demonstrates that the knowledge learnt from the random 3D

structures can be generalised to real objects.

Although depth maps are beneficial in large-scale 3D re-

construction (e.g. reconstructing a living room), the low-

resolution depth maps on mobile devices fail to capture

geometry details of objects, which causes ethods that take

depth maps as input perform the worst in this experiment.

However, it is worth noting that the depth maps are able to

fill in homogeneous regions where MVS solutions fail, as

shown in Fig. 6. This suggests that low-resolution depth

maps and multi-view high-resolution RGB is complemen-

tary for high-fidelity object reconstruction.

4.3. Novel View Synthesis

Setup We compare several neural-field-based approaches

for novel view synthesis. Following the evaluation setup

in NeRF [10] for real images, we hold out every 8th im-

age in an image sequence for testing. Besides the methods

used in the evaluation of multi-view reconstruction, we also

include Direct Voxel Grid Optimisation [31], a hybrid rep-

resentation that is able to achieve similar rendering quality

as NeRF after training for only a few minutes.

Results NeRF and NeuS have comparable performance,

as reported in Tab. 3, although NeRF performs signifi-

cantly worse than NeuS in multi-view surface reconstruc-

tion. DVGO, despite running much faster than NeRF and

NeuS (20 minutes versus 10 hours of optimisation), fails to
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render realistic images in this experiment.

4.4. Depth Map Enhancement

Setup Colour-guided depth map enhancement aims to im-

prove the quality of low-resolution depth maps guided

by the corresponding high-resolution RGB images. We

demonstrate that MobileBrick can be used to train a depth

map enhancement network for object scanning in this ex-

periment. We use the deep neural network architecture in-

troduced in MSPF [35]. The baseline, denoted as MSPF

(baseline) in Tab. 4, is trained on the ARKitScene dataset

for general scenes. MSPF (finetuned) is the network that we

finetune on the random model set of the proposed dataset.

We render depth maps from the aligned 3D models and use

them as ground-truth in training. Both networks are eval-

uated on images of the real-world model set. To provide a

point of reference for performance improvement, we also

report the results of nearest-neighbour interpolation, which

is the most naı̈ve approach for depth map upsampling. We

use standard depth estimation metrics [14, 16].

Results We report the quantitative results in Tab. 4. After

finetuning on the random model set, the model improves

substantially in all evaluation metrics over the baseline.

Notably, the improvements from finetuning alone are of-

ten larger than the gap between MSPF (baseline) and NN-

interpolation. This demonstrates the random model set is

effective for object-centric depth upsampling.

5. Conclusion

In this paper, we present the MobileBrick dataset, con-

sisting of a diverse collection of 3D LEGO models and the

precise 3D ground-truth annotations associated with RGBD

image sequences captured on a mobile device. Using this

dataset, we establish benchmarks for multi-view reconstruc-

tion, novel view synthesis, and depth map enhancement. We

anticipate that our dataset will provide a valuable resource

for researchers investigating multi-view reconstruction us-

ing RGBD images from mobile devices, and we believe that

our benchmarks will serve as a critical evaluation tool for

assessing progress in this field. However, we acknowledge

that the uniform surface property of LEGO bricks can be a

limitation of our dataset, which can be alleviated by apply-

ing various types of paints on the models in future work.
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