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Figure 1. 3D consistent precise inversion and editing. Our method enables reconstructing texture and geometry from a single real image and
allows one to perform a list of attributes editing sequentially. The yaw angles of the second to sixth columns are [—30°, —20°,0°, 20°, 30°].

The last column is the shape of the sixth column.

Abstract

We study the 3D-aware image attribute editing problem
in this paper, which has wide applications in practice. Re-
cent methods solved the problem by training a shared en-
coder to map images into a 3D generator’s latent space or
by per-image latent code optimization and then edited im-
ages in the latent space. Despite their promising results
near the input view, they still suffer from the 3D inconsis-
tency of produced images at large camera poses and im-
precise image attribute editing, like affecting unspecified
attributes during editing. For more efficient image inver-
sion, we train a shared encoder for all images. To alle-
viate 3D inconsistency at large camera poses, we propose
two novel methods, an alternating training scheme and a
multi-view identity loss, to maintain 3D consistency and
subject identity. As for imprecise image editing, we at-
tribute the problem to the gap between the latent space of
real images and that of generated images. We compare
the latent space and inversion manifold of GAN models
and demonstrate that editing in the inversion manifold can
achieve better results in both quantitative and qualitative
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evaluations. Extensive experiments show that our method
produces more 3D consistent images and achieves more
precise image editing than previous work. Source code
and pretrained models can be found on our project page:
https://mybabyyh.github.io/Preim3D/.

1. Introduction

Benefiting from the well-disentangled latent space of
Generative Adversarial Networks (GANs) [12], many
works study GAN inversion [1,2, 11,28,35,36,40] as well
as real image editing in the latent space [14, 15,22,31,32].
With the popularity of Neural Radiance Fields (NeRF) [24],
some works start to incorporate it into GAN frameworks for
unconditional 3D-aware image generation [6, 7, 13,25-27,
30]. In particular, EG3D [6], the state-of-the-art 3D GAN,
is able to generate high-resolution multi-view-consistent
images and high-quality geometry conditioned on gaus-
sian noise and camera pose. Similar to 2D GANs, 3D
GANs also have a well semantically disentangled latent
space [0, 13,21, 33], which enables realistic yet challeng-
ing 3D-aware image editing.

Achieving 3D-aware image editing is much more chal-
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lenging because it not only has to be consistent with the
input image at the input camera pose but also needs to pro-
duce 3D consistent novel views. Recently, 3D-Inv [2 1] uses
pivotal tuning inversion (PTI) [29], first finding out a piv-
otal latent code and then finetuning the generator with the
fixed pivotal latent code, to obtain the latent code and edit
the image attributes in the latent space. IDE-3D [33] pro-
poses a hybrid 3D GAN inversion approach combining tex-
ture and semantic encoders and PTI technique, accelerating
the optimization process by the encoded initial latent code.
Pixel2NeRF [5] is the first to achieve 3D inversion by train-
ing an encoder mapping a real image to the latent space Z
of m-GAN [7]. However, these methods still do not solve
the problem of 3D consistency at large camera poses and
precise image attribute editing. As shown in Fig. 4, some
inverted images meet head distortion at large camera poses,
or some unspecific attributes of edited images are modified.

In this paper, we propose a pipeline that enables PRecise
Editing in the Inversion Manifold with 3D consistency effi-
ciently, termed PREIM3D. There are three goals to achieve
for our framework, (i) image editing efficiently, (ii) precise
inversion, which aims to maintain realism and 3D consis-
tency of multiple views, and (iii) precise editing, which is to
edit the desired attribute while keeping the other attributes
unchanged. 3D-Inv and IDE-3D optimized a latent code for
each image, which is not suitable for interactive applica-
tions. Following Pixel2NeRF, we train a shared encoder for
all images for efficiency.

To address precise inversion, we introduce a 3D consis-
tent encoder to map a real image into the latent space W+
of EG3D, and it can infer a latent code with a single forward
pass. We first design a training scheme with alternating in-
domain images (i.e., the generated images) and out-domain
images (i.e., the real images) to help the encoder maintain
the 3D consistency of the generator. We optimize the en-
coder to reconstruct the input images in the out-domain im-
age round. In the in-domain image round, we additionally
optimize the encoder to reconstruct the ground latent code,
which will encourage the distribution of the inverted latent
code closer to the distribution of the original latent code of
the generator. Second, to preserve the subject’s identity, we
propose a multi-view identity loss calculated between the
input image and novel views randomly sampled in the sur-
rounding of the input camera pose.

Though many works tried to improve the editing pre-
cision by modifying latent codes in Z space [31], W
space [14,17,34], W space [1, 1,40], and S space [37],
they all still suffer from a gap between real image editing
and generated image editing because of using the editing di-
rections found in the original generative latent space to edit
the real images. To bridge this gap, we propose a real im-
age editing subspace, which we refer to inversion manifold.
We compare the inversion manifold and the original latent

space and find the distortion between the attribute editing
directions. We show that the editing direction found in the
inversion manifold can control the attributes of the real im-
ages more precisely. To our knowledge, we are the first
to perform latent code manipulation in the inversion mani-
fold. Our methodology is orthogonal to some existing edit-
ing methods and can improve the performance of manipu-
lation in qualitative and quantitative results when integrated
with them. Figure 1 shows the inversion and editing results
produced by our method. Given a single real image, we
achieve 3D reconstruction and precise multi-view attribute
editing.

The contributions of our work can be summarized as fol-

lows:

* We present an efficient image attribute editing method
by training an image-shared encoder for 3D-aware
generated models in this paper. To keep 3D consis-
tency at large camera poses, we propose two novel
methods, an alternating training scheme and a multi-
view identity loss, to maintain 3D consistency and sub-
ject identity.

* We compare the latent space and inversion manifold
of GAN models, and demonstrate that editing in the
inversion manifold can achieve better results in both
quantitative and qualitative evaluations. The proposed
editing space helps to close the gap between real image
editing and generated image editing.

* We conduct extensive experiments, including both
quantitative and qualitative, on several datasets to
show the effectiveness of our methods.

2. Related Work
2.1. NeRF-based GANs

NeRF models the underlying 3D scene through a con-
tinuous 5D function Fg that maps point (z,y, z) and view-
ing direction (6, ¢) to color and corresponding density, and
then uses volume rendering techniques to render multi-
view images [24]. Although the standard NeRF requires
multi-view images and trains the network for every sin-
gle scene, several works [6, 7, 13,25, 26, 30] combine it
with the GAN framework to generate multi-view images
from unconditional random samples. Among these, Holo-
GAN [25] is the first NeRF-based GAN to learn 3D rep-
resentations from unposed 2D images in an unsupervised
manner. GRAF [30] produces high-resolution multi-view
images of novel objects from disentangled shape code z
and appearance code z,. GIRAFFE [26] can handle multi-
object 3D scenes and control the synthesis of all objects sep-
arately. StyleNeRF [13] and EG3D [6] both utilize 2D CNN
upsampling after neural rendering feature to achieve high-
resolution 3D-aware images. Especially, EG3D [6] uses the
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triplane representation to perform volume rendering, which
is much more efficient than fully 3D networks. Our work is
based on EG3D, which has a semantically disentangled la-
tent space comparable to the state-of-the-art 2D generator,
StyleGAN.

2.2. NeRF-based GAN Inversion

With the great success of GAN in the area of image
generation, GAN inversion has become a popular research
topic in image editing tasks. Existing GAN inversion meth-
ods can be grouped into three categories: optimization-
based, encoder-based, and hybrid both. Optimization meth-
ods [1,2,9,20] directly optimize the latent code to minimize
the distance between the generated image and the given im-
age. Instead of optimization for every image, the encoder
methods [4, 15,28,35] train a category-specific generic en-
coder to map the given image to the latent code. pSp [28]
extracts features from different pyramid scales encoding the
image to style codes in W7 space. Further, e4e [35] ana-
lyzes the trade-off between distortion and editability. Based
on ede, HFGI [36] injects distortion residual features into
the generator to improve the fidelity. Hybrid approach is
a combination of encoder and optimization, leveraging the
encoder to produce the initial latent code for optimization.
The optimization-based and hybrid methods tend to favor
faithful reconstruction over editability [28, 36].

Despite the success of GAN inversion in 2D space, it is
at its early age in 3D space. 3D GAN inversion is required
to “imagine” the 3D geometry given only one single image,
which is much more difficult than 2D GAN inversion. Re-
cently, 3D-Inv [21] adopts PTI [29], a two-stage method, to
perform the inversion. In the first stage, they optimize for
the latent code w reconstructing the face region by freezing
the generator. In the second stage, they freeze the optimized
latent code w*, pivotal latent code, and fine-tune the genera-
tor by minimizing the LPIPS [39] loss. Further,IDE-3D [33]
combines encoder and PTI, leveraging texture and semantic
encoders to produce the pivotal latent code for acceleration.
Since the PTI-based method requires optimization for each
given image, it cost a long inference time and may converge
to an arbitrary point in the latent space, which is not con-
ducive to editing. Moreover, optimization on a single image
leads to artifacts in novel views. In contrast, our method is a
pure encoder requiring very little inference time, maintain-
ing the perfect 3D consistency of the pretrained generator
by fixing it.

Pixel2NeRF [5] is the first attempt to train a pure en-
coder mapping a single real image to the Z latent space
in 3D GAN inversion task, which became a strong base-
line. However, Pixel2NeRF suffers from attribute entangle-
ment, low resolution, and 3D inconsistency. Different from
Pixel2Nerf, we map the input image to W space, which
is a more disentangled and editable space [20,37], and im-

prove the 3D consistency by explicitly encouraging multiple
views. Table 1 outlines the differences between our method
and previous methods.

2.3. Latent Space Manipulation

Numerous works have explored the GAN latent space
for performing semantically manipulations in supervised or
unsupervised manners [3, 8, 14, 17,31, 34,38]. The com-
mon approach is to seek the editing direction responsible
for controlling a given attribute. GANSpace [14] adopts
principal component analysis (PCA) to find the semantic
direction. Sefa [32] directly decomposes the weight of the
pretrained mapping network to discover the latent seman-
tics with a closed-form factorization algorithm. Interface-
GAN [31] uses the normal vector of the boundary hyper-
plane of the SVM as the editing direction of the binary at-
tribute. StyleSpace [37] proposes to use style channels to
control a specific target attribute in S space which is defined
by the channel-wise style parameters. To further disentan-
gled the attribute editing, StyleFlow [3] trains a flow net-
work formulating attribute-conditioned exploration as an in-
stance of conditional continuous normalizing flows. These
methods edit images in the original latent space of the gen-
erator, but we find that editing images in the inversion man-
ifold achieves better qualitative and quantitative results.

3. Method
3.1. Overview

Current methods of 3D GAN inversion include encoder-
based, optimization-based, and hybrid both. The optimiza-
tion and hybrid methods are time-consuming, so they are
not suitable for interactive applications such as avatar-based
communication. Existing encoder-based methods often suf-
fer from low resolution and inferior editability. To over-
come these drawbacks, we introduce an encoder mapping a
single real image to the latent space YW+ and suggest per-
forming image attribute editing in the inversion manifold.

Our method is based on a pretrained 3D generator such
as EG3D, which can synthesize multi-view images condi-
tioned on camera parameters ¢ and noise code z € Z C
R®'2, where z ~ N(0,1). The mapping network of the
generator transfers z to an intermediate latent code w €
W C R52, where w is a 512-dimensional vector from a
distribution without explicit formula. The generator G takes
in camera parameters c¢ and the latent code w replicated k
times to synthesize images with the desired resolution as
described:

X = G(w,c), (1)

where ¢ denotes the camera parameters, including intrin-
sics and extrinsics. These replicated latent codes form the
space Wt C R¥*512 Tt has been shown that k different
style codes, rather than all the same style code, can increase
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Inversion Type Efficiently

3D Consistency at Large Camera Poses ~ Superior Editability

IDE-3D [33] hybrid X
3D-Inv [21] optimization-based X
Pixel2NeRF [5] encoder-based v
PREIM3D (Ours) encoder-based v

X X
X X
X X
v v

Table 1. An overview of 3D GAN inversion and editing methods.
metrics described in section 4.

3D consistency and editability are evaluated by ID, APD, AA, and AD
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Figure 2. Pipeline of our 3D consistent inversion encoder and editing in the inversion manifold. (a) The training architecture of the encoder,

alternating in-domain and out-domain images. £, is added in the i

in-domain round. The multi-view identity loss is calculated between the

input image and novel views randomly sampled in the surrounding of the input camera pose. (b) We perform inversions with our encoder
on a large real image dataset to produce the inversion manifold W;,:. Then the editing directions can be found through training an SVM.
(c) The inference of 3D GAN inversion and editing. We perform the 3D-aware image editing from a single image conditioned on the

desired attribute and arbitrary camera pose.

the representation capacity of the generator [3 1]. Therefore,
in our work, we use the following encoder E to invert the
given image to the latent code w € WT:

w = E(X),
. )
X =G(EX

);€)-

Then the fixed generator G takes w and a given c to produce
the inversion image X.

Editing images is walking along the editing directions in
the latent space, which can be linear or non-linear, here we
consider linear editing formally given by

Kedit = G(w + aAw,c), 3)
where Aw is the editing direction, « is the editing degree.

In the following, we will present how to improve the 3D
consistency of the above encoder F and how to find a more

precise editing direction. The whole architecture is illus-
trated in Figure 2.

3.2. 3D Consistent Encoder for Inversion

Despite more fidelity near the input camera pose, opti-
mization and hybrid methods will lead to 3D inconsistency
of views at large camera poses due to optimization on a sin-
gle image. The encoder methods alleviate this problem by
learning the features of a large number of images with dif-
ferent views. To further improve 3D consistency, we explic-
itly encourage 3D consistency during training the encoder
in two ways: alternating training scheme and multi-view
identity loss, as detailed below.

Alternating training scheme. Unlike previous ap-
proaches that train the encoder with only real images, we
propose an alternating training scheme, which includes in-
domain iteration and out-domain iteration. The model takes
in a batch of out-domain images, followed by a batch of in-
domain images. The encoder is optimized to reconstruct the
input images when inverting the out-domain images. When
inverting the in-domain images, we additionally optimize
the encoder to reconstruct the latent because we have the
ground truth. The additional latent code regularization term
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is
Loy =Ey [[w— E(Gw,0)II3], @

where G is the pretrained generator and F is the encoder.

Alternating training scheme brings two benefits: (i) The
training dataset is augmented, increasing the diversity of
contents and poses seen by the model; (ii) The regression
of the ground latent code encourages the distribution of the
inverted latent code closer to the distribution of the original
latent code of the generator.
Multi-view identity loss. For precise face image inver-
sion and editing, it is challenging to preserve the identity
of the input subject. To tackle this, we impose a specific
identity loss [28], defined by

Lip(X,¢) = 1= (F(X), F(G(E(X),c))),  (5)

where F' is the pretrained ArcFace [10] network which
extracts the feature of face, (-) is the cosine similarity.
L1p(X,c) denotes the identity loss between the input im-
age X and the image generated by the inversion latent code
of the image and the given camera pose c.

To improve the identity similarity between images with
different poses, we propose a novel 10ss L,,;¢:7 p including
two terms: the identity loss at the original camera pose and
the average identity loss at the surrounding camera pose. It
is defined by

Em,ultiID :Aori‘CID (Xa Cori)+

N
1 i (©)
Asurﬁ zzzl ‘CID (X7 Csur)’

where c,,; are the camera parameters of the input view, c’,,,.
are the camera parameters of the views surrounding the in-
put view, IV is the number of surrounding views sampled,
Aori and Mg, are the weights of each loss term, respec-
tively. Different sampling strategies can be used to sample
the surrounding views centered on the input view. In this
paper, we uniformly sample N = 4 views from yaw angles
between [—20°, 20°] and pitch angles between [—5°, 5°] for
an input image.

3.3. Total Losses

Our encoder can be trained with natural images in an
end-to-end manner. We calculate the commonly used Lo
and L prps [39] losses between the input image X and the
inversion image X with the input camera pose to improve
the pixel-wise and perceptual similarities.

The total loss is defined as a weight aggregation of all
the losses above:

L =X2Lo + Npips Lrr1Ps + AvLw + Lonuiirp,  (7)

where A\j2, Ajpips, and A, are the weights of each loss term,
respectively. Note that £,,,,1;7p is only used in the human
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Figure 3. The distortion between the original latent space and
the inversion manifold for 1-dimensional W and k£ = 2. The
points in the diagonal line are sampled from the original latent
space W,;, which here is represented as a 1-dimensional Gaus-
sian mixture distribution. The entire region represents WW? space.
The warmer cluster corresponds to a higher density of inversion
manifold W;,.,. The red arrow is the editing direction from no
eyeglasses in W,,; to eyeglasses in W,,;. The blue arrow is
the editing direction from no eyeglasses in Win,, to eyeglasses in
Winw.

face domain. We simply perform a grid search on these
weights to guide the model to produce high-fidelity recon-
struction results.

3.4. Image Editing in the Inversion Manifold

The general approach to attribute-conditional latent code
editing is to find a semantic editing direction in the latent
space to change the binary labeled attribute (e.g., young <>
old, or no smile <+ smile) [14,22,28,31,32,35,36]. Take
space W as an example, we sample a latent code w €
W, where WT C RF*512, Formally, we are seeking an
editing direction Aw € W7 such that weq;; = w + aAw.
o > 0 will make the edited image look more positive on the
attribute, and o < 0 represents more negative.

To edit the real image, we need to perform inversion as
described in Section 3.1 to obtain the latent code of the im-
age. Here, we have multiple candidates for latent space such
as Z, W, W+, and S [37]. Strictly speaking, these spaces
are manifolds on the corresponding linear space in mathe-
matical terms. However, note that for consistency and sim-
plicity, we still refer to them as space. As described in Sec-
tion 3.1, we can sample latent codes in these spaces and use
them as input to the generator to synthesize the in-domain
images. We refer to these spaces used for in-domain im-
ages as the original latent spaces of the generator, e.g. the
W space is denoted as W . gin- Instead, we propose that
the space consisting of latent codes obtained by inverting
a large number of real images via an inversion encoder is
called inversion manifold. Each original latent space has a
corresponding inversion manifold, e.g. the W;;Z gin COITE-
sponds to Wifw. To avoid confusion, we call it inversion
manifold instead of inversion space.

It’s a non-trivial task to invert a real image to latent code
because the generator can not fully model the true distribu-
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Figure 4. Qualitative comparison on face inversion and editing at multiple camera poses.

tion [31]. Furthermore, it turns out that there is a distor-
tion between Wit and Wi, gin because the w' obtained by
the inversion of the in-domain image generated from w is
not equal to w. Current popular editing techniques such as
InterfaceGAN [3 1], GANSPace [14], StyleFlow [37], etc.,
all learn the editing directions in the original latent space.
Therefore, editing the latent code in W; | with the editing
direction found in W, gin leads to distortion. The distor-
tion can be described as:

d(Aw) = Awinv - Aworiginy (8)

where Aw,,igin is the editing direction found in W, gin
Aw;y, 1s the editing direction found in W;w. While

AWorigin can be used to edit the in-domain image very

well, it will lead to imprecision when editing the real im-
age on the inversion manifold by using Awerigin. We
present an illustration of the distortion between Aworigin
and Aw;y,, in Figure 3. Our method is orthogonal to ex-
isting editing techniques, employing them to find editing
directions on the inversion manifold. We show the differ-
ences between the results between editing in the original
space and inversion manifold in Table 5 and Figure 6.

4. Experiments
4.1. Experimental Settings

Datasets. For the human face domain, we train the inver-
sion encoder with FFHQ [19] dataset cropped as [0] and use
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Method ID

IDE-3D [33] 0475  0.397
3D-Inv [21] 0476  0.457

Pixel2NeRF [5]  0.395  0.379  0.00453 0.5
PREIM3D (Ours) 0.606  0.576  0.00117 0.05

Table 2. Quantitative evaluation for inversion on faces. ID,_; de-
notes the mean ArcFace similarity score between the input image
and the 20 inverted images uniformly sampled from yaw angles
between [—b°, a°]U[a®, b°] and pitch angles between [—20°, 20°].

ID20,30 APD Tlme(s)

0.00139 2775
0.00136 2383

Metric Method Age Smile Eyeglasses
IDE-3D [33] 0.344 0.427 0.346
ID 3D-Inv [21] 0425 0.482 0.420
Pixel2NeRF [5]  0.219 0.324 0.262
PREIM3D (Ours) 0.557 0.614 0.531
IDE-3D [33] 1.35 1.41 1.52
AA 3D-Inv [21] 1.41 1.49 1.61
Pixel2NeRF [5] 1.42 1.47 1.44
PREIM3D (Ours) 1.51 1.54 1.62
IDE-3D [33] 1.04  0.56 0.74
AD 3D-Inv [21] 094  0.56 0.62
Pixel2NeRF [5] 123 057 0.79
PREIM3D (Ours) 0.82  0.49 0.50

Table 3. Quantitative evaluation for attribute editing on faces.
Attribute altering (AA) measures the change of the desired at-
tribut. Attribute dependency (AD) measures the degree of change
on other attributes when edit a certain attribute.

CelebA-HQ [18] for evaluation. We augment the datasets
with horizontal flips and estimate the camera parameters of
the images following [6]. We use InterfaceGAN [31] for
finding the attribute editing directions. The implementation
details are provided in Appendix A.2.

4.2. Evaluation

We compare our method with three state-of-the-art meth-
ods for 3D GAN inversion: Pixel2NeRF [5], IDE-3D [33],
and 3D-Inv [21]. Note, Pixel2NeRF and our method are
both encoder-based methods. IDE-3D is a hybrid method.
3D-Inv is an optimization-based method. In the compari-
son experiments, we use the official pretrained models and
code for both Pixel2NeRF and IDE-3D, and we implement
3D-Inv according to the paper because they do not release
the code. The metrics are calculated on the first 300 images
from CelebA-HQ. Because most of these images are front
views, we uniformly sample 20 views from yaw angles be-
tween [—30°, 30°] and pitch angles between [—20°, 20°] for
a source image.

Quantitative Evaluation. Table 2 provides quantitative
comparisons of the 3D GAN inversion performance. We
measure multi-view facial identity consistency (ID) with
the average ArcFace similarity score [10] between the sam-
pled images and the source image. Pose accuracy is evalu-

input w/o ATS
Figure 5. Inversion results at large camera pose. w/o ATS denotes
the model without an alternating training scheme. W/0 Luitir D
denotes the model without multi-view ID loss.

W/0 Lyt full

ated by the average pose distance(APD), which is root mean
squared error between the pose encodings estimated by the
pretrained 3D face detector [10]. Time metric indicates
the average inference time (encoding time and generation
time) for one image computed on one Tesla V100 GPU.
Our method outperforms baselines on ID and APD metrics
and is significantly faster than IDE-3D and 3D-Inv when
inference.

We show the comparison of face attribute editing against
the baselines in Table 3. We use an off-the-shelf multi-label
classifier based on ResNet50 [16] to obtain predicted log-
its. Attribute altering (AA) measures the change of the de-
sired attribute, which is the attribute logit change Al; [37]
when detecting attribute ¢ by the classifier (pretrained on
CelebA [23]). Al is normalized by o(l) [37], which is
the standard deviation calculated from the logits of CelebA-
HQ dataset. We evaluate the precision of attribute editing
with attribute dependency (AD) [37], which measures the
degree of change on other attributes when modifying along
a certain attribute editing direction, as measured by classi-
fiers. Our method performs better than the previous method.
More attribute editing results are provided in Appendix.

Qualitative Evaluation. We present examples of the in-
version and editing results in Figure 4. We sample 9 im-
ages for each source image with yaw = [—30°, 0, 30°] and
pitch = [—20°,0,20°]. While optimization-based meth-
ods perform better near the input camera pose, optimization
on a single image produces artifacts at large camera pose
changes, such as head deformation. Compared with previ-
ous methods, our method achieves the best 3D consistency,
especially at large camera pose. We provide more examples
in the Appendix, not only for human faces but also for cats.

4.3. Ablation Study

We conduct an ablation study to further validate the ben-
efits of our proposed components and strategies.
Alternating training scheme. As analyzed before, the al-
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IDg_10 ID1p—20 ID29—30 ID.

w/o ATS 0.517 0.507 0482  0.503
w/o Lopuitirp 0.572 0.563 0.541 0.557
full 0.629 0.611 0.576  0.606

Table 4. Effects of alternating training scheme and multi-view ID
loss.

Method AA AD

origin inversion | origin inversion
ede (2D) [35] 1.53 1.59 0.45 0.38
PREIM3D (Ours)  1.49 1.56 0.81 0.60
Table 5. Performance comparisons in terms of average AA and
AD metrics (age, smile, and eyeglasses) on editing in the original
space and inversion manifold.

IDE-3D 3D-Inv  Pixel2NeRF  Origin

Inversion 0.55 0.51 1.0 -
Editing 0.65 0.89 0.98 0.70

Table 6. The result of our user study. The value represents the rate
of Ours > others. Origin indicates editing in the original space
using our inversion encoder.

ternating training scheme and the ground latent code regres-
sion encourage the inverted latent space to match the orig-
inal latent space of the generator. We believe that this will
better maintain the 3D consistency of the 3D generator. To
validate the effectiveness of this strategy, we show the in-
version results in Figure 5. Without the alternating training
scheme and the ground latent code regression, the model
will lead to significant 3D inconsistency.

Multi-view ID Loss. For the human face domain, the
multi-view ID loss explicitly guides the model to preserve
the identity of the input subject. Following EG3D [6],
we calculate the mean ArcFace similarity score between
images of the same inverted face at two random camera
pose. Our inversion model scored 0.82, while the pretrained
EG3D scored 0.77 as reported in their paper. As shown in
Table 4, the model with multi-view ID loss improves the
identity consistency score. As shown in Figure 5, the multi-
view ID loss will encourage subtle face shape adjustments

Editing in the Inversion Manifold. Similar to 3D GAN
inversion, we can also perform editing in the inversion man-
ifold in 2D space. To validate the generalization of the
inversion manifold, we apply it to the state-of-the-art 2D
GAN inversion encoder, ede [35]. Table 5 shows the im-
provement of the quantitative metrics. Figure 6 demonstrate
editing in the inversion manifold will produce more precise
results. For example, the third column of the second row in
Figure 6 shows that editing eyeglasses in the original space
will increase beard and gray hair.

PREIM3D PREIM3D
+eyeglass +age

ede(2D)
+age

ede(2D)
+eyeglass

inversion
space manifold

input inversion original

Figure 6. Visual comparison between editing in the original space
and editing in the inversion manifold.

4.4. User Study

Considering the human evaluation, we conduct a user
study. We collect 1,500 votes from 25 volunteers, who eval-
uate the 3D consistency and realism of the inversion and
editing results. Each volunteer is given a source image, 9
images of our method, and 9 images of baseline (as in Fig-
ure 4). According to Table 6, the user study shows our
method outperforms the baselines.

5. Conclusions

In this paper, we propose a fidelity 3D consistent pipeline

that enables 3D reconstruction and 3D-aware editing from
a single real image efficiently. With the alternating train-
ing scheme, we perform latent code regression to close
the gap between the inversion latent code distribution and
the original latent code distribution of the generator. This
scheme leverages the 3D prior information of the genera-
tor and helps to maintain 3D consistency. Benefiting from
the multi-view ID loss, our method achieves better identity
consistency in the human face domain. We show that edit-
ing in the inversion manifold produces more precise results
than in the original latent space. Our method can be used
for many interactive 3D applications such as virtual reality,
metaverse, and avatar-based communication.
Limitations. One limitation of our work is the difficulty
in dealing with uncommon cases such as delicate earrings
and special hairstyles. As our inversion encoder relies on
the capacity of the generator to capture real-world scenes,
some details were reconstructed imperfectly.
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