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Abstract

Novel class discovery (NCD) aims at learning a model
that transfers the common knowledge from a class-disjoint
labelled dataset to another unlabelled dataset and discov-
ers new classes (clusters) within it. Many methods, as well
as elaborate training pipelines and appropriate objectives,
have been proposed and considerably boosted performance
on NCD tasks. Despite all this, we find that the existing
methods do not sufficiently take advantage of the essence
of the NCD setting. To this end, in this paper, we pro-
pose to model both inter-class and intra-class constraints
in NCD based on the symmetric Kullback-Leibler diver-
gence (sKLD). Specifically, we propose an inter-class sKLD
constraint to effectively exploit the disjoint relationship be-
tween labelled and unlabelled classes, enforcing the sep-
arability for different classes in the embedding space. In
addition, we present an intra-class sKLD constraint to ex-
plicitly constrain the intra-relationship between a sample
and its augmentations and ensure the stability of the train-
ing process at the same time. We conduct extensive exper-
iments on the popular CIFAR10, CIFAR100 and ImageNet
benchmarks and successfully demonstrate that our method
can establish a new state of the art and can achieve signif-
icant performance improvements, e.g., 3.5%/3.7% cluster-
ing accuracy improvements on CIFAR100-50 dataset split
under the task-aware/-agnostic evaluation protocol, over
previous state-of-the-art methods. Code is available at
https://github.com/FanZhichen/NCD-IIC.

1. Introduction

Deep learning has made great progress and achieved re-
markable results in many computer vision fields, especially
in image classification [13, 16, 22, 25, 27]. Unfortunately,
these successes of deep learning heavily rely on a large
amount of fully labelled data for training. On the other
hand, in many realistic scenarios, it is difficult to collect or
to annotate such a large-scale dataset. To address this prob-
lem, a new paradigm of novel class discovery (NCD) has
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been proposed and attracted increasing attention in recent
years [8, 10, 11, 33, 35, 37].

The goal of NCD is to train a classification model on a
labelled dataset and simultaneously transfer the latent com-
mon knowledge to discover new classes (or clusters) in an-
other unlabelled dataset. Different from semi-supervised
learning [1, 2, 26, 36] that assumes the labelled and unla-
belled datasets share the same label space, in the setting
of NCD, the classes of the unlabelled dataset are disjoint
with those of the labelled dataset, which is more challeng-
ing. In addition, NCD is also different from the generic
clustering [3, 4, 18, 31] in that an additional labelled dataset
is available in NCD. In general, for the standard cluster-
ing methods, the clustering results are not unique. That is
to say, there may be multiple different and approximately
correct results for a certain unlabelled dataset. In contrast,
thanks to the available labelled dataset, NCD can eliminate
the semantic ambiguity with the label guidance and finally
makes the clustering be consistent with the real visual se-
mantics [11]. Clearly, NCD is more realistic and more prac-
tical than unsupervised clustering.

In general, the existing NCD methods can be roughly
divided into two categories, i.e., two-stage based methods
and single-stage based methods [20]. Most of the early
methods are two-stage by using labelled and unlabelled
data in different stages, such as KCL [14], MCL [15] and
DTC [11]. Typically, the two-stage based methods first
learn an embedding network on the labelled set through su-
pervised learning and then use it on the unlabelled set to
discover new clusters with little modifications. In contrast,
the latest methods are almost single-stage, such as, RS [10],
NCL [37], UNO [8], DualRank [35] and ComEx [33],
which use both labelled and unlabelled data in a single
stage at the same time. The single-stage based methods can
learn the feature representation and discover novel classes
simultaneously, iteratively updating the learned feature em-
bedding network and clustering results during the train-
ing process. Compared with the two-stage based meth-
ods, the single-stage methods can make more effective use
of the similarity between labelled and unlabelled classes
to achieve a better knowledge transfer between these two
datasets. Therefore, in this paper, we will mainly focus on
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the single-stage direction of NCD.
However, we find that the current single-stage based

NCD methods do not sufficiently take advantage of the
essence of the NCD setting, that is to say, overlooking the
disjoint characteristic between the labelled and unlabelled
classes. In this sense, on one hand, the labelled and unla-
belled samples cannot be effectively separated, weakening
the discriminability of the learned features. On the other
hand, because the labelled data is learned under supervision
while the unlabelled data has no supervision, i.e., an im-
balanced learning process (learning with different supervi-
sion strengths), it will make the learned feature representa-
tions biased toward the labelled data. In addition, we notice
that although some methods [10, 35] have used data aug-
mentation to generate additional samples and gained sig-
nificant performance improvements, they generally employ
the mean squared error (MSE) as the consistency regular-
ization, which cannot constrain the consistency well with a
good generalization ability.

To address the above two issues, we propose to model
both Inter-class and Intra-class Constraints (IIC for short)
built on the symmetric Kullback-Leibler divergence (sKLD)
for discovering the novel classes. To be specific, an inter-
class sKLD constraint is proposed to explicitly learn to sep-
arate different classes between labelled and unlabelled data,
enhancing the discriminability of learned feature represen-
tations. Moreover, an intra-class sKLD constraint is pre-
sented to fully learn the intra-relationship between sam-
ples and their augmentations. According to our experi-
ments, such an intra-class sKLD constraint can also stable
the training process in the training phase. We have con-
ducted extensive experiments on three benchmarks, includ-
ing CIFAR10 [21], CIFAR100 [21] and ImageNet [7], and
show that the proposed two constraints can significantly and
consistently outperform the existing novel class discovery
methods by a large margin.

To summarize, our contributions are as follows:

• We propose a new inter-class Kullback-Leibler diver-
gence constraint to sufficiently model the relationship
between the labelled and unlabelled datasets to learn
more discriminative feature representations, which is
somewhat overlooked in the literature.

• We propose a new intra-class Kullback-Leibler diver-
gence constraint to effectively exploit the relationship
between a sample and its different transformations to
learn invariant feature representations.

• We evaluate the proposed constraints on three bench-
mark datasets for novel class discovery and obtain sig-
nificant performance improvements over the state-of-
the-art methods, which successfully demonstrates the
effectiveness of the proposed method.

2. Related Work
Novel class discovery (NCD) is a new task attracted wide

attention in recent years, which aims at discovering new
classes in an unlabelled dataset given a class-disjoint la-
belled dataset as supervision. A variety of advanced NCD
methods have been proposed and have tangibly improved
the clustering performance on multiple benchmark datasets.

The early methods of NCD include KCL [14], MCL [15]
and DTC [11]. In general, these methods first learn an em-
bedding network of feature representations on the labelled
data, and then use it directly for the unlabelled data. Specif-
ically, KCL and MCL propose a framework for both cross-
domain and cross-task transfer learning that leverages the
pairwise similarity to represent categorical information, and
learn the clustering network based on the pairwise simi-
larity prediction through different objective functions, re-
spectively. DTC extends the deep embedding clustering
method [31] into a transfer learning setting and proposes
a two-stage method. Importantly, Han et al. [11] formalize
the task of novel class discovery for the first time.

Since then, the current NCD methods [8, 10, 19, 20, 33,
35, 37, 38] are almost single-stage and can take greater ad-
vantage of both labelled and unlabelled data. RS [10] in-
troduces a three-step learning pipeline, which first trains
the representation network with all labelled and unlabelled
samples using self-supervised learning, and then uses rank-
ing statistics to obtain pairwise similarity between unla-
belled samples, and finally use the pairwise similarity to
discover novel classes. DualRank [35] expands RS to a
two-branch framework from both global and local levels.
Similarly, DualRank uses dual ranking statistics and mutual
knowledge distillation to generate pseudo labels and ensure
the consistency between two branches. In order to gener-
ate pairwise pseudo labels, Joint [19] employs a Winner-
Take-All (WTA) hashing algorithm [32] on the shared fea-
ture space for NCD.

NCL [37] and OpenMix [38] are largely motivated by
contrastive learning [5, 12] and Mixup [34], respectively.
NCL introduces the contrastive loss to learn more discrim-
inative representations. On the other hand, OpenMix uses
Mixup to mix labelled and unlabelled samples, building a
learnable relationship between the two parts of data. In-
stead of using multiple objectives, UNO [8] introduces a
unified objective function to transfer knowledge from the la-
belled set to unlabelled set. More recently, Joseph et al. [20]
categorize the existing NCD methods into two classes (i.e.,
two- and single-stage based methods), according to whether
the labelled and unlabelled samples are available at the
same time or not. They also propose a spacing loss to en-
force separability between labelled and unlabelled points in
the embedding space. ComEx [33] focuses on the gener-
alized NCD (GNCD), aka generalized category discovery
(GCD) [29], and proposes two groups of compositional ex-
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perts to solve this problem.
To our best knowledge, the existing approaches do not

make full use of the disjoint characteristic between labelled
and unlabelled classes. In addition, we find that some meth-
ods utilizes the mean squared error (MSE) to constrain the
learned representations of data augmentation, but it can-
not achieve the desired effect. Instead, we propose inter-
class and intra-class constraints based on the symmetric
Kullback-Leibler divergence (sKLD) for NCD.

3. Method
3.1. Problem Formulation

In the NCD setting, given a labelled dataset Dl =
{(xl

1, y
l
1), . . . , (x

l
N , ylN )}, the goal is to automatically dis-

cover Cu clusters (or classes) in an unlabelled dataset Du =
{xu

1 , . . . ,x
u
M}, where each xl

i in Dl or xu
i in Du is an

image and yli ∈ Y = {1, . . . , Cl} is the corresponding
class label of xl

i. In particular, we assume that the set of
Cl labelled classes is disjoint with the set of Cu unlabelled
classes. In this sense, the core of NCD is how to effectively
learn transferable semantic knowledge from the disjoint la-
belled dataset Dl to help performing clustering on the un-
labelled dataset Du. Following the literature [8, 10, 37], we
also assume the number of unlabelled classes Cu is known
a priori in this paper.

To tackle this challenge problem, we propose two sym-
metric Kullback-Leibler divergence (sKLD) based con-
straints from both inter-class and intra-class perspectives to
learn more discriminative feature representations for NCD
models (see Fig. 1). In the following sections, we first intro-
duce the inter-class sKLD constraint and intra-class sKLD
constraint in Sec. 3.2, and then summarize the overall ob-
jective for training in Sec. 3.3.

3.2. Symmetric Kullback-Leibler Divergence for
Novel Class Discovery

According to the above analyses, to effectively utilize
the two parts of data in NCD, i.e., a labelled set and an
unlabelled set, we develop two inter-class and intra-class
symmetric Kullback-Leibler divergence (sKLD) constraints
to better accomplish the NCD task, especially in the single-
stage paradigm.

Following UNO [8], as shown in Fig. 1, the architec-
ture of our model consists of two parts: an encoder E and
two classification heads h and g. The encoder E is imple-
mented as a standard convolutional neural network (CNN),
which converts an input images into a feature vector. The
head h belonging to the labelled data is implemented as
a linear classifier with Cl output neurons, and the head g
belonging to the unlabelled data is composed of a multi-
layer perceptron (MLP) and a linear classifier with Cu out-
put neurons. In the training phase, each sample xi will
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Figure 1. Architecture of the proposed method. We present the
“raw samples” (labelled sample xl

i, unlabelled sample xu
j , corre-

sponding logits and probability distributions) in blue and the “aug-
mented counterparts” (labelled counterpart x̂l

i, unlabelled coun-
terpart x̂u

j , corresponding logits and probability distributions) in
green. The samples and their augmentations are inputted into the
shared encoder E, and then fed into two classification heads h and
g, obtaining predictions to calculate both inter-class sKLD Linter

and intra-class sKLD Lintra. For brevity, we omit the calculation
process of the standard cross-entropy loss LCE.

be first encoded as a feature vector by E, and then will
be passed through both classification heads to obtain the
corresponding logits lih ∈ RCl

and lig ∈ RCu

, respec-
tively. After that, the two logits are concatenated together
as li = [lih , lig ] ∈ RCl+Cu

and fed into a softmax layer σ
with a temperature τ , obtaining the probability distribution
pi = σ(li/τ).

Inter-class Symmetric KLD Constraint. When solv-
ing the NCD problem, in the pipeline of the single-stage
based methods, both labelled and unlabelled images will
be accessed in each mini-batch during training. Although
the distributions of these two parts of images are similar, in
fact, the representations of them should be different from
each other as much as possible, i.e., the separability be-
tween the labelled and unlabelled classes. However, this
point is somewhat overlooked in the existing single-stage
based methods. Therefore, to address this issue, we pro-
pose an inter-class sKLD constraint to explicitly enlarge
the distance between each labelled sample and each unla-
belled sample in the current mini-batch using a symmetric
Kullback-Leibler divergence distance. The formulation be-
tween a pair of samples is as follows:

LsKLD =
1

2

(
DKL(p

l
i||pu

j ) +DKL(p
u
j ||pl

i)
)
, (1)

where pl
i and pu

j are the probability distributions generated
for the labelled image xl

i|Ni=1 and unlabelled image xu
j |Mj=1

in a mini-batch, respectively. DKL is the Kullback-Leibler
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(KL) divergence defined as

DKL(p
l
i||pu

j ) =

Cl+Cu∑
k=1

pl
i(k) log

pl
i(k)

pu
j (k)

, (2)

DKL(p
u
j ||pl

i) =

Cl+Cu∑
k=1

pu
j (k) log

pu
j (k)

pl
i(k)

. (3)

Therefore, the inter-class sKLD over a mini-batch is

Linter-class =
1

NM

N∑
i=1

M∑
j=1

LsKLD, (4)

where N and M are the numbers of labelled and unlabelled
images in a mini-batch, respectively.

Intra-class Symmetric KLD Constraint. Recently,
some NCD methods [8, 38] have introduced data-
augmentation techniques, normally used in self-supervised
learning [9], to help improve the clustering accuracy when
discovering novel classes. In particular, UNO [8] leverages
a multi-view strategy built on data augmentation and uses
a swapped prediction mechanism through the Sinkhorn-
Knopp algorithm [6] to generate pseudo labels for aug-
mented unlabelled images. However, UNO does not con-
sider the intra-class constraint between the augmented im-
ages, no matter labelled nor unlabelled. We argue that
for different views (augmentations) of the same image, the
outputs produced by the corresponding classification heads
should be consistent. That is to say, the distance between
any two probability distributions of different augmentations
of the same image should be small.

Note that, because the logits of unlabelled images pass-
ing through the labelled head h and the logits of labelled
images passing through the unlabelled head g will gradually
approach to a zero vector, it is not necessary to calculate the
consistency regularization loss for these two kinds of logits.
In this paper, we only consider the logits of labelled images
generated by the labelled head h and the logits of unlabelled
images generated by the unlabelled head g:

Ll
sKLD =

1

2

(
DKL(p

l
ih
||p̂l

ih
) +DKL(p̂

l
ih
||pl

ih
)
)
, (5)

Lu
sKLD =

1

2

(
DKL(p

u
jg ||p̂

u
jg ) +DKL(p̂

u
jg ||p

u
jg )

)
, (6)

Lintra-class =
1

N

N∑
i=1

Ll
sKLD +

1

M

M∑
j=1

Lu
sKLD, (7)

where pl
ih

∈ RCl

and p̂l
ih

∈ RCl

indicate the probability
distributions of the labelled image xl

i and its augmentation
x̂l
i through the labelled head h and the softmax layer σ, re-

spectively. Similarly, pu
jg

∈ RCu

and p̂u
jg

∈ RCu

represent
the probability distributions corresponding to the unlabelled
image xu

j and its augmentation x̂u
j , respectively.

Table 1. Details of dataset splits used in the experiments.

Dataset split
Labelled Unlabelled

#Images #Classes #Images #Classes

CIFAR10 25K 5 25K 5
CIFAR100-20 40K 80 10K 20
CIFAR100-50 25K 50 25K 50
ImageNet 1.25M 882 ≈30K 30

3.3. Overall Objective

In addition to the two sKLD constraint loss terms men-
tioned in the above subsection, we also use the standard
cross-entropy (CE) loss:

LCE = − 1

N +M

N+M∑
i=1

Cl+Cu∑
k=1

yi(k) logpi(k), (8)

where yi(k) indicates the zero-padded ground truth label
of image xi if xi is a labelled image, otherwise it is the
zero-padded pseudo label of xi, predicted by the Sinkhorn-
Knopp algorithm like UNO, and pi is the predicted prob-
ability distribution corresponding to xi. In summary, with
the purpose of maximizing the inter-class sKLD and min-
imizing the intra-class sKLD at the same time, the overall
objective function in our model is

L = LCE − αLinter-class + βLintra-class, (9)

where α, β > 0 are two hyperparameters of the two sKLD
loss terms.

4. Experiments
4.1. Experimental Setup

Datasets. We perform our experiments on three bench-
mark datasets that are widely-used in the field of NCD, in-
cluding CIFAR10 [21], CIFAR100 [21] and ImageNet [7].
Following the literature of NCD [10, 33, 37], each dataset
is further divided into two parts for the NCD setting: a la-
belled subset and an unlabelled subset. Also, we assume
the number of classes in the unlabelled subset is known
a priori. In addition, according to the number of classes
contained in the subsets, there are four different dataset
splits: CIFAR10, CIFAR100-20, CIFAR100-50 and Ima-
geNet, where CIFAR100-50 is first introduced in UNO [8]
as a more challenging evaluation than CIFAR100-20. More
details of the dataset splits are shown in Tab. 1.

Evaluation Metrics. Following the evaluation protocols
used in the literature [8, 33], we also conduct our experi-
ments using both task-aware and task-agnostic evaluation
protocols. In the task-aware protocol, we know the task in-
formation in advance when evaluating a method, that is, we
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Table 2. Ablation study of our method on three dataset splits. Results are reported in ACC (%), NMI and ARI that are averaged over 5
runs. “Inter-class” stands for the inter-class sKLD loss term and “Intra-class” is short for the intra-class sKLD. Best results are highlighted
in each column.

# Inter-class Intra-class
CIFAR10 CIFAR100-20 CIFAR100-50

ACC NMI ARI ACC NMI ARI ACC NMI ARI

1 % % 93.25 0.8717 0.8565 90.54 0.8475 0.8123 62.27 0.6781 0.4688
2 ! % 99.07 0.9644 0.9770 92.17 0.8695 0.8448 64.31 0.7046 0.5102
3 % ! 93.60 0.8753 0.8624 91.13 0.8506 0.8193 63.35 0.6800 0.4729
4 ! ! 99.11 0.9657 0.9780 92.48 0.8727 0.8508 65.85 0.7106 0.5238

know whether an image is from the labelled subset or the
unlabelled one. In contrast, in the task-agnostic protocol,
we have no idea about such information. Following the lit-
erature, we use the average clustering accuracy (ACC) to
evaluate the performance of our method, defined as

ACC = max
perm∈P

1

N

N∑
i=1

1{yi = perm(ŷi)}, (10)

where yi and ŷi are the ground-truth label and clustering
assignment of a test sample xu

i ∈ Du, respectively. P is the
set of all permutations and the optimal permutation can be
calculated by the Hungarian algorithm [23].

Implementation Details. For a fair comparison with
the existing methods, we use ResNet-18 [13] as the back-
bone and two steps to train our model. We first pre-train the
model for 200 epochs on the labelled subset, and then fine-
tune the pre-trained model for 500 epochs to discover novel
classes. For all experiments, we fix the batch size to 512.
Note that the proposed inter-class and intra-class symmetric
Kullback-Leibler divergence (sKLD) terms are only used in
the training phase and will be discarded in the test phase.
Specifically, for the inter-class sKLD, we set the weight α
to 0.02 for CIFAR100-20 and 0.05 for the other three dataset
splits. As for the intra-class sKLD, we fix β = 0.01 on all
benchmarks. Following the literature [3, 8, 18, 33], we use
multi-head clustering and overclustering to boost the clus-
tering performance. Besides, we apply multi-crop strategy
and common data augmentations (e.g., random crop, flip,
color jittering, and grey-scale) to generate transformed sam-
ples. In addition, we conduct all the experiments on the
Tesla V100 GPUs.

4.2. Ablation Study

Symmetric KLD vs. MSE for Intra-class Constraint.
As mentioned above, many previous works [8, 33, 37] have
used data augmentation (e.g., rotation, flipping and random
crop) to generate randomly transformed samples for obtain-
ing pseudo labels. To further ensure consistent predictions
between different augmentations of the same image, i.e.,
intra-class constraint, RS [10] and DualRank [35] intro-

Table 3. Ablation study on the intra-class constraint on CIFAR-10
and CIFAR-100. “sKLD” and “MSE” denote the intra-class sKLD
and MSE consistency regularization term, respectively. Results
are reported in ACC (%) averaged over 5 runs. Best results are
highlighted in each column.

Method CIFAR10 CIFAR100-20 CIFAR100-50

Baseline 93.25 90.54 62.27
+ MSE 93.11 90.96 62.47
+ sKLD 93.60 91.13 63.35

duce the mean squared error (MSE) as a regularization term,
which is a common operation in semi-supervised learning.
However, we find that the MSE-based intra-class constraint
does not perform well in practice. Therefore, we employ an
symmetric KLD measure instead of the common MSE to
constrain such an intra-class consistency.

To verify the effectiveness of symmetric KLD, we com-
pare the proposed intra-class sKLD with MSE and report
the results averaged over 5 runs in Tab. 3. Note that the
hyperparameters of both sKLD and MSE have been well
selected through grid search. From the results, we can see
that the MSE constraint can only slightly improve the per-
formance of Baseline on CIFAR100-20 and CIFAR100-50,
and even somewhat damages the performance on CIFAR10.
On the contrary, the proposed sKLD constraint could con-
sistently boost the performance of Baseline on all bench-
marks. The intuitive reason is that the semantics of differ-
ent augmentations (especially strong data augmentations)
of the same image has been changed to some extent. There-
fore, we should not strictly make their predictions be the
same did as the MSE constraint. In contrast, the slacker
sKLD constraint just making the predictions be similar will
be more beneficial to the final clustering.

Symmetric KLD Constraints. In this subsection, we
perform ablation study experiments on three dataset splits,
including CIFAR10, CIFAR100-20 and CIFAR100-50, to
evaluate the effectiveness of the proposed inter-class sKLD
and intra-class sKLD components. Besides the ACC, we
also report two extra evaluation criteria that are commonly
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Table 4. Comparison with state-of-the-art methods on the training split of the unlabelled subset, using task-aware evaluation protocol.
Results are reported in clustering accuracy (%) in the form of mean and standard deviation (averaged over 5 runs except for ImageNet).
Best results are highlighted in each column. †Our reproduced result.

Method Venue Type CIFAR10 CIFAR100-20 CIFAR100-50 ImageNet

k-means Classic - 72.5±0.0 56.3±1.7 28.3±0.7 71.9
KCL ICLR’18 Two-stage 72.3±0.2 42.1±1.8 – 73.8
MCL ICLR’19 Two-stage 70.9±0.1 21.5±2.3 – 74.4
DTC ICCV’19 Two-stage 88.7±0.3 67.3±1.2 35.9±1.0 78.3

RS ICLR’20 Single-stage 90.4±0.5 73.2±2.1 39.2±2.3 82.5
RS+ ICLR’20 Single-stage 91.7±0.9 75.2±4.2 44.1±3.7 82.5
OpenMix CVPR’21 Single-stage 95.3 – – 85.7
NCL CVPR’21 Single-stage 93.4±0.5 86.6±0.4 – 90.7
Joint ICCV’21 Single-stage 93.4±0.6 76.4±2.8 – 86.7
UNOv1 ICCV’21 Single-stage 96.1±0.5 85.0±0.6 52.9±1.4 90.6
UNOv2† ICCV’21 Single-stage 93.3±0.4 90.5±0.7 62.3±1.4 90.7
DualRank NeurIPS’21 Single-stage 91.6±0.6 75.3±2.3 – 88.9
ComEx CVPR’22 Single-stage 93.6±0.3 85.7±0.7 53.4±1.3 90.9

IIC (Ours) CVPR’23 Single-stage 99.1±0.0 92.4±0.2 65.8±0.9 91.9

Table 5. Comparison with state-of-the-art methods on CIFAR-10 and CIFAR-100, using task-agnostic evaluation protocol. Results are
reported averaged over 5 runs in classification accuracy (%) and clustering accuracy (%) on test split of the labelled and unlabelled subsets,
respectively. Best results are highlighted in each column.

Method
CIFAR10 CIFAR100-20 CIFAR100-50

Label Unlabel All Label Unlabel All Label Unlabel All

KCL 79.4 60.1 69.8 23.4 29.4 24.6 – – -
MCL 81.4 64.8 73.1 18.2 18.0 18.2 – – -
DTC 58.7 78.6 68.7 47.6 49.1 47.9 30.2 34.7 32.5
RS+ 90.6 88.8 89.7 71.2 56.8 68.3 69.7 40.9 55.3
UNOv1 93.5 93.3 93.4 73.2 73.1 73.2 71.5 50.7 61.1
ComEx 95.0 92.6 93.8 75.2 77.3 75.6 75.3 53.5 64.4

IIC (Ours) 96.0 97.2 96.6 75.9 78.4 77.2 75.1 61.0 68.1

used in clustering: i.e., normalized mutual information
(NMI) [30] and adjusted rand index (ARI) [17]. MNI
and ARI are generally used to measure the similarity be-
tween the clustering results and the ground-truth distribu-
tions. The closer the criteria are to 1, the better the cluster-
ing effect. The results on ablation study are shown in Tab. 2.

Considering that the trends of three evaluation criteria
(i.e., ACC, NMI and ARI) on all dataset splits are simi-
lar in Tab. 2, we will mainly take the ACC as an exam-
ple for discussion. Specifically, as seen, the proposed inter-
class sKLD alone can significantly improve the ACC of the
baseline (i.e., UNO) on all benchmarks, especially on CI-
FAR10 where the performance improvement is over 5.82%.
Although the proposed intra-class sKLD alone do not dis-
tinctly boost the performance on CIFAR10, it tangibly gains
0.59% and 1.08% ACC improvements over the baseline on
CIFAR100-20 and CIFAR100-50, respectively.

Notably, when combining the inter-class sKLD and

intra-class sKLD together, we observe that the results on
all three dataset splits, especially on CIFAR100-20 and
CIFAR100-50, are further improved, and the improvements
are remarkable and stable. It is worth mentioning that be-
cause the CIFAR10 dataset is somewhat simple, the inter-
class sKLD alone has made the ACC reach the satura-
tion point and thus adding the additional intra-class sKLD
does not bring distinct improvements. As expected, on the
more challenging benchmarks, such as CIFAR100-20 and
CIFAR100-50, integrating the inter-class sKLD with intra-
class sKLD together can further obtains 0.31% and 1.54%
ACC improvements over using the inter-class sKLD alone,
respectively.

In summary, we are able to conclude that both inter-class
and intra-class sKLD constraints are effective and each of
them can consistently boost the performance of the base-
line. In particular, it is clearly that the inter-class sKLD
constraint alone can gain more improvements than the intra-
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(a) UNOv2 (b) Ours

airplane (0)
automobile (1)
bird (2)
cat (3)
deer (4)

dog (5)
frog (6)
horse (7)
ship (8)
truck (9)

Labelled Unlabelled

Figure 2. t-SNE visualization on CIFAR10. We compare our method with the reproduced UNOv2. Best viewed in color, each color
indicates a different class and we also mark the index corresponding to each class.

class sKLD constraint alone. This is because the purpose of
inter-class sKLD is to use prior information of NCD, i.e.,
the unlabelled classes are naturally disjoint with the labelled
classes, to learn a more discriminative embedding space.
Differently, the intra-class sKLD is more like a consistency
regularization term that is used to explicitly constrain sam-
ples and their augmentations. As discussed above, the intra-
class sKLD, as a slacker regularization term than the MSE-
based one, will bring a greater positive impact on the more
difficult datasets or their splits.

4.3. Comparison with State of the Arts

We compare our proposed method with the current state-
of-the-art methods in the field of NCD, including KCL [14],
MCL [15], DTC [11], RS [10], RS+ (RS with incremental
classifier) [10], OpenMix [38], DualRank [35], Joint [19],
NCL [37], UNO [8] and ComEx [33] besides the classi-
cal k-means [24]. We report the results on four popular
benchmarks in Tab. 4 and Tab. 5 using task-aware and task-
agnostic evaluation protocols, respectively. It is worth not-
ing that UNO has two versions, i.e., UNOv1 and UNOv2.
The results of UNOv1 are quoted from the original paper,
while we report our reproduced results of UNOv2 using the
officially released code.

In Tab. 4, we report the average clustering accuracy (i.e.,
ACC) of all methods on the training split of the unlabelled
set, using a task-aware evaluation protocol (commonly used
in the literature). As we can see, our proposed method out-
performs the current works on all benchmarks. In particular,
our method surpasses the latest ComEx by a significant mar-
gin, such as, gaining 5.5% improvements on CIFAR10 and
12.4% improvements on CIFAR100-50, respectively. Com-
pared with the reproduced UNOv2, our method still has a
certain improvement, i.e., about 5.8% improvements on CI-
FAR10, 1.9% improvements on CIFAR100-20, 3.5% im-
provements on CIFAR100-50 and 1.2% improvements on
ImageNet. Note that the standard deviations of our method
are also smaller than the previous works, indicating that the

proposed method does well in stability.
We also care about the performance on test split of the

labelled and unlabelled sets with a task-agnostic evaluation
protocol and report the results in terms of the classification
accuracy and clustering accuracy in Tab. 5. As seen, our
method outperforms the state-of-the-art methods on both
labelled and unlabelled test set of all benchmarks except
for CIFAR100-50, which successfully demonstrate its ef-
fectiveness and robustness. Specifically, for CIFAR10 and
CIFAR100-20, our method not only is superior to the re-
lated works on the labelled set, but also obtains greater per-
formance improvements on the unlabelled set, achieving the
excellent comprehensive results. Moreover, for CIFAR100-
50, our method is very close to the latest ComEx on the
labelled subset (i.e., with only 0.2% difference) and gains
considerable improvements over ComEx on the unlabelled
classes by 7.5%. Therefore, the results compared with the
current state-of-the-art methods in Tab. 4 and Tab. 5 show
that the proposed inter- and intra-class sKLDs indeed help
to discriminate labelled points from unlabelled ones in the
embedding space, both of which are simple yet effective.

4.4. Visualization

t-SNE Visualization. To better demonstrate the pro-
posed method, we illustrate the t-SNE [28] visualization for
all classes on CIFAR10, where the first five classes are la-
belled (i.e., airplane, automobile, bird, cat and deer) and the
remaining five classes are unlabelled (i.e., dog, frog, horse,
ship and truck). In Fig. 2, we compare our method with the
reproduced UNOv2 [8] through its officially released code,
which is the current state-of-the-art method. Furthermore,
to ensure a fair comparison, we follow the approach used in
UNOv2 and use the concatenated logits l from both classi-
fication heads h and g to perform the t-SNE visualization.

As we can see, in general, two methods can well accom-
plish the NCD task, and there are only differences between
them in the clustering ability on the certain classes. To be
specific, for some labelled classes (e.g., bird (2), cat (3) and
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(a) UNOv2 on labelled subset
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(d) UNOv2+ on unlabelled subset

Figure 3. Confusion matrices of the reproduced UNO without
(UNOv2) and with (UNOv2+) the inter-class sKLD constraint
on CIFAR10, using the task-aware evaluation protocol. The two
models are evaluated on test split of the labelled subset (Fig. 3a,
Fig. 3b) and unlabelled subset (Fig. 3c, Fig. 3d), respectively.

deer (4)), UNOv2 shows more compact clustering results.
Nevertheless, our method distinguishes better on the unla-
belled classes (e.g., dog (5) and horse (7)), demonstrating
that our method can learn more discriminative feature rep-
resentations with better generalization. To further show this
point, we draw attention to two unlabelled classes, i.e., dog
(5) and horse (7). We can see that UNOv2 completely con-
fuses these two classes, whose distributions are basically
overlapped with each other in Fig. 2. We surmise the rea-
son is that the poses of these two classes are visually simi-
lar, resulting in the poor clustering performance of UNOv2.
In contrast, our method can clearly distinguish these two
classes, because the proposed inter-class constraint can ef-
fectively separate different classes and the proposed intra-
class constraint can compact the distribution of a class.

Confusion Matrix. Like RS [10] and UNO [8], we
transform the original clustering task into a classification
task for the NCD problem on the premise of knowing the
number of categories of the unlabelled data. Therefore, we
can validate the proposed method by the confusion matrix,
which is commonly used in generic classification tasks. Ac-
cording to the ablation study in Sec. 4.2, it has been con-
cluded that the proposed inter-class sKLD constraint plays
a key role in our method. Therefore, it will be interesting to
visually explain the effect of such a constraint. To be spe-
cific, we add the inter-class sKLD constraint into UNOv2 to
obtain a new variant UNOv2+. Next, we establish the con-
fusion matrices between the two models before and after
using such an inter-class sKLD constraint.

The results are reported on the test split of CIFAR10
in Fig. 3 and Fig. 4 using task-aware and task-agnostic eval-
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(a) UNOv2
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(b) UNOv2+

Figure 4. Confusion matrices of the reproduced UNO without
(UNOv2) and with (UNOv2+) the inter-class sKLD constraint on
the test split of CIFAR10, using the task-agnostic evaluation pro-
tocol, where each image is predicted into one of the 10 classes.

uation protocols, respectively. In Fig. 3, we compare the
performance between UNOv2 and UNOv2+ on the labelled
and unlabelled subsets. Specifically, we observe that the
misclassification of UNOv2 is almost unchanged on the la-
belled subset after adding the inter-class sKLD constraint,
but UNOv2+ obtains significant improvements for the un-
labelled classes. With the help of the inter-class sKLD con-
straint, UNOv2+ will no longer confuse dog (5) and horse
(7). In addition, Fig. 4 demonstrates that UNOv2+ can pre-
vent misclassifying a labelled image into unlabelled classes
or vice versa. These results show that the proposed inter-
class sKLD constraint can effectively distinguish unlabelled
data from labelled data to help discovering novel classes,
and can be easily added into other single-stage based NCD
methods as a plug-and-play loss term.

5. Conclusion
In this paper, we propose to model both inter-class and

intra-class constraints built on the symmetric Kullback-
Leibler divergence (sKLD) for novel class discovery
(NCD). We conduct extensive experiments on four popular
benchmarks and show that our method could outperform the
existing state-of-the-art methods by a large margin. From
the experimental results, we have the following findings:
(1) making use of the disjoint characteristic between the
labelled and unlabelled classes, i.e., constraining an inter-
class constraint, is important and effective for NCD; (2) us-
ing a sKLD measure instead of the MSE for constraining the
intra-class constraint is reasonable and beneficial to NCD.
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