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Abstract

The sketch community has faced up to its unique chal-
lenges over the years, that of data scarcity however still
remains the most significant to date. This lack of sketch
data has imposed on the community a few “peculiar” de-
sign choices — the most representative of them all is perhaps
the coerced utilisation of photo-based pre-training (i.e., no
sketch), for many core tasks that otherwise dictates specific
sketch understanding. In this paper, we ask just the one
question — can we make such photo-based pre-training, to
actually benefit sketch?

Our answer lies in cultivating the topology of photo data
learned at pre-training, and use that as a “free” source of
supervision for downstream sketch tasks. In particular, we
use fine-grained sketch-based image retrieval (FG-SBIR),
one of the most studied and data-hungry sketch tasks, to
showcase our new perspective on pre-training. In this con-
text, the topology-informed supervision learned from pho-
tos act as a constraint that take effect at every fine-tuning
step — neighbouring photos in the pre-trained model remain
neighbours under each FG-SBIR updates. We further por-
tray this neighbourhood consistency constraint as a photo
ranking problem and formulate it into a neat cross-modal
triplet loss. We also show how this target is better lever-
aged as a meta objective rather than optimised in parallel
with the main FG-SBIR objective.

With just this change on pre-training, we beat all previ-
ously published results on all five product-level FG-SBIR
benchmarks with significant margins (sometimes >10%).
And the most beautiful thing, as we note, is such gigan-
tic leap is made possible within just a few extra lines
of code! Our implementation is available at https :
//github . com/KeLi—- SketchX/Photo—-Pre—
Training-But—-for-Sketch

1. Introduction

People sketch, from prehistoric times in caves, to nowa-
days on phones and tablets. The sketch community has
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Figure 1. We rejuvenate the role of pre-training in FG-SBIR. We
envisage a scenario where pre-training not only provides parame-
ter initialisation as what the community is accustomed to, but also
interacts with each FG-SBIR fine-tuning step as a crucial source
of supervision. Lrg_spir: FG-SBIR task loss. Lnt: neighbourhood
topology compliance loss sourced from a pre-train model.

consequently witnessed significant progress over the past
decade, on fundamental tasks such as classification [19,
, 74, 80], synthesis [15, 21, 26, 48, 65], to those more
application-oriented such as fine-grained sketch-based im-
age retrieval (FG-SBIR) [8,03,64,78]. Despite great strides
made, the main barrier ironically lies with the very task it-
self — people do sketch, but not as much as they take photos!
As a result, the “largest” sketch datasets [11, 19,21,31,
,38,64,78] are still on a scale of few hundreds/thousands
per-category compared with its easily million-level photo
counterparts [13,43,61,77,88].This means instead of per-
forming sketch-specific pre-training, common practice in
the community has been coerced to a two-stage process of
pre-training on large-scale photo datasets, and later fine-
tuning on sketch (or sketch-photo pairs for sketch to photo
retrieval). Indeed, on the most studied problem of FG-
SBIR, while we are seeing tremendous research efforts
[6-8,48-51,57,62-64,67,78,79], none of them, to our best
knowledge, gets away from the gravity of such a coerced
pre-training strategy.
Just as how pre-training was shown to be instrumental
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in helping photo problems [10, 14,58,59,82], in this paper,
we task ourselves to achieve the same, but for sketch. With-
out further complicating things via obvious options such as
sketch synthesis [6, 84] to augment pre-training, we set off
to achieve this with photo-data only. The result is instead
of putting forward a whole new sketch-specific pre-training
strategy, we can adapt any pre-trained models (e.g. Ima-
geNet classification [0 1], Jigsaw Puzzle [47,51], CLIP [58])
to work with sketch — all with just a few extra lines of code
(therefore benefiting the community at mass).

We choose FG-SBIR as a testbed and anchor our
thoughts on two follow-up questions: i) what knowledge do
we seek from a pre-train model (the “what”), and ii) how to
pass on that knowledge as a source of supervision for FG-
SBIR (“the how”). Specifically, we instantiate the “what”
part with neighbourhood-induced topology of photos found
in the pre-trained feature space, and enforce the “how” by
leveraging the learned photo topology to regularise the fine-
tuning of FG-SBIR at every step. Putting together, a new
learning principle for FG-SBIR is proposed. Apart from the
traditional process of bringing sketch-photo pairs close in a
unified metric space, model learning now dictates backward
neighbourhood consistency checking with the pre-trained
model, as shown schematically in Figure 1.

Our implementation does indeed take just a few more
lines of code. This is achieved by formulating the above
into a stochastic triplet ranking problem, and penalise cases
where the relative ordering between photos is violated ac-
cording to the pair-wise feature distance calculated by the
pre-trained model. This formulation importantly makes
the optimisation well-conditioned when combined with the
main FG-SBIR loss, which is also in the form of a triplet
loss. We further devise a better solution that treats the for-
mer (neighbourhood consistency) as a meta incentive to the
latter (FG-SBIR learning). For that, we derive a computa-
tionally efficient framework to deal with the second-order
nature of meta learning.

Extensive empirical evidence on (all) five existing
product-level FG-SBIR datasets [|] demonstrates the supe-
riority of our proposed approach — it consistently achieves
new SoTA results, often with a significant margin and even
beats human subjects on FG-SBIR according to recent find-
ings reported by Qian et al. [79]. We wrap up the paper by
spelling out the intriguing property of our FG-SBIR model
in three practical applications, from supporting smoother re-
trieval photo gallery and early on-the-fly retrieval, to disen-
tangling human factor in model error attribution.

1.1. Why our topology proposal works so well?

The performance of FG-SBIR models, we argue, boils
down to handling subjective traits in sketch data (e.g. draw-
ing skill, abstraction level). Such subjective differences of-
ten result in the trained models becoming heavily biased to

the training sketch data distribution (i.e. a few seen styles),
rather than developing a general understanding across all
styles. One consequence, for example, is while most FG-
SBIR systems often optimised to virtually zero training
loss, they still perform nowhere close to practical adoption
on small benchmarks like QMUL-Shoe-V2 (<50% acc@1
with a size of 200 photo gallery). Efforts to explicitly
counter such style variability have only begun to emerge
very recently, where the technical routes have been dichoto-
mous: i) the power of data with the hope that model has
“seen enough” in order to form a smoother test-time sketch-
photo manifold [6, 84]. ii) modelling style explicitly with
the aim to remove it altogether from the final sketch repre-
sentation. [7,63].

Our take on the other hand, is that there can never be
enough sketch data to cover all styles, nor style itself can be
perfectly disentangled. We resort to pre-trained photo mani-
fold that is known to offer good generalisation on photo data
already, and transfer only the “good” part to guide sketch
learning — the neighbourhood topology. This auxiliary su-
pervision importantly expands the model’s coverage beyond
the FG-SBIR task itself. In that model learning can not eas-
ily overfit to a narrow spectrum of sketch styles anymore,
but instead asked to respect the topology constraints inher-
ited from a pre-trained natural photo manifold.

Related Work Beyond the obvious relation to FG-SBIR,
our technical approach is also loosely linked to several other
established fields, which we briefly explain their connec-
tions due to space limit. The first is knowledge distillation
[23,29] often designed for model compression/acceleration;
in analogy to the literature, we extract relation-based knowl-
edge [52, 55] defined as neighbourhood topology among
instances (vs. response [9, 83]/feature-based [53, 81]) and
compress that into FG-SBIR task tuning in an offline distil-
lation fashion [41,60] (vs. online [2,46]/self-based [73,85]).
However, instead of the common assumption that knowl-
edge source is a powerful teacher itself for the target task,
FG-SBIR pre-training is often generally purposed and per-
forms poorly for FG-SBIR [51]. Leveraging neighbourhood
topology supervision from a pre-train model can also be
seen as a way of generating pseudo labels [17,24,72], a
longstanding technique adopted by semi-supervised learn-
ing [5,34,75]. The difference is we do not introduce extra
dataset of unlabelled photos and constrain the label gen-
eration in one-time manner instead of updating it on the
fly [5,25,56]. Lastly, (nearest) neighbourhood analysis is an
important tool for many computer vision problems, from vi-
sual manipulation [16,28,69] to unsupervised feature learn-
ing [18,27]. Most relevant to ours is the use of nearest
neighbour search as a post-hoc query expansion method in
photo retrieval [12,35,90] to boost performance. But unlike
we treat photo neighbourhood structure as an indispensable
property that model has to bear regardless of the new task
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adaptations, query expansion is a special case of graph re-
ranking [87] to enhance the recall rate of a otherwise in-
stance sensitive retrieval system. The system has not under-
taken any representation learning itself.

2. Methodology

Overview Given a FG-SBIR benchmark X compris-
ing of N photos {p1,p2,...,pNn} and Zf\; pl" sketches

{s},s2.. sfl 53,83, ..., sggn, ey SRy 8%y ey s?\,ﬁ} with pl"*
denoting the availability of sketch instances corresponding
to one photo p;', we aim to learn a shared sketch-photo
embedding space W(X;6) from the training split of X that
generalises to the test case scenarios — given a sketch query
Stest, its feature representation W(s.q,6) is able to be
closer to that of its corresponding photo than any other pho-
tos in the retrieval gallery. To achieve this goal, a simple
but effective learning variant of triplet ranking loss has been
proposed [64, 78] and is still being adopted today after the
past six years of intense FG-SBIR developments. We write
down this test of time FG-SBIR loss as follows:

B

1
— max (Ag,+
B & jepy ]( b (1)

d(¥(s],6), ¥ (pi,0)) = d(¥(s],6), ¥ (prri, ), 0)

where d is often a [5 based measure, A is a heuristically set
hyper-parameter. pj; means py serves as a negative con-
trastive target of p; in the underlying training batch. The
idea is then to push the corresponding sketch-photo pairs
close and pull the non-matching ones apart, and see the
learning process as complete provided that a safe distance
margin has been achieved.

Lrc—sBir(Xbaten; 0) =

2.1. Neighbourhood Topology As Supervision

It raises two questions when comes to extracting the
neighbourhood information from a pre-train model ®(-)
and leveraging it as another supervision source together
with Eq. 1 for FG-SBIR task learning: (i) what kind of
neighbourhood topology do we aim to model from poten-
tially many available choices (e.g. nearest neighbour, k-
nearest neighbour, graph), and more importantly (ii) how
that topology modelling better suits its combination with the
triplet-based objective Lrg_spir. Our solution simulates a
global modelling of topology-induced supervision and exe-
cutes it with pairwise ranking trials — “global” examination
maximally exploits all levels of neighbourhood informa-
tion encoded in pre-training while “pairwise” means we can
still formulate a contrastive form of supervision and make

n QMUL V1 series datasets [78], there is always one sketch corre-
sponding to one photo, i.e. p;* = 1 always holds. Whereas in QMUL V2
series [ 1], there are at least three sketches available representing different
human drawing interpretations of one photo, i.e. p;* > 3.
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Figure 2. Neighbourhood supervision should be cross-domain. We
show how ENT failing to respect the cross-domain nature deteri-
orates FG-SBIR learning regardless of its strength (a: x-axis: [3;
y-axis: acc@1) and leads to feature space dissociating sketch and
photo (b). The issue is tackled by our proposed LnT (c).

it well-conditioned in terms of working with Lrg_sBIR-
Specifically, given a training batch X, with B sketch-
photo pairs, we derive a ranking matrix R of size Bx B x B
from ®(-) where entry R(4, j, k) represents the ordering of
relative feature distance (topology) for a photo triplet:

L, d(®(p;), 2(p;)) < d(®(pi), 2(pr))
— 1L, d(®(pi), ®(p;)) > d(@(ps), P(pr))
g,ift=jori=korj==k

R(i, j, k) =

2
& is a special token for self-identity serving for notation
convenience only, in practice our photo triplet will always
be constructed from three different photos. Also note that
we do not calculate the batch-wise matrix R during FG-
SBIR learning, which can be computational resource and
time consuming. Instead, we calculate such a matrix for all
training split photos in an offline manner so that 12 can be
formed on-the-fly with some simple row and column selec-
tion operations depending on which photos to include.
With these preliminaries, we then ask R to take effect
at every FG-SBIR fine-tuning step and punish the scenario
where photo neighbourhood topology (NT) R represents is
violated. We formulate it as another triplet ranking loss:

1
=— Z max(Axt + R(i, j, k) x
Z 5 3)

[d(\I/(pZ-’ 9)5 \Il(pj? 9)) - d(\I/(pi, 9), \I/(pk’ 9))]7 0)

[A/NT (Xbatcha 9)
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Figure 3. FG-SBIR performance under Eq. 5 and with different
pre-training strategies. X-axis: task importance ratio 3/«; y-axis:
acc@1. Lyt improves upon baseline for a wide range of ratio val-
ues on QMUL-Shoe/Chair-V2. & SoTA: 43.7% [71/69.1% [79].

where Z is normalisation factor depending on how many
stochastic triplets we form for each p;. If we use K (1 <
K < (B —1)(B — 2)) to denote the number of triplets
formed for p;, Z = B x K. We will provide ablations on
the choice of K in our experiment session.

Caveat from Cross-Domain Ultimately, we are trying
to solve a cross-domain problem. There is the risk that
while the single-modal loss in Eq. 3 brings the extra reg-
ularisation, it restrains a model’s ability and flexibility to
unify the sketch and photo domains. The problem is made
more likely given ®(-) is usually pre-trained on a bench-
mark dominated by photos (e.g. ImageNet, MS-COCO) and
thus shares closer affinity to photos as in-distribution data
and sketches otherwise. Empirically, we find this is ex-
actly the case where introduction of Eq. 3 results in an al-
most complete separation of the feature space from two do-
mains (Fig. 2 (b)) and always jeopardises FG-SBIR perfor-
mance regardless of its relative strength in a multi-task set-
ting (Fig. 2 (a)). How do we achieve the goal of maintain-
ing neighbourhood topology and meanwhile respecting the
cross-domain nature with minimal modifications on Eq. 3?
Eq. 4 encodes our thoughts by simply substituting p; with a
random sketch s} (r € [1, p}]) it corresponds to:

1 .
Lt (Xbaten, ) = 7 > maz(Ant + R(i, j, k) x
irjok “)

[d(W(s7,0),¥(p;, 0)) — d(¥(s, 0), ¥(pk, 0))],0)
In Fig. 2 (c), we show Lyt helps to greatly alleviate the

problem induced by Lyt and is able to work synergistically
with Lrg_sBir as shown in the following section.

2.2. Learning Together or Learning to Learn?

We explore two ways of combining loss functions
Lpg_spir and Lyt. The first is seeing two objectives as
parallel, i.e. a multi-task setting, where the other choice is

to see Lyt as a meta objective that any model updates ren-
dered by Lrc_spmr should be compliant to the regulari-
sation from Ly, i.e. learning to learn. Conceptually, the
former will be inevitably suboptimal as the two objectives
are essentially not equally important — we do have a primary
task of FG-SBIR. However, from implementation perspec-
tive, the paradigm of learning to learn often brings a greater
optimisation barrier [3,30,76] than that of multi-task, which
leaves its practical performance less predictable. To wit, we
first examine multi-task setting and show that such a setting
can already improve upon the baseline and bring new SoTA
performance for a wide range of combinations of task coef-
ficients. We then derive a framework that efficiently imple-
ments the idea of learning-to-learning and helps to fulfil its
potential as a better solution. We write down the objective
for multi-task setting and report the results in Fig. 3:

Laruiti = oo x Lpg—sBIR (Xbaten; 0) + B X Lnt (Xpaten; 0)
&)
It can be seen that Ly consistently brings better FG-SBIR
performance as its weighting increases (3/« 1) till a tip-
ping cut point. The superiority is also not constrained to
the specific pre-training method and works on different fine-
grained object categories.
Lyt as Meta Objective Another way to regularise model
learning from Ly is to respect the fact that FG-SBIR task
learning is our primary goal and that all we need is to en-
sure its progress does not interfere with the neighbourhood
topology induced from pre-training. This means Lyt acts
on an updated model, whose gradient descents are now ren-
dered by Lrg_spmr. To prevent prohibitive computation
cost due to expensive inner loop optimisation, we simulate
the said process with one step of gradient step as with some
past works [44,45,56] and formulate it as:

Otemp = 0n — 15V, Lrc—sBIR (Xbaten; 0)
enJrl = Htemp - ntVG,,LLNT(Xbatch; etemp)

(6)

Applying chain rules expands Vg, InT(Xpatch; Otemp) as:

VOn LNT(Xbatch; 9temp) = v(hcmp LNT(Xbatcha 0temp)+

N5V, Lrc-sBir(Xeatch, 0n) Vo, INT(Xbatch, Oremp)

(N
The key rests on how we deal with the expensive Hessian-
vector products for deep models with million-scale param-
eters. Fortunately, we can substantially reduce the com-
putational complexity using finite difference approxima-
tion [54]. Let € be a small positive scalar and 9,% =46, +
Gvotmp LNT (Xbatch; 9temp)» we apprOXimate va,pproa: =
vgnLFG—SBIR()(batcha en)vetempLNT(Xbatchv etemp) ~

Vo, Lrc—sBir (Xbatchi0 )= Ve, Lrc—sBirR (Xbatcnify, )
o . Evaluat-

ing the finite difference then requires only two forward
passes of 0 and two backward passes of 6,,, and the com-
plexity is reduced from O(|0|?) to O(|6)|). Putting together,

2757



Benchmark Multi-task (Eq. 5) Meta-full (Eq. 8) Meta-first (Eq. 9)
QMUL-Shoe-V1 69.57% 73.91% 76.52%
QMUL-Shoe-V2 48.05% 49.75% 50.75%
QMUL-Chair-V1 97.94% 97.94% 98.97 %
QMUL-Chair-V2 75.88% 76.21% 75.56%
QMUL-Handbag 70.24% 71.43% 72.02%

Table 1. Lnt as meta objective is better than that as a parallel
task. Our proposed solution serves as a first-order approximation
to the full meta solution and achieves comparable or better perfor-
mance while being significantly training memory efficient.

the update rule becomes:

Ont+1 = On — 15V, Lrg—sBIR (Xpatch; On)
- ntvé)tempLNT (Xbatcha 0temp) - ntnsvam)rém
(®)
First-Order Approximation The term V.., in Eq. 8
contains second-order derivatives, which we strip off from
our final formulation. We note that computation burden is
not the reason we do so. While this second-order term can
indeed double the wall-clock training time per epoch, the
typical small size of FG-SBIR benchmark makes this ex-
tra computation cost reasonably affordable in practice (~10
min/epoch). It is the less empirical success that leads us to
the decision. In Tab. 1, we demonstrate the FG-SBIR per-
formance learned under Eq. 8 with and without V ;ppr00
and observe the introduction of extra second-order term
can actually worsen the performance across benchmarks.
Our hypothesis is that the coefficient nyn; is already very
small during implementations (le-6~1e-8) and thus next to
a high-order noisy residual term. The harm of subjecting
learning to such high variance can easily override the dis-
advantage of slight bias that cancelling V 4o, could have
once caused. Our final learning objective is thus free from
second-order terms and produce the results throughout the
experimental session if not otherwise mentioned:

9n+1 = 9n - nsVHHLFG—SBIR(Xbatch; en)

©)
- ntVOtEmpLNT(Xbatcha 9temp)

3. Results and Analysis

Baseline Comparison’ We compare with 14 existing FG-
SBIR baselines and report their published numbers by copy-
ing from the papers. We denote our method as Ours (X)
where X depends on the specific pre-training strategy, e.g.
Ours (ImageNet [61]). We also delegate a default setting
Ours for Ours (OBOW [22]), which represents the best
performance across benchmark settings. OQurs-Base (X) is
the typical FG-SBIR learning under a triplet ranking loss
Lyrc_spir without guidance of Lyt and used for baseline

2Due to space limit, please refer to supplementary for experimental
setting and implementation details.

control purpose. From Tab. 2, we can make following ob-
servations: i) Ours not only numerically represents the new
SoTA FG-SBIR performance but also elevates benchmark-
ing upper bound to a new level. For example, on the chal-
lenging Shoe-V2, we are able to achieve 50.75% acc@1, an
absolute ~ 7% improvement over the existing best reported
number. It is also noteworthy that our method has for the
first time beaten humans in a trial study conducted by [79],
suggesting the possibility of putting our FG-SBIR system
into real-world practical adoption. ii) Besides Shoe-V1, we
find ResNet50, a particular CNN architecture rarely em-
ployed by FG-SBIR works before, gives to a significantly
stronger benchmarking baseline, e.g. on Shoe-V2 (Chair-
V2), Ours-Base (ImageNet) achieves 36.04% (67.82%)
compared to the 32% ~ 34% (50% ~ 54%) reported by
other CNN backbones (e.g. InceptionV3). iii) Embarrass-
ingly, Ours-Base (OBOW), a simple triplet ranking baseline
but replacing the common ImageNet pre-training already
brings the best result ever reported. Such success highlights
the importance of choosing the right pre-training strategy
for FG-SBIR, which has been long underestimated and re-
quires more in-depth investigation. iv) Among the differ-
ent representative types of pre-training strategies examined
(supervised, contrastive/pretext self-supervision, unsuper-
vised clustering, vision-language alignment), Lyt consis-
tently introduces extra improvements.

Engineering Practice Matters in Lyt We have briefly
described how to formulate Lyt in Sec. 2.1 that given a
query photo, we randomly compose K pairs of photos
from the rest of current data batch and hope their relative
distance ranking to the query aligns with those defined in
R by a safe minimum margin Anxt. Here we conduct
ablations on three key (in bold) engineering choices and
aim to show the dramatically different impacts they impose
on FG-SBIR learning. Notably, different to our global ap-
proach (i.e. modelling relative neighbourhood for any triplet
of photos), recent works [18,91] see the top nearest neigh-
bours as the only positives®, which we denote as Nearest in
comparison with our Random. Results in Tab. 3 show that
the performance is not sensitive to K, where a overly large
K can slightly harm the performance. In a stark contrast,
the choice of margin Axt matters greatly. Since a larger
margin value corresponds to a stronger regularisation effect
from Ly, this implicates the need to carefully tuning that
auxiliary strength as we have a primary task of FG-SBIR.
The common approach of seeing neural nearest instances as
neighbours is also inferior (44.14 % vs. 50.75%). We hy-
pothesise the reason is due to the very fine-grained nature
of our task. By assuming a prior that neighbours are always
from a fixed set of few nearest photos, model is encour-
aged to take a biased shortcut by seeing those photos as less

3In [91], they experiment with different values (Top {1, 2, 4, 8}) that
define a nearest neighbour and find 1 works the best. We follow them here.
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Comments Dataset
Method L ________.
Summary Backbone QMUL-Shoe-VI  QMUL-Shoe-V2 QMUL-Chair-V1 QMUL-Chair-V2 QMUL-Handbag

Yu et al. (CVPRI16 [78]) Triplet Siamese Sketch-a-Net 52.17% —_ 72.16% —— -
Song et al. (BMVC16 [66]) Attribute learning Sketch-a-Net 50.43% - 78.35% —— ——
Song et al. ICCV17 [67]) Spatial attention Sketch-a-Net 61.74% —— 81.44% —— 49.40%
Li et al. (TIP17 [39]) Multi-view alignment GoogleNet! 51.30% — 79.38% — —
Radenovic et al. (ECCV18 [ Unsupervised shape matching  VGG-16* 54.8% —— 85.6% — —
Lin et al. (ACMMMI9 [42]) Retrieval by classification DenseNet-169 63.48% 40.02% 95.88% — -
Bhunia et al. § (CVPR20 [8]) Early Retrieval with reward InceptionV3 —_ 30.8% —— 51.2% ——
Pang er al. (CVPR20 [51]) Jigsaw pre-training GoogleNet 56.52% 36.52% 85.98% — 62.97%
Zhang et al. (ECCV20 [84]) Generative hashing Sketch-a-Net 35.7% —— 67.1% —— ——
Sain et al. (BMVC20 [62]) Hierachical modelling InceptionV3 —— 36.27% e 62.45% -
Bhunia er al. (CVPR21 [6]) Help from unlabelled photos InceptionV3 - 39.1% — 60.2% —_
Sain et al. (CVPR21 [63]) Style-agnostic learning InceptionV3 —— 36.47% — 62.86% —
Yu et al. (IICV21 [79]) Mid-level features InceptionV3 66.1% 42.3% 91.8% 69.1% 61.9%
Bhunia et al. (CVPR22 [7]) Noisy stroke removal InceptionV3 —— 43.7% —— 64.8% -
Human Trials [79] - - 66.09% 49.50% 94.85% 63.00% 50.00%
Ours-Base (ImageNet) Lyc-seir —Eq. | ResNet50 53.04% 36.04% 88.66% 67.82% 61.31%
Ours (ImageNet) {Lrc—-sBir, L1} —Eq. 9 ResNet50 67.83% 42.04% 94.85% 71.70% 65.48%
Ours-Base (Jigsaw) Lyrc—seir —Eq. | ResNet50 56.52% 37.69% 90.72% 69.45% 62.50%
Ours (Jigsaw) {Lrc—sBir, LT} —Eq. 9 ResNet50 69.57% 42.19% 94.85% 72.34% 66.67%
Ours-Base (Barlow Twins) Lyc-ssir —Eq. | ResNet50 67.83% 44.29% 91.75% 69.13% 64.29%
Ours (Barlow Twins) {Lrc—sBir, Ln7} —Eq. 9 ResNet50 72.17% 47.90% 95.88% 73.95% 68.45%
Ours-Base (CLIP) Lrg-spir —Eq. 1 ViT-B/32 70.43% 46.10% 93.81% 72.35% 65.48%
Ours (CLIP) {Lrg-sBIr, LnT} —Eq. 9 ViT-B/32 77.39% 49.70% 96.91% 74.92% 70.24%
Ours-Base (OBOW) Lyg-ssir —Eq. | ResNet50 68.70% 45.20% 92.78% 71.06% 66.67%
Ours (OBOW) {Lrc_sBr, Ln7} —Eq. 9 ResNet50 76.52% 50.75% 98.97 % 75.56% 72.02%

Table 2. Comparison with existing FG-SBIR competitors. * represents those non-parametric learning methods that only take backbone as a
fixed feature extractors. Numbers for methods denoted with ¥ are not reported in the original paper; we take it from their follow-up works.
Ours (OBOW) is our final implementation throughout paper (hence shaded in light green).

NT type K ANT QMUL-Shoe-V2 QMUL-Chair-V2
Random 1 0.01 49.70% 73.95%
Random 50 0.01 48.80% 72.03%
_Random _ __ _ 100 _ 001 _4505%_ _ __ __7042% _
Random 10 0.01 50.75% 75.56 %
"Random 10 0.005 4925%  71331%
Random 10 0.05 45.50% 71.38%
_Random 10 01 = 4369% __ 67.52%
Nearest 1 0.01 45.05% 70.74%
Nearest 10 0.01 44.14% 70.10%
Nearest 10 0.005 44.30% 68.17%

Table 3. Ablation studies on the engineering choices in Lxt. The
row in grey shade represents the setting we use throughout the
paper. More details in text.

discriminating (while they are actually discriminative in the
lens of FG-SBIR) instead of leveraging them to maintain
the feature neighbourhood topology as expected.

R Sourced Beyond FG-SBIR Pre-training So far, we
have required our acquisition of neighbourhood supervision
R always sources from the same model (®) on which a FG-
SBIR task is fine-tuned. A natural question is therefore if
such binding is necessary for R to boost FG-SBIR perfor-
mance or the way to obtain R can be done more flexibly. In
Tab. 4, we experiment with different combinations where R
comes from a third party that is irrelevant to the underly-
ing pre-training strategy employed for FG-SBIR. We give a
affirmative answer that there is no causal relation between
the two. It seems that R (L) always helps as long as
it comes from a general-purpose vision foundation model.

Eq.9 R source
QMUL-Shoe-V2 INet [61] JSaw [51] BTwins [82] CLIP[58] OBOW [22]
o | INet (36.04%) 42.04% 41.74% 42.64% 42.34% 43.99%
g JSaw (37.69%) 42.64% 42.19% 42.94% 42.19% 44.29%
T | BTwin (44.29%) | 46.55% 45.80% 47.90% 47.60% 48.20%
& | CLIP (46.10%) 48.35% 47.75% 50.30% 49.70% 51.35%
OBOW (45.20%) | 48.80% 47.30% 50.45% ‘ 49.40% 50.75%
Eq.9 R source
QMUL-Chair-V2 INet [61] JSaw [51] BTwins [82] CLIP[58] OBOW [22]
o | INet (67.82%) 71.70% 70.74% 72.03% 72.35% 72.67%
g JSaw (69.45%) 71.38% 72.34% 72.67% 72.03% 73.30%
3 | BTwin (69.13%) | 72.99% 72.03% 73.95% 73.31% 74.92%
& | CLIP (72.35%) 74.60% 73.31% 75.24% 74.92% 76.53%
OBOW (71.06%) | 73.95% 72.99% 74.92% | 74.90% 75.56 %

Table 4. Performance when R is no longer required to be extracted
from a FG-SBIR pre-train model. INet: ImageNet classification.
JSaw: Jigsaw self-supervision. BTwin: Barlow Twins. Numbers
on the diagonal is our main results as reported in Tab. 2.

The only coarse pattern we observe is a better FG-SBIR pre-
train model (e.g. OBOW) is often a more effective source
for extracting R, i.e. upper triangle performance is gener-
ally better than the lower counterpart on both shoe and chair
dataset. Interestingly, our best number is with CLIP as pre-
training strategy and OBOW as R source. While we believe
the exact implication of such synergy is beyond the scope of
this paper, it does suggest the potential improvements of our
proposed framework when the choice of R and pre-training
is given bigger freedom.

Generalisation Analysis In Sec. 1.1, we have provided in-
tuitions on why Lyt helps better FG-SBIR generalisation.
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Ours-Base (OBOW

Ours-Base (ImageNet) @ Shoe-V2 Ours (ImageNet) @ Shoe-V2

®

Training epoch @ Shoe-V2 Training epoch @ Chair-V2 Last 100 iters @ Shoe-V2  Last 100 iters @ Chair-V2

Figure 4. Generalisation Analysis. We visualise the loss land-
scapes in (a) to highlight the role of L in enabling flatter optima.
(b) shows the nuclear norm of gradient estimates across different
training epochs. High variance means gradient is close to ran-
dom, while low variance implies a deterministic gradient estimate.
Lower is better. With lower gradient variance, result reproducibil-
ity is improved as be seen in the stable test performance (mean
normalised) among the /ast 100 training iterations (c).

We aim to understand such advantage with more rigour here
via three different facets of empirical analysis: Visualising
loss landscape: one way to probe into model generalisation
is to qualitatively visualise its loss landscape. The connec-
tion between the geometry of the loss landscape — in par-
ticular the flatness of minima — and generalisation has been
studied extensively in the literature [20, 32,33]. We adopt
the visualisation method by [36] (perturbations on model
weights along two directions and conduct filter normalisa-
tion to circumvent scale invariance) and verify the loss land-
scapes for FG-SBIR models learned under Eq. 1 and Eq. 9.
Results in Fig. 4(a) confirm that Ours with Ly renders op-
timal model parameters lying in neighbourhoods with uni-
formly low loss compared to the sharp minima in Our-Base
by traditional FG-SBIR loss, and is therefore more gener-
alisable. Covariance of gradients: Another way to peek
into model’s generalisation capability is to quantitatively
evaluate its training dynamics — we choose the variance of
gradients to measure the goodness of fit of the underlying
update. Specifically, we calculate the nuclear norm o of
covariance matrix of the gradients of samples across dif-
ferent training epochs, where a smaller value correspond
to a lower variance and higher signal to noise ratio [71].
We plot ¢ distribution in Fig. 4(b) and can see that training
with Lrc_gsprr alone can’t yield a good signal especially
at the early phase, a phase often known to learn general-
isable and less task-specific features [4, 68,70]. The anal-
ysis also gives an explanation to the reproducibility prob-
lem in FG-SBIR learning [5 ] that checkpoints of peak per-
formance are often taking place in a short period and be-
come elusive thereafter. The model simply can’t converge
as o value remains large near the end of learning. In this
regard, our model should improve reproducibility as con-
firmed empirically (Fig. 4(c)). Robustness to input per-

turbations: As a last approach, we apply a set of random
global (e.g. rotate, scale, translate) and local (e.g. stroke
width/clipping) deformations to each stroke and examine
how these perturbations affect the retrieval performance.
We use svg_disturber library from [89] and generate
ten versions of deformations for each test sketch. On Shoe-
V2, the average performance percentage drop by Ours-
Base (ImageNet/OBOW) is 19.16(£3.48)/15.48(%+3.11)
compared with 13.84(£2.41)/12.27(%1.19) by Ours (Ima-
geNet/OBOW). Similar trend is found on Chair-V2 with
10.08(%5.65)/11.96(%5.45) vs. 7.92(£3.82)/6.42(£2.64).
Ours is better at defending robustness attack.

4. Application

The advantage of FG-SBIR models learned under our
neighbourhood proposal is not limited to the traditional bet-
ter benchmarking. We showcase three examples below to
reveal more benefits from practical application perspective.
Smoother Retrieval Gallery One side effect alongside
Lyt is a FG-SBIR system with top ranked photos repre-
senting a smoother transition (because we protect the dom-
inant neighbourhood topology on natural photos against
downstream task fine-tuning). The result is a more consis-
tent viewing experience to end users that photos within their
receptive field are relevant and subjected to further explo-
rations beyond their original query (Fig. 5(a)). To evaluate
quantitatively, we use the difference of features extracted
from the second last layer of VGG-16 to measure the ap-
pearance similarity between a photo pair [86]. We calculate
the mean of all pairwise feature distances within the Top 10
retrieved photos as smoothness score for Ours-Base (Ima-
geNet/OBOW) and Ours (ImageNet/OBOW). Ours achieve
a smaller mean (0.0264/0.0251 vs. 0.0296/0.0312 on Shoe-
V2 and 0.0509/0.0493 vs. 0.0673/0.0695) on Chair-V2.
Support for Early Retrieval We have shown our proposal
is more robust to stroke-level perturbation. Here we ex-
plore further to verify if similar conclusion still holds when
we extend the robustness test to stroke deletions. A positive
answer then contributes to an important application where
users in practice are unwillingly to complete the full sketch
episode and expect the system to response to its partial in-
put as early as possible, a.k.a. on-the-fly FG-SBIR [7]. We
plot the FG-SBIR performance curve with respect to differ-
ent input sketch percentage in Fig. 5(b) and can see Ours-
Base trails Ours by a large margin. Surprisingly, we find
our method is comparable to the result of a complex RL-
based approach [7] tailored for the problem, where in most
cases, we can save ~30% less strokes for users with almost
no performance degradation.

Retrieval Error Attribution The unique trait of our re-
trieval result also allows for an analytical tool established
for FG-SBIR for the first time: when an error is flagged,
is the model not good enough or the human sketch input
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Figure 5. We spell out the potential of our proposed method for three practical applications. In (a), we exemplify cases with successful
top-1 retrieval under both Ours and Ours-Base can present significantly different retrieval gallery. Ours renders a visually smoother photo
list and thus better viewing experience. Our framework also supports early retrieval setting (b) as a byproduct and achieves comparable
results with purpose-built method (3 [8]). We further show not necessarily all retrieval errors come down to model incapability. Ours can
help find out sketch inputs that are problematic in themselves. # refers to the four scenarios for error attribution. More details in text.

does? We identify four scenarios for such binary error at-
tribution using the retrieval results of both Ours-Base and
Ours; we denote the smoothness score (introduced earlier)
among the top 5 retrieved photos by both models as S5
and Spuse, and fidelity score F,,.s as the mean feature
euclidean difference between the ground-truth photo and
top 5 retrieved photos by Ours. Scenario 1: large S,yrs,
large F,,,s; sketch input is of low quality that completely
drifts away from the photo manifold — user’s problem. Sce-
nario 2: small S,,,s, small F,,,; sketch falls nicely onto
the photo manifold with similar photos and ground-truth
nearby, but wrong retrieval. Model is not good enough —
model’s problem. Scenario 3&4: small S5, large Fyyrs,
large/small Sy, s.; Whether it is model’s problem that can’t
deal with the test-time sketching styles or user’s problem
that the input can’t support the granularity for instance-
level matching, the response by Syyrs and Foyps is similar
— sketches would fall onto the manifold but remain distant
to the ground truth photo. To discriminate further, we re-
sort to a third metric Sp,se. The idea is simple, if Spqse iS
large, it is more likely that the input sketch belongs to an
OOD rendition style that Ours-Base can’t easily adapt to
(because without LT, Ours-Base is sensitive to style vari-
ations); small Sp,se then suggests otherwise that the cul-
prit is due to the over simplistic of a sketch input (user’s
problem). We visualise some typical examples from the
incorrect retrieval results of Shoe-V2 for each scenario in
Fig. 5(c) and conduct human trials to verify the accuracy.
Specifically, we recruit 50 participants and ask each to con-

duct 20 trails. In each trial, a participant is shown with
a sketch query and Top 4 matching photos along with the
ground-truth photo and asked to choose one that best resem-
bles the query. If users successfully pick the ground-truth,
we regard this sketch input as problem-free and deem the
wrong retrieval along with it as model’s problem. Among
the total 30 trails, we reach consensus with human partic-
ipants 74.36% of the time, confirming the efficacy of our
approach.

5. Conclusion

We have looked into the role of photo pre-training for
sketch representation learning and argued that role is more
than initialising parameters predominantly practised by the
community today. We attested our hypothesis with FG-
SBIR as a case study and suggested photo neighbourhood
topology induced by pre-training could provide a crucial
source of supervision for better FG-SBIR generalisation.
Our key empirical results not only pushed the upper bound
of FG-SBIR benchmarking to a new level but also empow-
ered three novel applications all with the goal of improving
the practical values of a FG-SBIR system. Another ambi-
tion of this paper is to have shed light on a promising fu-
ture research path: FG-SBIR learning should look beyond
a single task loss of itself and is better tackled as part of
an ensemble of vision tasks (Sec. 1.1). We have made a
small step towards this ambition by confirming the benefits
of co-learning FG-SBIR with a task (LxT) abstracted from
a much celebrated vision foundation model.
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