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Abstract

Recently, point cloud semantic segmentation has attracted
much attention in computer vision. Most of the existing
works in literature assume that the training and testing
point clouds have the same object classes, but they are gen-
erally invalid in many real-world scenarios for identifying
the 3D objects whose classes are not seen in the training
set. To address this problem, we propose an Adversarial
Prototype Framework (APF) for handling the open-set
3D semantic segmentation task, which aims to identify 3D
unseen-class points while maintaining the segmentation
performance on seen-class points. The proposed APF
consists of a feature extraction module for extracting point
features, a prototypical constraint module, and a feature
adversarial module. The prototypical constraint module is
designed to learn prototypes for each seen class from point
features. The feature adversarial module utilizes generative
adversarial networks to estimate the distribution of unseen-
class features implicitly, and the synthetic unseen-class
features are utilized to prompt the model to learn more
effective point features and prototypes for discriminating
unseen-class samples from the seen-class ones. Experi-
mental results on two public datasets demonstrate that the
proposed APF outperforms the comparative methods by a
large margin in most cases.

1. Introduction

Point cloud semantic segmentation is an important and
challenging topic in computer vision. Most of the existing
works [9–11, 29] in literature are based on the assumption
that both the training and testing point clouds have the same
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(a) AD (b) O3D

Figure 1. Visualization of the goals of anmaly detection (AD) and
open-set 3D semantic segmentation (O3D) on SemanticKITTI [2].
AD is to identify the unseen-class data, while O3D is to simultane-
ously identify the unseen-class data and segment seen-class data.
The unseen-class points are colorized in yellow.

object classes, however, this assumption is no more valid in
many real-world scenarios, due to the fact that the classes
of some observed 3D points may not be presented in the
training set. Hence, the following problem on open-set 3D
semantic segmentation is naturally raised: How does a seg-
mentation model simultaneously identify unseen-class 3D
points and maintain the segmentation accuracy of seen-class
3D points in open-set scenarios?

Compared with anomaly detection [3, 23, 26], open-set
3D semantic segmentation (O3D) is more challenging, for
it also needs to assign labels to seen-class data simultane-
ously, as shown in Figure 1. In fact, some existing tech-
niques [6,15,17,18] for open-set 2D semantic segmentation
(O2D) task could be extended to handle the O3D task, how-
ever, their open-set ability is generally limited in 3D scenar-
ios. In addition, to our best knowledge, only one pioneering
work [7] has investigated a special technique for O3D task.
In [7], an O3D method called REAL is proposed to utilize
normal classifiers to segment seen-class points and regard
the randomly resized objects as unseen-class objects which
are detected by the redundancy classifiers. REAL outper-
forms some extended O2D methods in the O3D task, how-
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ever, the AUPR (Area Under the Precision-Recall curve)
is lower than 21% on two public datasets as shown in Ta-
ble 1 and Table 2 in Section 4, mainly because the resizing
process in REAL alters the geometric structure of the ini-
tial point clouds to some extent. These results indicate that
there still exists a huge space for improvement on O3D task.

Addressing the above issue, we propose an Adversarial
Prototype Framework (APF) for open-set 3D segmentation,
which segments point clouds from a discriminative perspec-
tive and estimates the distribution of unseen-class features
from a generative perspective. The proposed APF consists
of three modules: a feature extraction module, a prototyp-
ical constraint module, and a feature adversarial module.
The feature extraction module is employed to extract latent
features from the input point clouds, which could be an ar-
bitrary closed-set point cloud segmentation network in prin-
ciple. Given the point features, the prototypical constraint
module is explored from the discriminative perspective to
learn a prototype for each seen class. The feature adver-
sarial module is explored from the generative perspective,
which employs the generative adversarial networks (GAN)
to synthesize point features to estimate the unseen-class
feature distribution, based on the finding stated in [6] that
the unseen-class features usually aggregate in the center of
the feature space. And the synthesized unseen-class fea-
tures in this module could further prompt the model to learn
more discriminative point features and prototypes. After the
whole APF is trained, a point-to-prototype hybrid distance-
based criterion is introduced for open-set 3D segmentation.

In sum, the contributions of this paper are as follows:
• We propose the adversarial prototype framework

(APF) for handling the open-set 3D semantic segmen-
tation task. Under the proposed APF, various open-set
3D segmentation methods could be straightforwardly
derived by utilizing existing closed-set 3D segmenta-
tion networks as the feature extraction module. The
effectiveness of the proposed APF has been demon-
strated by the experimental results in Section 4.

• Under the proposed framework, we explore the pro-
totypical constraint module, which learns the corre-
sponding prototype for each seen class. The learned
prototypes are not only conducive to segmenting seen-
class points, but also to detecting unseen-class points.

• Under the proposed framework, we explore the fea-
ture adversarial module to synthesize unseen-class fea-
tures. The synthetic features are helpful for improving
the discriminability of both the seen-class features and
prototypes via the adversarial mechanism.

2. Related Work
2.1. 3D semantic segmentation

In recent years, numerous works have been proposed
for segmenting 3D point clouds, which could be roughly

divided into three categories: projection-based methods,
voxel-based methods, and point-based methods.

Projection-based methods [32, 36, 37] project 3D point
clouds into multi-view or spherical images, and then lever-
age the 2D CNNs to extract features, which are aggregated
to output point clouds features. However, the 3D topology
and geometric relations are inevitably altered or ignored.

Voxel-based methods [16, 31] voxelize the point clouds
into a series of dense girds and utilize 3D convolution to
extract point clouds features directly. Zhu et al. [41] de-
signed a cylindrical partition strategy and asymmetrical 3D
convolution networks to explore the 3D geometric pattern
while maintaining the inherent properties of the outdoor
point clouds. Volumetric representation has shown its ca-
pability of processing the point clouds, especially for the
sparse large-scale outdoor point clouds.

Point-based methods directly take the raw point clouds
as input. The pioneering work PointNet [27] is proposed
to extract per-point features via the shared MLP, align-
ment network and symmetric aggregation strategy. Inspired
by PointNet, numerous sophisticated point-based methods
[13,14,19,28,33,35] have been proposed to capture the local
geometric patterns and contextual information among the
points. In recent years, with transformer and self-attention
models [5, 12, 34] revolutionizing the deep learning com-
munity, several works have tentatively applied transformer
to conduct semantic segmentation for point clouds. Zhao
et al. [40] constructed high-performance Point Transformer
network for point clouds processing, which could serve as a
general backbone for point clouds understanding tasks. Lai
et al. [22] proposed Stratified Transformer to capture long-
range contexts for point clouds segmentation.

It is noted that the aforementioned methods are only
available in closed-set scenarios, and compared with these
closed-set works, the investigation of open-set 3D seman-
tic segmentation (O3D) is still in its infancy. As discussed
in Section 1, only Cen et al. [7] have paid special attention
on open-set 3D segmentation, however, its performance on
open-set 3D segmentation is still limited.

2.2. Open-set 2D semantic segmentation

Open-set 2D semantic segmentation (O2D) has drawn
increasing attention in computer vision recently. Existing
works for O2D could be roughly divided into two cate-
gories: discriminative methods and generative methods.

Discriminative methods [15, 17, 18] usually estimate the
uncertainty or calibrate the probability distribution to sepa-
rate unseen-class pixels from seen-class pixels. Inspired by
the exemplar theory, Hwang et al. [20] proposed an novel
exemplar-based network to detect novel classes by cluster-
ing. Analogously, based on contrastive clustering, Cen et
al. [6] proposed to identify anomalous pixels by calculating
the embedded feature similarity in the metric space. How-
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Figure 2. Architecture of the adversarial prototype framework. Firstly, the feature extraction module and prototypical constraint module
are trained jointly in a prototype-based clustering manner under the guidance of LPCM . Then the feature extraction module is fixed, the
feature adversarial module and prototypical constraint module are trained jointly. The parametric prototypes are updated by LPCM and
the adversarial force which is formulated in Equation (10).

ever, these methods usually suffer from the vulnerability
to confusing samples and thus resulting in too many false-
positive detections, as stated in [4].

Generative methods [24, 38] usually utilize autoencoder
or GAN to reconstruct images from the segmentation maps.
The unseen-class pixels are detected in the light of the dif-
ferences between the reconstructed images and the original
input. The success of these generative models is attributed
to the reliable high-resolution generation results. Deviat-
ing from previous generative approaches, Kong et al. [21]
proposed to synthesize features to augment the training data
and utilize the discriminator as the unseen-class detector af-
ter a delicate selection strategy. However, as stated in [39],
the generative models usually yield lower closed-set seg-
mentation accuracy than the discriminative ones, which lim-
its their applications.

As indicated in Section 1, when some O2D methods are
utilized jointly with the existing closed-set 3D segmentation
networks, they could indeed handle the O3D task. However,
their performances are lower in comparison to the methods
(e.g., REAL [7] and the proposed method in this work) that
are specially designed for handling the O3S task as demon-
strated by the results in [7] and Section 4 of this paper.

3. Methodology

In this section, we propose the Adversarial Prototype
Framework (APF) for open-set 3D semantic segmentation
(O3D). Firstly, we describe the architecture of APF. Then,
we elaborate the prototypical constraint module and feature
adversarial module respectively. Finally, the training and

inference procedure is presented.

3.1. Architecture

The architecture of the proposed APF is illustrated in
Figure 2, and it contains three components: a feature extrac-
tion module, a prototypical constraint module, and a feature
adversarial module.

The feature extraction module is to extract features from
point clouds, which could be an arbitrary closed-set 3D seg-
mentation network. The prototypical constraint module is
explored from a discriminative perspective to learn a proto-
type for each seen class in a clustering fashion. The feature
adversarial module is explored from a generative perspec-
tive to synthesize point features to estimate the underlying
unseen-class feature distribution.

3.2. Prototypical constraint module

Given the extracted point features, the prototypical con-
straint module (PCM) is designed to learn the prototypes
for seen classes. And Figure 3 illustrates the architecture of
PCM.

We expect to acquire discriminative prototypes for each
seen class, and segment the points according to the dis-
tances between point features and prototypes in the feature
space, mimicking the traditional clustering algorithm.

Specifically, in addition to the Euclidean distance, we
incorporate the cosine of the angle into distance setting, as
done in [8]. The hybrid distance between a point feature
fi ∈ Rd and a prototype Pj ∈ Rd, (j = 1, · · · , C, where
C denotes the number of seen classes) is formulated as fol-
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Figure 3. Architecture of the prototypical constraint module. The
prototypes are learnable parameters which are updated under the
guidance of the prototypical constraint LPCM .

lows:
d(fi, Pc) = ∥fi − Pc∥22 − fi · Pc, (1)

where ∥ · ∥2 denotes the L2-norm.
We randomly initialize the parametric prototype set P =

{Pj}Cj=1. And the probability of a point feature fi belong-
ing to its corresponding category c is defined as:

p(yi = c|fi,P) =
exp(−d(fi, Pc))

C∑
j=1

exp(−d(fi, Pj))

, (2)

where yi is the predicting label of fi.
To ensure the seen-class features to be closer to their cor-

responding prototypes and far away from other prototypes,
we utilize a distance-based cross entropy loss:

Ldce = − 1

Nc

Nc∑
i=1

log p(yi = c|fi,P), (3)

where Nc represents the number of the seen-class points.
To further tighten the features of the same category, we

formulate an attractive loss term, putting more emphasis
on the attractive force between the feature fi and its cor-
responding prototype Pc:

Lattr =
1

Nc

Nc∑
i=1

∥fi − Pc∥22. (4)

As noted in Eq. (3) and Eq. (4), there exists a degenerate
all-zero solution to the loss terms Ldce and Lattr in the-
ory. Considering that the numerical interval in each feature
dimension has been normalized into [0, 1], we design the
following regularization term by enforcing each dimension
to be close to 1, in order to avoid the degenerate solution
and compulsively force the model to learn more informa-
tive features. The regularization term is formulated as:

Linfo =
1

Cd

C∑
i=1

d∑
j=1

|Pij − 1|. (5)

In summary, the total loss function of prototypical con-
straint is a weighted sum of the above three terms:

LPCM = Ldce + λattrLattr + λinfoLinfo, (6)

where λattr and λinfo are hyper-parameters.
Theoretically, the optimization of the model will de-

crease d(fi, Pc), which encourages the features to be closer
to their corresponding prototypes and makes the distribution
of features of the same category more compact.

3.3. Feature adversarial module

To take the unseen-class factors into consideration, the
feature adversarial module (FAM) is designed to estimate
the underling characteristics of unseen-class features. The
architecture of FAM is illustrated in Figure 4, and it con-
tains three parts: a generator G, a discriminator D, and an
adversarial mapper M .

Similar to the traditional GAN, the generator takes the
gaussian noises n = {ni}Nc

i=1 as input to synthesize high-
fidelity point features, and the discriminator maps the input
features to [0, 1], which represents the probability of the in-
put belonging to real features. The discriminator is trained
to correctly distinguish the real extracted features and syn-
thetic features:

max
D

1

Nc

Nc∑
i=1

[
logD(fi) + log(1−D(G(ni)))

]
. (7)

And the synthetic features are expected to deceive the dis-
criminator:

max
G

1

Nc

Nc∑
i=1

log(D(G(ni))). (8)

G

…

Feature
Sampling

D

Extracted 
Features

Noise

Real data flow Synthetic data flow Other data flow

M
ℒ𝑃𝑃𝑃𝑃𝑃𝑃

Adv

Figure 4. Architecture of the feature adversarial module. G, D,
and M denote the generator, discriminator, and adversarial mapper
respectively. The real features output by M are employed to cal-
culate LPCM , and the synthetic features output by M are involved
in the optimization of Adv, which is formulated in Equation (10).
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Deviating from the existing works [8,21] that incorporate
all the synthetic samples into training, we employ a feature
sampling (FS) strategy to prevent some synthetic features
that are excessively similar to the seen-class features from
misleading the closed-set segmentation. Specifically, we se-
lect the features fs whose corresponding confidence output
by D is under a predetermined threshold λs:

fs = {G(ni)|D(G(ni)) < λs}. (9)

Notably, we freeze the feature extractor for the stabil-
ity of GAN when FAM is added into training, which leaves
the extracted features fixed. Thus we utilize the adversar-
ial mapper to map the features to a novel feature space for
calibrating the feature distribution.

The region where the unseen-class features aggregate is
defined as the open space in [30]. And it is stated in [6] that
open space is found to be located in the center of the fea-
ture space. Namely, the distances between the unseen-class
features and all prototypes should be equally small. Thus,
we utilize a delicate objective function to put an additional
adversarial force on the synthetic features:

Adv(fs,P) =
1

Ns

Ns∑
i=1

[
− 1

C

C∑
j=1

[h(fs
i , Pj) · log(h(fs

i , Pj) + ϵ)]
]
, (10)

where h(fs
i , Pj) = Softmax(∥M(fs

i )− Pj∥22) , ϵ is a pre-
determined small number to avert NaN issue, and Ns is the
number of the selected features.

The design of Equation (10) is referenced from the infor-
mation entropy in information theory [25]. Theoretically,
the maximization of Equation (10) forces the synthetic fea-
tures to be closer to the open space.

Combining Equation (8) and Equation (10), the genera-
tor G is optimized by the following formula:

max
G

[ 1

Nc

Nc∑
i=1

log(D(G(ni)))
]
+λadv ·Adv(fs,P), (11)

where λadv is a hyper-parameter.
To maintain the closed-set segmentation ability of the

model while boosting its open-set segmentation ability, the
adversarial mapper M is optimized by:

min
M

[ 1

Nc

Nc∑
i=1

LPCM

]
− λadv ·Adv(fs,P). (12)

Notably, it has to be pointed out that Adv(fs,P) also has
an impact on P, for the prototypes are learnable parameters
in this work.

As shown in Figure 5, the seen-class features are only
influenced by the prototype force, while the synthetic fea-
tures tend to be attracted to a certain prototype because they
are encouraged to be analogous to some seen-class features

Prototypes
Seen-class feature
Synthetic feature

Prototype force

Adversarial force

Push

Push

Pull

Attract

Open space

Attract

Attract

Compel

Compel

Compel

Figure 5. Illustration of the feature calibration procedure. The
seen-class features are encouraged to be pulled closer to their cor-
responding prototypes and pushed away from the other prototypes.
The synthetic features tend to be attracted by a certain prototype,
while the adversarial force compels them to strike a balance be-
tween all prototypes.

to deceive the discriminator. In the meantime, the synthetic
features are forced to strike a balance between all proto-
types by Equation (10). A more distinguishable feature dis-
tribution is eventually formed through the adversarial mech-
anism between the prototypes and synthetic features.

3.4. Training and inference

At the training stage, we first train the feature extraction
module (FEM) and prototypical constraint module (PCM)
jointly to acquire coarse point features, which enjoy a
promising closed-set discriminability. Note that when FEM
and PCM are trained jointly, the features employed to cal-
culate LPCM are the extracted features F = {fi}Nc

i=1 output
by the feature extractor.

Then the feature extractor in FEM is fixed, and the fea-
ture adversarial module (FAM) is added into training to esti-
mate the potential distribution of the unseen-class features.
The FAM and PCM are trained jointly to further refine the
coarse point features and acquire more discriminative pro-
totypes. Note that when FAM and PCM are trained jointly,
the features employed to calculate LPCM are the refined
features F̂ = M(F) = {f̂i}Nc

i=1 output by the adversarial
mapper.

At the inference stage, only the feature extractor and ad-
versarial mapper are used, as shown in Figure 6. Concretely,
the FEM is implemented to extract corresponding features
F for the testing points, then the adversarial mapper out-
puts the refined features F̂ to conduct open-set 3D semantic
segmentation.

According to the revealed finding in [6] that unseen-class
features usually aggregate in the center of the feature space,
if a 3D point xi does not belong to any seen class, the sum of
the distances between xi and all the prototypes are expected
to be relatively small. Hence, the probability pu(·) that xi
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Figure 6. Architecture of APF in the inference phase. The point
clouds are simply fed into the feature extractor and adversarial
mapper. The refined features and prototypes are employed to con-
duct open-set semantic segmentation.

is identified as unseen is defined as:

pu(xi) = 1−

C∑
j=1

∥f̂i − Pj∥22

max
k

C∑
j=1

∥f̂k − Pj∥22
. (13)

Then, each testing point will be classified as one of the
seen classes or identified as unseen via a point-to-prototype
hybrid distance-based criterion:

yi =

{
unseen, pu(xi) ≥ λu

argmax
j

p(yi = j|fi,P), pu(xi) < λu
, (14)

where λu is the threshold and p(·) is defined in Equation (2).

4. Experiments
4.1. Datasets

We conduct experiments on the following two public
datasets to verify the effectiveness of the proposed frame-
work.

The SemanticKITTI dataset [2] is a 3D large-scale out-
door urban scene dataset that includes 22 sequences and 19
categories. Following the setting of previous work [7], we
select {other-vehicle} as the unseen class.

The S3DIS dataset [1] is a 3D indoor scene dataset con-
sisting of 271 rooms, which contains 13 categories. Since
we are the first attempt to conduct open-set 3D semantic
segmentation (O3D) on S3DIS dataset, we choose unseen
classes elaborately. Here, we select {window, sofa} as the
unseen classes. Please refer to the supplementary material
for the detailed principles of choosing the unseen classes.

4.2. Evaluation metrics

As done in previous work [7], we adopt three metrics
for evaluation, including AUROC (Area Under the ROC
curve), AUPR(Area Under the Precision-Recall curve), and

mIoUc (closed-set mean Intersection over Union). The
AUROC and AUPR are used for measuring the open-set
segmentation ability, which are more attuned to class im-
balances and give a holistic measure of performance when
the cutoff for detecting unseen-class data is not a priori ob-
vious. And the mIoUc is used for measuring the closed-set
segmentation ability.

4.3. Implementation details

We use the SGD optimizer with initial learning rate, mo-
mentum, and weight decay setting to 0.5, 0.9, and 0.0001
respectively. The learning rate is dropped by 10% after each
epoch. The hyper-parameters λattr, λinfo, λs, and λadv are
set to 0.1, 0.1, 0.6, and 0.1.

4.4. Comparative evaluation

We firstly evaluate the proposed APF on the outdoor
dataset SemanticKITTI in comparison to the SOTA method
REAL [7] that is specially designed for O3D. In addition,
we extend four typical O2D methods to handle the 3D case
for further comparison, including MSP [18], Maxlogit [17],
MC dropout [15], and DMLNet [6]. It has to be pointed
out that considering the comparative method REAL uses
Cylinder3D [41] as its backbone, all the other compara-
tive methods (including the proposed method) are evaluated
here by utilizing the same backbone for a fair comparison.
The corresponding results are reported in Table 1. In addi-
tion, the closed-set result of Cylinder3D is reported as the
upper bound for comparative closed-set evaluation.

As seen from Table 1, MSP, Maxlogit, and MC dropout
obtain the same mIoUc for measuring the closed-set perfor-
mance as the backbone Cylinder3D, mainly because they
do not only have the same or approximately same network
architecture as Cylinder3D, but also have the same infer-
ence strategy for segmenting the closed-set points. DML-
Net utilizes the fixed one-hot prototypes for segmentation,
and may lose some essential information for large-scale
point clouds segmentation, which results in the unsatisfac-
tory mIoUc, compared with other extended O2D methods.
The methods which are tailor-made for O3D (including the
proposed APF and REAL) obtain slightly lower mIoUcs
than the upper bound result, probably because the false pos-
itive open-set detection inevitably deteriorates the closed-
set segmentation accuracy. Moreover, the proposed APF
significantly outperforms all the comparative methods un-
der the two OS metrics AUROC and AUPR. All the above
results demonstrate that the proposed APF could achieve a
better balance between open-set and closed-set segmenta-
tion performances.

In addition, we also evaluate all the referred methods
on the public indoor dataset S3DIS. It is noted that REAL
only conducts experiments on the outdoor datasets. Hence,
we simply use the popular Point Transformer, whose effec-
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AUROC AUPR mIoUc

Closed-set C3D - - 58.0

C3D + MSP [18] 74.0 6.7 58.0
C3D + MaxLogit [17] 70.5 7.6 58.0
C3D + MC dropout [15] 74.7 7.4 58.0
C3D + DMLNet [6] 80.6 20.1 52.9

C3D + REAL [7] 84.9 20.8 57.8
C3D + APF 85.6 36.1 57.3

Table 1. Evaluation results on SemanticKITTI dataset. C3D de-
notes Cylinder3D [41]. The best results are in bold in each metric.

AUROC AUPR mIoUc

Closed-set PT - - 69.8

PT + MSP 70.3 15.2 69.8
PT + MaxLogit 74.3 17.5 69.8
PT + MC dropout 75.9 18.2 69.8
PT + DMLNet 80.7 20.5 67.2

PT + REAL 87.6 25.4 69.7
PT + APF 90.0 31.6 69.3

Table 2. Evaluation results on S3DIS datset. PT denotes Point
Transformer [40].

tiveness for handling indoor point clouds has been demon-
strated in [40], as the backbone for evaluation on S3DIS
dataset. The corresponding results are reported in Table 2.
As seen from this table, the proposed method obtains a
slightly lower mIoUc, but significantly larger AUROC and
AUPR than the other comparative methods. These experi-
mental results are consistent with those in the above outdoor
experiments, further demonstrating the effectiveness of the
proposed method.

Moreover, we visualize the segmentation results on the
two datasets by all the comparative methods, and Figure 7
shows several samples. The visualization results demon-
strate that the proposed APF has a better performance in dis-

tinguishing the unseen-class points while yielding a promis-
ing performance in classifying the seen-class points.

4.5. Ablation study

The effectiveness of each key element in APF is verified
by conducting ablation studies on the S3DIS dataset [1].
The main results are reported and analyzed as follows, and
please refer to the supplementary material for more details.

Effectiveness of the involved components. The pro-
posed APF consists of a feature extraction module (FEM),
a prototypical constraint module (PCM), and a feature ad-
versarial module (FAM). And the FAM contains three key
components: a GAN, a feature sampling (FS) strategy, and
an adversarial mapper (M). We firstly train the vanilla ver-
sion of APF, consisting of the FEM and PCM. Then, we
sequentially add the three key components of FAM into the
model. The results are reported in Table 3.

As seen from the first row of Table 3, the vanilla APF
yields a promising performance, demonstrating the power-
ful potential of the prototype-based discriminative method
in O3D. The results in the second row of Table 3 indicate
that when the unseen-class features are taken into consider-
ation, the open-set ability of the model is improved, but its
closed-set ability evidently drops, mainly because the pro-
totypes are influenced by the synthetic features while the
seen-class features remain unchanged. When the feature
sampling strategy is adopted, the sacrifice of the closed-
set segmentation accuracy is reduced, owing to the filter-
ing process which prevents the training procedure from be-
ing misled by the synthetic confusing features. When the

FEM PCM FAM AUROC AUPR mIoUc

GAN FS M

✓ ✓ 86.7 23.4 66.5
✓ ✓ ✓ 88.6 26.7 63.1
✓ ✓ ✓ ✓ 88.7 26.9 64.3
✓ ✓ ✓ ✓ ✓ 90.0 31.6 69.3

Table 3. Ablation studies of the involved components in APF.

(a) Ground truth (b) MSP [18] (c) MaxLogit [17] (d) MC dropout [15] (e) DMLNet [6] (f) REAL [7] (g) APF

Figure 7. Visualization of open-set semantic segmentation results on SemanticKITTI [2] (top) and S3DIS [1] (bottom) datasets by the
proposed APF and the comparative methods. The unseen-class points are colorized in yellow (other-vehicle) and light green (sofa)
respectively, while the seen-class points are colorized in other colors.
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(a) λattr (b) λinfo (c) Prototype number in each seen class.

Figure 8. Ablation studies of λattr , λinfo and prototype number in each seen class.

adversarial mapper is added into training, the open-set and
closed-set ability of the model are both boosted, for the ad-
versarial mapper is designed to refine the feature distribu-
tion so that the seen-class features and unseen-class features
become more distinguishable.

Effectiveness of the loss terms in PCM. The proposed
PCM utilizes three loss terms: Ldce, Lattr, and Linfo, as
noted in Equation (6). We evaluate their effects on the fi-
nal segmentation performance, and the results are reported
in Table 4. As seen from this table, when Lattr or Linfo

is added into training, the performance of APF is evidently
improved, demonstrating the effectiveness of our designed
loss terms. We further investigate the effect of different
weights λattr and λinfo for Lattr and Linfo respectively.
The results in Figure 8a indicate that the proposed method
is relatively insensitive to the weights of our designed loss
terms when the weights range in [0.01, 0.1].

Effect of prototype number. In previous experiments,
we only maintain one prototype for each seen class. Hence,
we evaluate the effect of prototype number, and the results
in Figure 8c attest that increasing prototype number does
not promote the performance significantly. In contrast, mul-
tiple prototypes brings more complexity to the model and
makes the cluster distribution in the feature space not tight
enough, and thus deteriorates the performance.

Effect of unseen classes. We choose {window, sofa}
as the unseen classes in previous experiments. To verify the
robustness of the proposed APF, we select different classes
as the unseen classes. Considering that REAL already out-
performs the other comparative methods, we only compare

Ldce Lattr Linfo AUROC AUPR mIoUc

✓ 79.3 12.2 62.0
✓ ✓ 80.1 14.8 64.2
✓ ✓ 85.2 20.6 67.7
✓ ✓ ✓ 90.0 31.6 69.3

Table 4. Ablation studies of the loss terms in PCM.

Unseen classes Method AUROC AUPR mIoUc

{window, door}
Closed-set PT - - 70.7
PT + REAL 86.5 26.3 69.1
PT + APF 87.1 33.1 68.4

{sofa, board}
Closed-set PT - - 69.6
PT + REAL 86.8 27.1 68.8
PT + APF 87.3 29.1 68.0

Table 5. Ablation studies of unseen classes.

the performance of the closed-set backbone, REAL, and
APF here. The results in Table 5 indicate that APF still
outperforms REAL in AUROC and AUPR, with a slight
sacrifice in mIoUc, which is consistent with the results in
Table 1 and Table 2.

5. Conclusion
In this work, we introduce the Adversarial Prototype

Framework (APF) for handling the open-set 3D semantic
segmentation task, which contains a feature extraction mod-
ule to extract features from original point clouds, a proto-
typical constraint module, and a feature adversarial module.
The prototypical constraint module updates parametric pro-
totypes for each seen class in a prototype-based clustering
fashion. The feature adversarial module incorporates the
synthetic unseen-class features into training, which further
boosts the performance. Experimental results demonstrate
that the proposed APF achieves a better balance in open-set
and closed-set segmentation performances than the compar-
ative methods.
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