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Abstract

Single-chip polarized color photography provides both
visual textures and object surface information in one snap-
shot. However, the use of an additional directional polariz-
ing filter array tends to lower photon count and SNR, when
compared to conventional color imaging. As a result, such
a bilayer structure usually leads to unpleasant noisy im-
ages and undermines performance of polarization analysis,
especially in low-light conditions. It is a challenge for tra-
ditional image processing pipelines owing to the fact that
the physical constraints exerted implicitly in the channels
are excessively complicated. In this paper, we propose to
tackle this issue through a noise modeling method for re-
alistic data synthesis and a powerful network structure in-
spired by vision Transformer. A real-world polarized color
image dataset of paired raw short-exposed noisy images
and long-exposed reference images is captured for exper-
imental evaluation, which has demonstrated the effective-
ness of our approaches for data synthesis and polarized
color image denoising. The code and data can be found
at https://github.com/bandasyou/pcdenoise.

1. Introduction

A beam of light can be considered as a combination of
linearly polarized lights oscillating in different planes per-
pendicular to the imaging plane. The polarized compo-
nents vary in specific ways up to the object refractive in-
dex and incident angle while they are reflected by metallic
or dielectric materials. Therefore, polarized reflections con-
vey information about object materials and surface geome-
tries independent of light intensities and surface textures.
For this reason, polarization photography plays a crucial
role in transparent reflection removal [27, 35], shape-from-
polarization [16,20] and so on.

Formerly, we were only able to capture chromatic or
polarimetric information of a scene separately. Thanks
to the latest single-chip polarized color sensors (e.g.,
IMX250MYR), in which an array of directional polarizing
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Figure 1. (a) Illustration of the polarized color sensor. (b) The
intensity of polarized light decreases after passing through a po-
larizer. (c) Image produced by a conventional camera (FLIR BFS-
U3-51S5C) with a 40x digital magnification. (d) Image captured
by a polarized color camera (FLIR BFS-U3-51S5PC) with an 80x
digital magnification. The two cameras are equipped with the
same type of lens and CMOS sensors, and capture the illumi-
nometer and color checkerboard with the same exposure time and
aperture. The comparison demonstrates that even under slightly
brighter illumination, polarized color images are noisier.

filters of four directions (0°, 45°, 90°,135°) is equipped be-
tween the Bayer filter and the CMOS sensor, as shown in
Fig. 1a, it is now effortless to capture polarization and color
information simultaneously. However, the sensors’ bilayer
layout causes lower photon counts and Signal-to-Noise Ra-
tio (SNR), when compared to typical color imaging. As
shown in Fig. 1b, the intensity of a beam will be attenu-
ated by a polarizer. This leads to noisy images (see Fig. Ic,
d) and can be harmful to subsequent polarization analysis.
This issue motivates us to restore clean signals from noisy
polarized color images.

In the past decades, a number of methods have been pro-
posed for color image denoising [5, 12,21, 34,47,52, 53],
which underline the key role of realistic paired data, espe-
cially for supervised learning methods. To the best of our
knowledge, there does not exist any real-world dataset for
denosing polarized color images.



We collect a real-world dataset of noisy polarized color
raw data taken under a wide spectrum of low-light set-
tings. The corresponding clean images are captured with
low-gain long-exposure settings as ground truth. In spite
of the tremendous efforts we payed on data collection, the
noise volumes and variations may still be limited. From
previous observations, a precise noise model can be used to
generate realistic noisy images and benefits learning-based
approaches [8,45] thanks to the infinite noise patterns. It
remains unknown how a single-chip polarized color sensor
differs from a standard color sensor and to what extend ex-
isting physics-based noise model [45] should be adapted. In
this paper, we highlight the unique noise characteristics of
polarized color sensor via extensive analysis.

Recent researches have shown that Vision Trans-
former [43] has enormous potentials in exploring global
context interactions and outperforms convolutional DNNs
in various vision problems [7,11,17,31,33]. While spa-
tial [44] and channel self-attention [0, 49] take a dominant
place in the image restoration realm, we consider them to-
gether to boost signal denoising and polarization restora-
tion. Therefore, we propose a Transformer model with
hybrid attention mechanisms for effective polarized color
image denoising. We have validated the advantages of
our method over traditional methods and recently proposed
network architectures, as well as its usefulness for down-
streaming applications.

2. Related work
2.1. Image Denoising

Image denoising is a well-researched yet still active topic
in the computer vision community. Traditional single im-
age denoising methods proposed elaborate models based
on total variation [41], SVD [39], sparse coding [ 18], self-
similarity [36], and so on. Recent researches mainly fo-
cused on the great capacities and expressiveness of CNNss,
which adaptively learn data-driven denoisers from noisy im-
ages and their noise-free counterparts [5, 12, 32, 52, 53].
However, in real-world noise image processing scenarios,
these methods have been proven to be outperformed by
BM3D [15]. The reason is primarily that the learning-based
models overfit to the synthetic training data constructed by
over-simplified noise models [38]. Therefore, researches
captured clean/noisy image pairs to build dataset with real-
world noises [2, 9] for both model training and evaluation.

However, it is labor-intensive to acquire a large vol-
ume of labeled high-quality data. Thus, another line of re-
search has tried to generate realistic noise data from clean
images. [4] employed a signal-dependent heteroscedastic
Gaussian model [19] to simulate both intensity-dependent
and intensity-independent noises. Some works [1, 8] ap-
plied generative models to learn the latent noise distribution
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from real noisy images. Beyond the oversimplified mod-
els, [45] tried to dig into the physics-based electronic imag-
ing pipeline to formulate and estimate the noise distribu-
tions. The calibrated camera-aware parameters help to gen-
erate rich noise patterns only from clean images and ben-
efit the denoising performance. [54] bypassed the complex
noise modeling process and directly sampled real readout
noises from light-free frames. As the first research on po-
larized color image denoising, we systematically analyze
the noise characteristics of the polarized color sensor based
on the physics-based noise formation model [45].

There are some restoration methods proposed for
monochromatic polarization images [3,29,50,51], but they
can not directly handle polarized color images and lack full
consideration of polarization properties.

2.2. Vision Transformer

Inspired by the great success of NLP Transformers,
Vision Transformer (ViT) [17] utilized the Transformer
technique on non-overlapping cropped image patches that
achieved accurate yet efficient image classification. Local-
window-based Transformer models [33] with various win-
dow partition strategies were proposed and achieved con-
siderable improvements on the speed-accuracy trade-off. In
SwinlR [31], Swin Transformer [33] was used to build a
single-scale architecture for high-quality image restoration.
Moreover, a lot of works [44,49] tried to apply Transform-
ers to build U-shaped networks that make further use of the
hierarchical structure of Swin and multi-scale skip connec-
tions of U-Net [40].

2.3. Exploiting Polarization

As polarization photography can capture more channels
of information exhibited implicitly from environments, it
has been extensively studied in both fields of computer vi-
sion and computer graphics. A few decades ago, polariza-
tion was found to be effective in reflection removal [42],
whose performance has been greatly improved via learn-
ing based approaches [27, 35]. Furthermore, Shape-from-
Polarization (SfP) has developed into a popular research
area in recent years. Surface normal information encoded
by light polarization was introduced into conventional 3D
modeling pipelines [14, 48] and binocular stereo camera
systems [20, 55] to produce more precise and complete ge-
ometries. Coupling polarization cues with CNNs, 3D object
shape and human shape can be easily reconstructed with a
single-view polarization image [ 16, 56].

3. Noise Model
3.1. Model Formation

The CMOS sensor covered by a polarizer suffers from
significant degradation in quantum efficiency compared to



conventional sensors [26], which leads to massive noises
and tends to destroy fragile polarization information, es-
pecially in low-light environments. We use the physics-
based noise formation model informed by [45] to system-
atically analyze the noises sources in the physical imaging
process, and find some unique characteristics of polarized
color senor.

The final signal combined with the physics-based noise
model is written as:

D =KI+ KNy, + Nyegq + Ny + Ng, €))
where I represents the number of photons captured by a
CMOS sensor, K is the overall system gain. IN,,, N;.cqq, IV
and N, count for photon shot noise, signal readout noise,
banding pattern noise, and quantization noise.

Photon shot noise N, is the major type of noise from
incident light. It is caused by the quantum nature of light
when the photoelectrons are randomly emancipated from
the semiconductor after photon hits. The noise distribution
follows Poisson statistics as

(I+N,) ~P(I), @)
where P is the Poisson distribution. There are other noise
sources when capturing photons, e.g., crosstalk effect [22]
of neighboring pixels that cause inaccurate intensity. To al-
leviate this issue, the most advanced manufacturing technol-
ogy is to install the polarizer array between the microlens
array and pixel array. This is shown to be reliable to reduce
crosstalk and promote extinction ratios, thus we ignore this
factor since the senor under study is produced like that.

Read noise N,.qq counts for multiple noise sources in-
cluding dark current noise [22], thermal noise, and source
follower noise [28]. Although a zero-mean Gaussian model
is mostly used [15,52] and capable of covering a wide range
of noises, [22,45] show that real noise contains a long-tailed
effect. Thus, a Tukey lambda (TL) distribution [24], con-
sisting of a family of distributions, is able to handle the
long-tailed feature:

N'reari ~ T()‘;,LLao—T) ) (3)
where 7 denotes the TL distribution, A\, 4 and o are shape,
location and scale parameters. Specifically, u is used to
model the color-wise biases [45] arising from direct current
noise.

Banding pattern noise Ny is caused by the CMOS cir-
cuit readout strategy and conveys a specific horizontal line
style. The horizontal stripes can be simulated by zero-mean
Gaussian samplings with a scale parameter o,. A sampled
row noise is added to pixels within a same row.

Quantization noise is produced when a continuous volt-
age signal is converted to discrete digits via an AD con-
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Figure 2. Estimation of the overall system gain for three channels,
at the gain=12 setting. Given a flat filed frame, its variance and
intensity (reprensented by median) satisfy a linear function, and
overall system gain equals to the slope of the fitted line. The results

indicate photoresponse nonuniformity.
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Figure 3. Box plots for parts of o, i and o, samples at the
gain=24 setting. The labels present their channels, the red dash
line is their mean value, orange line and green dashed line in the
boxes denote the median and mean value of each sample sequence.
The comparison illustrates differences of the parameters’ value
and distribution of the channels.

verter. The quantization noise is simply formulated as:

1 1
Nq ~U — a5 5. |
29 2q
where U denotes a uniform distribution and ¢ represents the

quantization step.

3.2. Noise Model Calibration

“

Following the pipeline of [45], we calibrate the parame-
ters of the polarization color camera FLIR BFS-U3-51S5PC
equipped with a Sony IMX250MYR sensor. To better re-
veal parameter distributions and correlations, we calibrate
them on individual channels, which leads to 16-dimension
parameter vectors. The corresponding parameters include
overall system gain K for photon shot noise V,; shape A,
location p and scale o, for read noise N,..,q; scale param-
eter o, for row banding noise. For better understanding, we
apply a combined notation of [R, G1, B, G2] and [90, 45,
0, 135], e.g., R%, to denote the channels characterized for
colors (Red, Greenl, Blue, and Green2) and polarizer an-
gles (90°, 45°, 0°, 135°). We captured flat-field frames to
estimate K and bias frames to calibrate other parameters.
As an industrial camera, its settings are configurable, such
as camera gain, black level, white balance ratios, and so
on. Note that different from above mentioned overall sys-
tem gain, the camera analog gain is a controllable param-



eter, which is equivalent to ISO widely used in consumer
digital cameras.

Flat-field frames are images captured under uniform il-
lumination. They can be used to estimate K via Photon
Transfer (PT) method [23]. We capture flat-field frames
of a whiteboard placed under natural illumination and the
lens focuses to infinity to reduce photon non-uniformity. K
has to be computed on 16 individual channels due to their
unmatched intensities caused by varied quantum efficien-
cies [26] and linearly polarized reflected light. The result
reveals noticeable photoresponse nonuniformity with the
Bayer pattern and slight differences in polarization chan-
nels, as shown in Fig. 2.

Given a clean image and estimated K, we are able to
convert pixels’ intensity D into the number of electrons
by packing the image into 16 channels and dividing corre-
sponding K separately. Then, following the Poisson dis-
tribution, random Poisson variate on I generates discrete
noisy photon intensity. Finally, I is reversed back to D to
simulate a real shot noise formation routine.

Bias frames are images captured in light-free environ-
ments where only intensity-independent signals are stored.
To fully observe the complete noise distribution, we set the
black level as 2% of the maximum signal with black level
auto clamping turned off and captured 100 frames for each
gain. Following [45], we estimated the parameters of N,.cqq
and N,. Specifically, industrial applications require captur-
ing fast-moving objects with high frame rates. Thus the
sensor IMX250MYR employs global shutter techniques on
a CMOS sensor to avoid the focal plane distortion problem
that may be caused by a rolling shutter, and specific de-
vices and technologies are equipped for high-quality imag-
ing, e.g., an analog memory is provided for each pixel. The
above techniques may cause specific noise patterns.

As a result, we first observed a global bias decreases
rapidly below the black level with lifted camera gains and
further variations exhibited in channel-wise biases, which
causes a noticeable intensity decline and polarization distor-
tion. Then, we observed that each odd row and its next row
suffer the same row noise, which we assume is caused by
the sensor’s specific readout circuits that process two rows
as a group. Significant diversity is finally observed for the
parameters of different channels. As illustrated in Fig. 3,
box plots indicate the distribution of a channel’s parameters,
i.e., op, pu and o differs from other color and polarization
channels. Such unique properties make the simulation of
realistic noises for polarized color sensors much more diffi-
cult, compared to typical color sensors.

3.3. Joint Distribution Model

As the above-mentioned parameters are detected for dis-
crete camera gain level samples, e.g., [0,6, 12, 18,24, 30],
it remains a challenge to reform a set of 16-dimensional
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Figure 5. Linear regression results for joint distribu-
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parameters (u, oy, A, and o ;) for the channels under an
arbitrary camera gain K. As all the parameter samples fol-
low a Gaussian distribution, it is an intuitive way to sample
them independently for each channel or control them with
the same Gaussian sampler. However, our further observa-
tions unveil the submerged correlations.

Given calibrated parameters of 100 frames under a gain
level, e.g., 24, we employ Pearson correlation coefficients
(PCCs) to examine the change tendency of a parameter from
different channels. Fig. 4 exhibits the heatmaps of PCCs of
p and o,.. It is obvious that without considering the po-
larization channels, specific correlations exist for p and o
samples of the color channels, that R and G; channel, B
and G channel are highly positively correlated, while the
other combinations are nearly uncorrelated. Considering
the arrangement of pixels, we can also speculate the im-
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Figure 6. Visual comparison for image, DoLP and AoLP of a clean
image, real noisy image, debiased real noisy image, and our debi-
ased synthetic image. The PSNR to the clean image is shown,
which proves that debiased inputs are closer to the reference.

perceptible mechanism that the pixels of two rows are pro-
cessed by the readout circuit simultaneously as a group. In
contrast, the correlation can not be observed for o and A,
that all channels are uncorrelated.

From the observation, individual Gaussian models are
not sufficient to simulate real channel biases p and o as
the correlation exists. Thus multivariate Gaussian distri-
bution (MGD) is applied to fully formulate the parameter
sampling. We estimate 16 x 16 covariance matrices X3,, and
3, for the parameter p and o, samples of 16 channels, and
compute the mean value of the parameter samples along the
sample dimension as mean of the MGD. While log K is
uniformly sampled for 16 channels, to reduce the influence
of possible calibration error of K, the mean of K, termed
as K is used for regression and sampling. Thus the MGD
of p and o, can be formulated as:

o~ N (B,3,). op~ Nig (G, 30), (5)

where @i and &, are mean value of p and o, samples. Fig.
4 illustrates the scatter plot and estimated MGD of p and
o, samples of R% and G7°, that shows MGD is proper
to model the correlation and simulate real noise level sam-
pling. o, can still be sampled individually for 16 channels
via:

o ~N (6'7'7 &T) s (©)

where &, and &, are mean and standard deviation of o,
samples.

At last, the covariance of highly correlated channels as
well as their variance is observed to increase with lifted
gains, so a log-scaled linear model can be used to formu-
late the variation. With x = [—f1,3,,, 64, 33, 67,067, we
have:

log(x) = alog(K) + b, 7
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Figure 7. The pipeline of our learning-based polarized color image
denoising method.

where a and b denote slopes and intercepts of fitted lines.

4. Dataset

To enable the research on polarized color image denois-
ing, we collect a dataset under outdoor low-light environ-
ments. Following the image capture strategy of the previ-
ous benchmark [45], 824 low-light images and their corre-
sponding references are captured in total. 4 gain settings (6,
12, 18, and 24) and 2 short-exposure ratios (10, 60) are se-
lected for a wider coverage. The conversion of the camera
gain and overall system gain, and further detailed capturing
protocol can be seen in our supplementary materials. Dur-
ing captures, the camera is mounted on a steady tripod. The
exposure time for capturing reference images is adjusted to
collect sufficient photons. Moreover, as the SNR of polar-
ization information is extremely sensitive to noises [13], 50
to 100 long-exposure images are averaged to generate a sin-
gle clean reference image. Also, 3-5 continuous frames are
captured for each low-light setting and a noisy image which
have the closest intensity to the reference is selected to avoid
the flickering effect of manmade AC lamps at night.

5. Method
5.1. Pipeline

To synthesize a noisy image based on our model with a
clean image, we first divide it by a predetermined low-light
ratio, e.g., 10, to simulate a short-exposure capturing. Then,
the noise parameters are sampled from a continuous model
and Gaussian samplings, via a random logf( and above
equations 5-7. Using the parameters, a realistic noise map
is generated through equations 1-4, and ultimately added to
the scaled clean image.

Given a low-light noisy raw polarization color image,
following the tradition of learning-based raw image pro-
cessing pipeline [4,9,45], we firstly pack it into 16 individ-
ual channels. Then, the input should have been subtracted
by a predetermined black level before amplification using
the corresponding short-exposure ratio. However, a signif-
icant minus global bias is observed under a lifted camera
gain setting, which may lead to noticeable brightness re-
duction, as shown in Fig. 6. Moreover, as a global bias
barely affects S; and S5 as it is almost eliminated, it will
accumulate in Sy and finally destroy the DoLP distribution,
as shown in Fig. 6. Therefore, for both noisy signals and



Table 1. Polarized color image denoising performance in PSNR(dB)/SSIM calculated on 16-channel images, 4-channel DoLP and 4-
channel AoLP. Bold values present the best results. ”*”” represent the model is trained on our synthetic noises.

x10 x 60
Training Method image DoLP AoLP image DoLP AoLP
Data PSNR SSIM PSNR PSNR | PSNR SSIM PSNR PSNR
BM3D 26.08 0.901 21.62 8.20 2148 0.736  19.17 7.14
MBM3D 2582 0878 2279 1338 | 21.19 0.704 19.73 11.79
U-Net 33.25 0.829 1932  13.66 | 26.47 0.546 20.13 13.02
T:g Uformer 3828 0.968 25.61 1584 | 33.88 0922 2347 14.89
~ Restormer 39.06 0969 2648 1590 | 3429 0.923 23.80 1498
Ours 39.20 0971 2657 16.04 | 3442 0927 2356 14.89
© U-Net* 35.77 0906 23.64 1478 | 2740 0.611 21.06 13.47
E Uformer* 39.26  0.969 26.14 1594 | 33.50 0.900 23.13 14.17
E Restormer* | 39.82 0.971 26.65 16.05 | 33.64 0918 2344 14.88
A Ours* 40.21 0973 27.15 16.25 | 3393 0915 23.65 15.07
polarization information, the global bias makes the restora- Table 2. Polarized color image denoising performance in

tion task even more ambiguous and further undermines the
denoising performance. Thus, a noisy image is subtracted
by the black level and the global bias before amplification.

For a real-world noisy image, the global bias comes from
the average of collected bias frames under the correspond-
ing gain. For a synthetic noisy image, its sample location of
channel-wise biases p are shifted from & to (2 — i), where
[u presents the mean of fi, to retain the variation of channel-
wise biases, which are difficult to fully estimate and are ex-
pected to be fixed by our learning-based approach. Fig. 6
shows that the intensity and DoLP of the noisy image after
the offset is closer to the clean image.

5.2. Transformer network

For better polarization color image restoration perfor-
mance, a Transformer-based neural network is proposed. A
4-stage U-shaped architecture is applied as our backbone,
which features multi-resolution processing and low compu-
tation consumption. In each stage, successive Transformer
blocks are employed, which process deep features. While
Transformer-based image restoration algorithms mainly de-
pend on long-term dependencies of spatial-domain [44]
or channel-domain [0, 49] self-attention mechanisms, we
consider their combination boost both signal denoising
and polarization restoration. Thus, Shifted Window based
Multi-head Attention (SW-MA) [33], Window based Multi-
Shuffled-heads Transposed Attention (W-MSTA) and local-
enhanced MLP [30,44] are used to construct a Transformer
block. Please refer to our supplementary material for a more
detailed introduction and illustration.

5.3. Loss Function

Given a noisy input x and its clean counterpart y, a pixel-
wise loss function is generally used to optimize a denoiser
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PSNR(dB)/SSIM calculated on images, DoLP and AoLP. Bold
values present the best best results. Nyeqq and N, represent
read out noises sampled with zero-mean and channel-wise biases
respectively.

Data image DoLP AoLP

PSNR/SSIM PSNR PSNR
(a) paired w/ bias 33.01/0.922 2323  14.75
(b) paired 34.42/0.927 23.56  14.89
(¢) Nread 31.56/0.849 2279  13.12
(d) Nread + Ny 33.81/0.907 23.64 1496
(€) Nycad + Np + Np + Ny | 33.94/0914  23.69  15.04
) Nyeaa + Np + N + Ny 33.93/0.915 23.65 15.07
(g)wlo Lg 33.93/0914 23.74 14.92

network. Here, loss function £ is formulated as follows:

L=y =F) 1, @)
where F(-) represents our network. The pixel-wise loss
function aims to directly minimize the differences of pixels.
Moreover, inspired by [46], we also minimize the Stoke pa-
rameter loss Ls of each color channel, which is formulated
as follows:

Ls== > [ISF)-SFx)) I (9
i=0,1,2,3

where S(-) denotes computation of Stoke parameters, and 1
represents the number of four color channels. The interme-
diate variables provide a strong yet efficient constraint on

polarization information.

6. Experiments

We implement a learning-based pipeline for polariza-
tion color image denoising. The training procedure con-
tinues up to 3000 epochs and the network is optimized by
Adam [25] optimizer with batch size 16. While the initial
learning rate is set as 2e — 4, warm-up and cosine annealing



Er/2 " AoDEE2 [N Dol

Noisy BM3D  MBM3D

Restormer

Restormer” Ours

Ours” GT

Figure 8. Visual comparison for polarized color image denoising. Igge, DoLP and AoLP are exhibited, and *” represents the model is
trained on synthetic noisy images generated via our noise model. Please refer to more results in our supplementary material.

[90"

En/2 TAo D2 [ DoLP Y

' N01sy ' A (a5 o (b) ‘ (©) )

strategies are applied for better regression. In each epoch,
a 128 x 128 x 16-sized patch is randomly cropped from a
packed input. Random rotation and flipping are applied for
data augmentation. We compare our approach with classic
non-deep single-image denoising methods, and further train
SOTA neural networks on our real-world paired noisy im-
ages and synthetic noisy images to validate the accuracy of
our estimated noise properties as well as the performance of
our proposed Transformer model.

6.1. Comparison

Peak Signal-to-Noise Ratio (PSNR) and Structure Simi-
larity Index Measure (SSIM) are used for quantitative eval-
uations of restored images, and PSNR is applied to evaluate
DoLP and AoLP restoration. We compare existing algo-
rithms, including BM3D [37], U-Net [40], Uformer [44]
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Figure 9. Visual comparison for ablation study. /ggo, DoLP and AoLP are visualized and the labels represent settings presented in Table 2.

and Restormer [49] on data of two low-light ratios x10
and %60, respectively. Specifically, BM3D [37] is able to
handle multi-channel inputs, so we apply it on 4-channel
(BM3D, taking each color channel containing 4 polariza-
tion channels as a grayscale input) and 16-channel packed
pattern (MBM3D). Given an estimated noise level [10] for
each input image, (M)BM3D approach is used directly on
a real-world test set. Neural networks are trained on real
noisy and our synthetic noisy images and are evaluated on
real noises.

Table 1 shows quantitative results of polarized color im-
age denoising. It is obvious that non-deep approaches are
far from being able to handle such heavy noises as well as
polarization distortion. Interestingly, BM3D outperforms
MBM3D on image denoising, but fails to restore polariza-
tion information. The reason is that packing different po-
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Figure 10. Visual results of SfP [56] with MAE of normalized
accumulated angle to the reference.

larization pixels in the same patch without considering their
variances do harm polarization restoration. Focusing on the
comparison of training sets under x 10 low-light scenes, our
synthetic noisy training set significantly improves perfor-
mance of every learning-based models. We give credits to
the infinite noise patterns in simulation. Under a shorter ex-
posure setting, x60, a small deviation of noise model could
be extremely enlarged, and makes the synthetic noisy im-
age’s polarization distribution distorted. The results show
our synthetic noisy training set still have comparative per-
formance. Regarding the comparison of different neural
network denoising models, our network performs clearly
better on both restoring clean images and precise polariza-
tion information in most scenarios.

The visual comparison is shown in Fig. 8. The BM3D
approaches fail to address such heavy noises and barely re-
store polarization, while Restormer and our model can ef-
fectively eliminate noises. Restormer* and Ours*, trained
on synthetic noisy images, restore more vivid details. More-
over, due to the window-based hybrid attention mechanism,
our denoising model is able to remove noises and restore
sharp details for both images and polarization information.

6.2. Ablation Study

All ablation experiments are conducted based on our pro-
posed Transformer model with noisy images at x60 low-
light ratio. See more ablation analysis in our supplementary
material.

Global bias. In our pipeline, a global bias is observed un-
der lifted camera gains and subtracted from input before it
is amplified. Table 2(a), (b) show a dramatic performance
degradation without this pretreatment. Moreover, Fig. 9
(a), (b) show that by subtracting the global bias, more vivid
image and polarization details can be restored.

Ablation on noise models. To verify the effectiveness of
the introduced noise model, we conduct ablation experi-
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ments on synthetic training set of degenerated noise mod-
els. As shown in the Table 2, a full set of noise components
deliver significant and stable performance improvements.
Visual comparison is shown in Fig. 9 (c)-(f). The visual
results of (c) and (d) indicate the photon shot noise plays a
great role as a major noise source. However, the noticeable
banding stripes in (c), (d), especially for AoLP, are elimi-
nated until banding pattern noise is considered. At last, the
network trained on our final noise model shows sharp yet
rich details in images and polarization, and far outperforms
the real noisy training set, as shown in Fig. 9 (b) and (f).
Stoke parameter loss. A loss function combining pixel-
wise differences and polarization information errors are ap-
plied to optimize the network. (f) and (g) in Table 2 show
the performance of the model trained with and without L.
The comparison demonstrates that Ls can help restore pre-
cise polarization information.

6.3. Polarization Application

Here, we show our denoising approach can be beneficial
to downstream polarization-based algorithms, e.g., shape-
from-polarization. We feed a noisy and denoised polariza-
tion image into a 3D shape reconstruction network [16]. As
illustrated in Fig. 10, compared with the noisy input, the 3D
normal reconstructed with our denoising process contains a
more detailed structure and accurate shape. Quantitative re-
sults on MAE of normalized accumulated angle to reference
normal map are shown as well.

7. Conclusion

In this paper, we address the low SNR issue of polar-
ized color sensors. We propose a learning-based pipeline
to simultaneously restore clean signals and polarization in-
formation. A real-world polarized color image dataset of
paired raw short-exposure noisy images and long-exposure
reference images is captured to support the learning-based
pipeline. Furthermore, we systematically analyze the noise
sources in the physical imaging pipeline and try to gener-
ate realistic noisy images for our learning-based approach.
Spatial and channel domain self-attention mechanisms are
applied to construct a Transformer model for better denois-
ing performance. Experimental results validate the effec-
tiveness of proposed noise model as well as Transformer-
based denoising model. Extensive ablation studies justify
our contributions. We also demonstrate that our denoising
process benefits downstream polarization applications.
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