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Abstract

Different from conventional image matting, which either
requires user-defined scribbles/trimap to extract a specific
foreground object or directly extracts all the foreground ob-
jects in the image indiscriminately, we introduce a new task
named Referring Image Matting (RIM) in this paper, which
aims to extract the meticulous alpha matte of the specific
object that best matches the given natural language descrip-
tion, thus enabling a more natural and simpler instruction
for image matting. First, we establish a large-scale challeng-
ing dataset RefMatte by designing a comprehensive image
composition and expression generation engine to automat-
ically produce high-quality images along with diverse text
attributes based on public datasets. RefMatte consists of 230
object categories, 47,500 images, 118,749 expression-region
entities, and 474,996 expressions. Additionally, we construct
a real-world test set with 100 high-resolution natural im-
ages and manually annotate complex phrases to evaluate
the out-of-domain generalization abilities of RIM methods.
Furthermore, we present a novel baseline method CLIPMat
for RIM, including a context-embedded prompt, a text-driven
semantic pop-up, and a multi-level details extractor. Exten-
sive experiments on RefMatte in both keyword and expres-
sion settings validate the superiority of CLIPMat over repre-
sentative methods. We hope this work could provide novel
insights into image matting and encourage more follow-
up studies. The dataset, code and models are available at
https://github.com/JizhiziLi/RIM.

1. Introduction
Image matting refers to extracting the soft alpha matte

of the foreground in natural images, which is beneficial
for various downstream applications such as video confer-
ences, advertisement production, and e-Commerce promo-
tion [58]. Typical matting methods can be divided into two
groups: 1) the methods based on auxiliary inputs, e.g., scrib-
ble [17] and trimap [1,17], and 2) automatic matting methods

*Dr Jing Zhang and Ms Jizhizi Li were supported by Australian Research
Council Projects in part by FL170100117 and IH180100002.

that can extract the foreground without any human interven-
tion [19,44]. However, the former are not applicable for fully
automatic scenarios, while the latter are limited to specific
categories, e.g., human [2, 32, 57], animal [19], or the salient
objects [40, 60]. It is still unexplored to carry out control-
lable image matting on arbitrary objects based on language
instructions, e.g., extracting the alpha matte of the specific
object that best matches the given language description.

Recently, language-driven tasks such as referring expres-
sion segmentation (RES) [55], referring image segmentation
(RIS) [12, 25, 54], visual question answering (VQA) [8],
and referring expression comprehension (REC) [31] have
been widely studied. Great progress in these areas has been
made based on many datasets like ReferIt [14], Google Ref-
Exp [34], RefCOCO [56], VGPhraseCut [50], and Cops-
Ref [3]. However, due to the limited resolution of avail-
able datasets, visual grounding methods are restricted to
the coarse segmentation level. Besides, most of the meth-
ods [13, 30] neglect pixel-level text-visual alignment and
cannot preserve sufficient details, making them difficult to
be used in scenarios that require meticulous alpha mattes.

To fill this gap, we propose a new task named Referring
Image Matting (RIM), which refers to extracting the metic-
ulous high-quality alpha matte of the specific foreground
object that can best match the given natural language de-
scription from the image. Different from the conventional
matting methods, RIM is designed for controllable image
matting that can perform a more natural and simpler instruc-
tion to extract arbitrary objects. It is of practical significance
in industrial application domains and opens up a new re-
search direction To facilitate the study of RIM, we establish
the first dataset RefMatte, which consists of 230 object
categories, 47,500 images, and 118,749 expression-region
entities together with the corresponding high-quality alpha
mattes and 474,996 expressions. Specifically, to build up
RefMatte, we revisit a lot of prevalent public matting datasets
like AM-2k [19], P3M-10k [18], AIM-500 [20], SIM [45]
and manually label the category of each foreground object
(a.k.a. entity) carefully. We also adopt multiple off-the-shelf
deep learning models [27, 51] to generate various attributes
for each entity, e.g., gender, age, and clothes type of human.
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Figure 1. Some examples from our RefMatte test set (top) and the
results of CLIPMat given keyword and expression inputs (bottom).

Figure 2. Some examples from our RefMatte-RW100 test set (top)
and the results of CLIPMat given expression inputs (bottom), which
also show CLIPMat’s robustness to preserved privacy information.

Then, we design a comprehensive composition and expres-
sion generation engine to produce the synthetic images with
reasonable absolute and relative positions considering other
entities. Finally, we present several expression logic forms to
generate varying language descriptions with the use of rich
visual attributes. In addition, we propose a real-world test
set RefMatte-RW100 with 100 images containing diverse
objects and human-annotated expressions, which is used to
evaluate the generalization ability of RIM methods. Some
examples are shown in Figure 1 and Figure 2.

Since previous visual grounding methods are designed for
the segmentation-level tasks, directly applying them [13, 30,
43] to the RIM task cannot produce promising alpha mattes
with fine details. Here, we present CLIPMat, a novel baseline
method specifically designed for RIM. CLIPMat utilizes the
large-scale pre-trained CLIP [41] model as the text and visual
backbones, and the typical matting branches [18, 19] as the
decoders. An intuitive context-embedded prompt is adopted
to provide matting-related learnable features for the text en-
coder. To extract high-level visual semantic information for
the semantic branch, we pop up the visual semantic feature
through the guidance of the text output feature. Additionally,
as RIM requires much more visual details compared to the
segmentation task, we devise a module to extract multi-level
details by exploiting shallow-layer features and the original
input image, aiming to preserve the foreground details in the
matting branch. Figure 1 and Figure 2 show some promising
results of the proposed CLIPMat given different types of
language inputs, i.e., keywords and expressions.

Furthermore, to provide a fair and comprehensive evalua-

tion of CLIPMat and relevant state-of-the-art methods, we
conduct extensive experiments on RefMatte under two differ-
ent settings, i.e., the keyword-based setting and expression-
based setting, depending on language descriptions’ forms.
Both the subjective and objective results have validated the
superiority of CLIPMat over representative methods. The
main contribution of this study is three-fold. 1) We de-
fine a new task named RIM, aiming to identify and extract
the alpha matte of the specific foreground object that best
matches the given natural language description. 2) We es-
tablish the first large-scale dataset RefMatte, consisting of
47,500 images and 118,749 expression-region entities with
high-quality alpha mattes and diverse expressions. 3) We
present a novel baseline method CLIPMat specifically de-
signed for RIM, which achieves promising results in two
different settings of RefMatte, also on real-world images.

2. Related Work
Image matting Image matting is a fundamental computer
vision task and essential for various potential downstream
applications [4, 6, 29]. Previous matting methods are di-
vided into two groups depending on whether or not they use
auxiliary user inputs. In the first group, the methods use
a three-class trimap [22, 53], sparse scribbles [17], a back-
ground image [24], a coarse map [57], or user click [49] as
the auxiliary input to guide alpha estimating. Among them,
scribble and click-based methods are more controllable since
they usually indicate one specific foreground. However, the
flexibility of these methods is still limited since the predic-
tions are usually performed with low-level color propagation
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and are very sensitive to the scribbles’ density [18,23]. In the
second group, the methods [2,15,18–20,40,60] automatically
extract the foreground objects without any manual efforts.
Recently, there is also some work making efforts to control
the matting process by determining which objects can be
extracted. For example, Xu et al. [52] propose to extract the
foreground human and all related objects automatically for
human-object interaction. Sun et al. propose to extract each
human instance separately rather than extracting all of them
indiscriminately [46]. However, it is still unexplored for con-
trollable image matting, especially by using natural language
description as guidance to extract specific foreground object
that best matches the input text, even though it is efficient
and flexible for the matting model to interact with a human.
In this paper, we fill this gap by proposing the RIM task, the
RefMatte dataset, and the baseline method CLIPMat.

Matting datasets Many matting datasets have been proposed
to advance the progress in the image matting area. Typical
matting datasets contain high-resolution images belonging
to some specific object categories that have lots of details
like hair, accessories, fur, and net, as well as transparent
objects. For example, the matting datasets proposed by Xu
et al. [53], Qiao et al. [40], Sun et al. [45], and Li et al. [20],
contain many different categories of objects, including hu-
man, animals, cars, plastic bags, and plants. Besides, some
other matting datasets focus on a specific category of object,
e.g., humans in P3M-10K [18] and animals in AM-2K [19].
In addition to the foreground objects, background images
are also helpful for generating abundant composite images.
For example, Li et al. [19] propose a large-scale background
dataset containing 20k high-resolution and diverse images,
which are helpful to reduce the domain gap between com-
posites and natural ones. All the above datasets have open
licenses and can serve as valuable resources to construct
customized matting datasets, e.g., the proposed RefMatte.

Besides, it is noteworthy that due to the laborious and
costly labeling process of matting datasets, existing public
matting datasets [40, 45, 60] usually provide only the ex-
tracted foregrounds through chroma keying [53] without the
original backgrounds. To compose a reasonable amount of
trainable data, a typical solution in previous matting meth-
ods [15, 26, 57] is to generate synthetic images like in other
tasks [7,33] by pasting the foregrounds with numerous back-
ground images. As for the domain gap between the real-
world images and the composite ones, some works [15, 19]
have already reduced it to an acceptable range through some
augmentation strategies. Although some work also present
real-world matting datasets, they all contain only one fore-
ground from a specific type, e.g., person [18], animal [19], or
objects [40], making them unsuitable to serve as the bench-
mark for RIM. In our work, we follow the composition route
in generating RefMatte and ensure its large scale, diversity,
difficulty, and high quality by synthesizing a large number

of images, where there are multiple foreground objects with
similar semantics and fine details on diverse backgrounds.
Furthermore, we present a real-world test set with flowery
human annotated expression labels to validate models’ out-
of-domain generalization abilities.
Vision-language tasks and methods Vision-Language tasks,
such as RIS [12], RES [55], REC [31], text-driven manipula-
tion [37, 59], and text-to-image generation [38, 39, 42], have
been widely studied, which are helpful for many applications
like interactive image editing. Among them, RIS aims to seg-
ment the target object given language expression, which is
most related but totally different from our work. The relevant
methods can be divided into single-stage [21, 25, 30, 43, 48]
and two-stage ones [11, 13, 28, 55]. The former directly train
a segmentation network on top of the pre-trained models
like CLIP [41], and the latter perform sequential region pro-
posal and segmentation. However, due to the task setting
(i.e., for segmentation rather than matting) and the lack of
high-quality annotations (e.g., alpha mattes) [14, 34, 50, 56],
most of them have neglected the pixel-level text-semantic
alignment and cannot produce fine-grained mask. Thus, we
propose the new task RIM with the dataset RefMatte to facil-
itate the research of natural language guided image matting.
Moreover, the proposed method CLIPMat with specifically
designed modules could produce high-quality alpha matte
and thus serve as the baseline for RIM.

3. The RefMatte Dataset
In this section, we present the overview pipeline of con-

structing RefMatte (Sec. 3.1 and Sec. 3.2), the task settings,
and a real-world test set (Sec. 3.3). Figure 3 shows some
examples from RefMatte.

3.1. Preparation of Matting Entities

To prepare high-quality matting entities for constructing
RefMatte, we revisit available matting datasets to select the
required foregrounds. We then manually label each entity’s
category and annotate the attributes by leveraging off-the-
shelf deep learning models [27, 51]. We present key details
as follows, while more in the supplementary materials.
Pre-processing and filtering Due to the nature of the image
matting task, all the candidate entities should be in high
resolution, with clear and fine details in the alpha matte.
Moreover, the data should be publicly available with open
licenses and without privacy concerns. With regard to these
requirements, we adopt all the foreground images from AM-
2k [19], P3M-10k [18], and AIM-500 [20]. For other avail-
able datasets like SIM [45], DIM [53], and HATT [40], we
filter out those foreground images with identifiable faces in
human instances and those in low-resolution or having low-
quality alpha mattes. The final number of foreground entities
is 13,187 in total, and we use images from BG-20k [19] as
the background images for composition.
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Figure 3. Some examples from our RefMatte dataset. The first row shows the composite images with different foreground instances while
the second row shows the natural language descriptions corresponding to the specific foreground instances indicated by the green dots.

Annotate the category names of entities Previous matting
datasets do not provide the specific (category) name for each
entity since those matting methods extract all the objects
indiscriminately. However, we need the entity name in the
RIM task to describe the foreground. Following [36], we
label the entry-level category name for each entity, which
stands for the most commonly used name by people. Here,
we adopt a semi-automatic strategy. Specifically, we use
the pre-trained Mask RCNN detector [9] with a ResNet-
50-FPN [10] backbone from [51] to automatically detect
and label the category names for each foreground instance
and then manually check and correct them. In total, we
have 230 categories in RefMatte. Furthermore, we adopt
WordNet [35] to generate synonyms for each category name
to enhance the diversity. We manually check the synonyms
and replace some of them with more reasonable ones.
Annotate the attributes of entities To ensure all the enti-
ties have rich visual properties to support forming abundant
expressions, we annotate them with several attributes, e.g.,
color for all entities, gender, age, and clothes type for the
human entities. A semi-automatic strategy is adopted in re-
trieving such attributes. For attribute color, we cluster all the
pixel values of the foreground image, find the most frequent
value, and match it with the specific color in webcolors. For
gender and age, we adopt the pre-trained models provided
by Levi et al. in [16] and follow common sense to define the
age group based on the predicted ages. For clothes type, we
adopt the off-the-shelf model provided by Liu et al. in [27].
Furthermore, motivated by the categorization of matting
foregrounds in [20], we add the attributes of whether or not
salient or transparent for all the entities as they also matter in

image matting. In summary, we have at least three attributes
for each entity and six attributes for human entities.

3.2. Image Composition and Expression Generation

Based on these collected entities, we propose an image
composition engine and an expression generation engine to
construct RefMatte. In order to present reasonably looking
composite images with semantically clear, grammatically
correct, as well as abundant and fancy expressions, how
to arrange the candidate entities and build up the language
descriptions is the key to constructing RefMatte, which is
also challenging. To this end, we define six types of position
relationships for arranging entities in a composite image
and leverage diverse logic forms to produce appropriate
expressions. We present the details as follows.
Image composition engine We adopt two or three entities
for each composite to keep the entities at high resolution
while arranging them with a reasonable position relationship.
We define six kinds of position relationships: left, right,
top, bottom, in front of, and behind. For each relationship,
we generate the foregrounds by [17] and composite them
with the backgrounds from BG-20k [19] via alpha blending.
Specifically, for the relationships left, right, top, and bottom,
we ensure there are no occlusions in the instances to preserve
their details. For the relationships in front of and behind,
we simulate occlusions between the foreground instances
by adjusting their relative positions. We prepare a bag of
candidate words to denote each relationship and present in
the supplementary materials. Some examples are in Figure 3.
Expression generation engine To provide abundant expres-
sions for the entities in the composite images, we define
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three types of expressions for each entity regarding different
logic forms, where <atti> is the attribute, <obj0> is the
category name, and <reli> is the relationship between the
reference entity and the related one <obji>:
1. Basic expression This is the expression that describes

the target entity with as many attributes as one can,
e.g, the/a <att0> <att1>...<obj0> or the/a
<obj0> which/that is <att0> <att1>, and
<att2>. For example, as shown in Figure 3(a), the basic
expression for the entity flower is ‘the lightpink
and salient flower’;

2. Absolute position expression This is the expres-
sion that describes the target entity with many
attributes and its absolute position in the image,
e.g., the/a <att0> <att1>...<obj0> <rel0>
the photo/image/picture or the/a <obj0>
which/that is <att0> <att1> <rel0> the
photo/image/picture. For example, as shown
in Figure 3(a), the absolute position expression for
the flower is ‘the plant which is lightpink
and salient at the rightmost edge of
the picture’;

3. Relative position expression This is the expres-
sion that describes the target entity with many
attributes and its relative position with another
entity, e.g., the/a <att0> <att1>...<obj0>
<rel0> the/a <att2> <att3>...<obj1> or
the/a <obj0> which/that is <att0> <att1>
<rel0> the/a <obj1> which/that is <att2>
<att3>. For example, as shown in Figure 3(a),
the relative position expression for the flower is
‘the flower which is lightpink at
the right side of the cat which is
dimgray and non-transparent’.

3.3. Dataset Split and Task Settings

In total, We have 13,187 matting entities. We split out
11,799 for constructing the training set and 1,388 for the
test set. For the training/test split, we reserve the original
split in the source matting datasets except for moving all the
long-tailed categories to the training set. However, the cate-
gories are not balanced since most of the entities belong to
the human or animal categories. The proportion of humans,
animals, and objects is 9186:1800:813 in the training set and
977:200:211 in the test set. To balance the categories, we du-
plicate some entities to modify the proportion to 5:1:1, lead-
ing to 10550:2110:2110 in the training set and 1055:211:211
in the test set. We then pick 5 humans, 1 animal, and 1 object
as one group and feed them into the composition engine to
generate an image in RefMatte. For each group in the train
split, we composite 20 images with various backgrounds.
For the one in the test split, we composite 10 images. The
ratio of relationships left/right:top/bottom:in front of/behind

is set to 7:2:1. The number of entities in each image is set
to 2 or 3 but fixed to 2 for relationships front of/behind to
preserve each entities’ high resolution. Finally, we have
42,200 training and 2,110 test images. To further enhance
the diversity of the composite images, we randomly choose
entities and relationships from all candidates to form another
2,800 training images and 390 test images. Finally, we have
45,000 training images and 2,500 test images.
Task settings To benchmark RIM methods given different
forms of language descriptions, we set up two settings upon
RefMatte. We present their details as follows:
1. keyword-based setting The text description in this setting

is the keyword, which is the entry-level category name
of the entity, e.g., flower, human, and alpaca in Figure 3.
Please note that we filter out images with ambiguous
semantic entities for this setting;

2. Expression-based setting The text description in this
setting is the generated expression chosen from the basic
expressions, absolute position expressions, and relative
position expressions, as seen in Figure 3.

Table 1. Statistics of RefMatte and RefMatte-RW100.

Dataset Split
Image
Num.

Matte
Num.

Text
Num.

Category
Num.

Text
Length

RefMatte train 30,391 77,849 77,849 230 1.06
Keyword test 1,602 4,085 4,085 66 1.04
RefMatte train 45,000 112,506 449,624 230 16.86

Expression test 2,500 6,243 24,972 66 16.80
RefMatte-RW100 test 100 221 884 29 12.01

Real-world test set Since RefMatte is built upon composite
images, a domain gap may exit when applying the models to
real-world images. To further investigate the out-of-domain
generalization ability of RIM models, we establish a real-
world test set RefMatte-RW100, which consists of 100 high-
resolution natural images with 2 to 3 entities in each image.
The expressions are annotated by specialists following the
same rules in Sec. 3.2, but in freestyles. The high-quality
alpha mattes are generated by specialists via image editing
software, e.g., Adobe Photoshop and GIMP. We show some
examples in Figure 2. Furthermore, we show some statistics
of RefMatte and RefMatte-RW100 in Table 1, including the
number of images, alpha mattes, text descriptions, categories,
and the average length of texts. 1.

4. A Strong Baseline: CLIPMat
4.1. Overview

Motivated by the success of large-scale pre-trained vision-
language models like CLIP [41] on downstream tasks, we
also adopt the text encoder and image encoder from CLIP

1More details of RefMatte, including the distribution of matting entities,
linguistic details, and statistics are in the supplementary materials.
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Figure 4. The diagram of the proposed method CLIPMat. The top indicates the whole pipeline, and the bottom describes each module.

as our backbone. We choose ViT-B/16 and ViT-L/14 [5] as
the image encoder backbone (to demonstrate that the scal-
ability of model size also matters in image matting for the
first time). As for the decoder, different from RIS meth-
ods [30,43] that predict a coarse segmentation mask through
a single decoder, RIM is a task that requires both global
semantic and local details information [19]. Thus, we utilize
the dual-decoder framework from state-of-the-art matting
methods [18, 20] to predict a trimap and the alpha matte in
the transition area, respectively. We name them the matting
semantic decoder and matting details decoder in CLIPMat.
The input of our method is an image with a text description,
which can be either a keyword (e.g. people) or an ex-
pression (the handsome man that is smiling
and playing with his dog), as shown in Figure 4.
The output is the meticulous alpha matte of the target object.

4.2. CP: Context-embedded Prompt

Although some previous works have already adopted
prompt engineering [41, 61] to enhance the understanding
ability of the text input, how to adapt them in RIM is un-
explored. In our work, we design two kinds of contexts to
be embedded in the original prompt, named pre-embedding
context and post-embedding context, as shown in Figure 4.
Both of them have been proven effective in the experiments.
We present the details as follows.
Pre-embedding context For the keyword setting, to reduce
the gap between a single word and the CLIP model pre-
trained on long sentences, we create a bag of matting-related
customized prefix context templates, including “the fore-
ground of {keyword}”, “the mask of {keyword}”, “to ex-
tract the {keyword}” and so on. We add the pre-embedding

context to the keyword directly before tokenization, ensuring
that the text encoder can understand the image matting task
by adapting the encoded knowledge during pre-training.
Post-embedding context To improve the ability of the text
encoder to understand the text, we follow the work [61] to
add some learnable context appended to the tokenized text
in both keyword and expression settings. Since the length of
text space and context is different in the two settings, we use
14 and 69 for text length in keyword and expression settings,
respectively, while the length of learnable context is fixed to
8 for both settings.

4.3. TSP: Text-driven Semantic Pop-up

To ensure the text feature from the text encoder can pro-
vide better guidance on dense-level visual semantic percep-
tion, we propose a module named TSP (text-driven semantic
pop-up) to process the text and visual features before the
matting semantic decoder. Specifically, we abandon the last
project layer in both the image encoder and text encoder to
keep the original dimension. Thus, the input of TSP is the vi-
sual feature xv ∈ R(N+1)×Dv and text feature xt ∈ RL×Dt ,
where N = HW/P 2 stands for the resulting number of
patches after ViT transformer [5]. On the other hand, L
stands for the total length of the text and embedding con-
text, in our cases, which is 22 for the keyword-based setting
and 79 for the expression-based setting. We first normalize
them through layer norm, linear projection, and another layer
norm to achieve the same dimension D. We then pop up the
semantic information from the visual feature under the guid-
ance of the text feature via cross-attention [47]. In addition,
we adopt self-attention to further refine the visual feature
with a residual connection. Finally, we pass through the fea-
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Table 2. Results on the RefMatte test set in two settings and the RefMatte-RW100 test set.

Method Backbone Refiner Keyword-based setting Expression-based setting RefMatte-RW100
SAD MSE MAD SAD MSE MAD SAD MSE MAD

MDETR [13] ResNet-101 [10] - 32.27 0.0137 0.0183 84.70 0.0434 0.0482 131.58 0.0675 0.0751
CLIPSeg [30] ViT-B/16 [5] - 17.75 0.0064 0.0101 69.13 0.0358 0.0394 211.86 0.1178 0.1222

CLIPMat ViT-B/16 - 9.91 0.0028 0.0057 47.97 0.0245 0.0273 110.66 0.0614 0.0636
CLIPMat ViT-B/16 yes 9.13 0.0026 0.0052 46.38 0.0239 0.0264 107.81 0.0595 0.0620
CLIPMat ViT-L/14 [5] - 8.51 0.0022 0.0049 42.05 0.0212 0.0238 88.52 0.0488 0.0510
CLIPMat ViT-L/14 yes 8.29 0.0022 0.0027 40.37 0.0205 0.0229 85.83 0.0474 0.0495

ture to layer norm and a multilayer perception, obtaining the
feature of size RD′×h×w, where h = H

P and W = W
P . The

output feature is used as the input to the semantic decoder.
Since it has already encoded high-level visual semantic in-
formation, we only use two convolution blocks to predict the
trimap. Each contains two convolution layers and a bilinear
upsampling layer with a stride 4. We adopt the cross-entropy
loss in the semantic decoder following [19].

4.4. MDE: Multi-level Details Extractor

Same as TSP, we also abandon the final projection layer
from the CLIP image and text encoder. Since the matting
detail decoder requires local detail information to generate
meticulous alpha matte, we design the MDE to extract useful
local details from both the original image and multi-level
features from the image encoder. Specifically, we take the
output features from all four transformer blocks in the CLIP
image encoder, denoted as xi

v where i ∈ {1, 2, 3, 4}. For
each xi

v, we pass it and the original image Xm to MDE.
For xi

v, we first reshape and then normalize it by a 1 × 1
convolution layer. For Xm, we first normalize it by a 1 ×
1 convolution layer and then down-sample it to the same
size as xi

v via max pooling. They are concatenated to form
xi
f and fed into a convolution layer, a batch norm layer,

and a ReLU activation layer. Finally, the output feature is
used as the input to the corresponding decoder layer at each
level via a residual connection. Following [19], we use the
alpha loss and Laplacian loss in the matting details decoder.
The outputs from the two decoders are merged through the
collaboration module [19] to get the final output, supervised
by the alpha loss and Laplacian loss. More details of the
method can be found in the supplementary materials.

5. Experiments

5.1. Experiment Settings

Since there are no prior methods designed for the new
RIM task, we choose state-of-art methods from relevant
tasks, i.e., CLIPSeg [30] and MDETR [13], which are two
representative methods for the RIS and RES tasks, for bench-
marking. All the methods, and CLIPMat are trained on the

RefMatte training set and evaluated in two settings, i.e., the
keyword-based setting and expression-based setting.
Implementation details We resize the image to 512× 512
and adopt data augmentation following [19] to reduce the
domain gap of composite images. We use the Adam opti-
mizer. We train CLIPMat on two NVIDIA A100 GPUs with
the learning rate fixed to 1e-4. For the ViT/B-16 backbone,
the batch size is 12 and is trained for 50 epochs (about 1
day). For the ViT/L-14 backbone, the batch size is 4 and is
trained for 50 epochs (about 3 days). For CLIPSeg [30] and
MDETR [13], we use the code and the weights pre-trained
on VGPhraseCut [50] provided by the authors for training
them. However, we have not pre-trained CLIPMat on VG-
PhraseCut since we find that directly training it on RefMatte
could provide better performance.
Evaluation metrics Following the common practice in previ-
ous matting methods [18,19,53], we use the sum of absolute
differences (SAD), mean squared error (MSE), and mean
absolute difference (MAD) as evaluation metrics, which are
averaged over all the entities in the test set.
Matting refiner To further improve the details of alpha
matte, we propose a coarse map-based matting method as an
optional post-refiner. Specifically, we modify P3M [18] to
receive the original image and the predicted alpha matte as
input and train it on RefMatte to refine the alpha matte.

5.2. Main Results

5.2.1 Keyword-based Setting

We evaluate MDETR [13], CLIPSeg [30], and CLIPMat
on the keyword-based setting of the RefMatte test set, and
show the quantitative results in Table 2. As can be seen,
CLIPMat outperforms MDETR and CLIPSeg by a large
margin using either the ViT-B/16 or ViT-L/14 backbone,
validating the superiority of the proposed baseline method.
Besides, we also show that using a larger backbone and the
refiner could deliver better results. The best CLIPMat model
reduces error of MDETR by about 75% and the error of
CLIPSeg by about 50%, owing to the special design of the
three modules. As seen from the top row in Figure 5, with
the input keyword dandelion, CLIPMat is able to extract the
very fine details of the target from the background with a
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Figure 5. Subjective comparison of different methods on RefMatte and RefMatte-RW100 in different settings. The text inputs from the top
to the bottom are: 1) dandelion; 2) the flame which is lightsalmon and non-salient; 3) the woman who is with her back to the camera.

similar color. However, both CLIPSeg and MDETR fail in
this case, producing incomplete and blurry alpha mattes.

5.2.2 Expression-based Setting

We also evaluate these models on the RefMatte test set
and RefMatte-RW100 under the expression setting. Sim-
ilar to the keyword-based setting, the results in Table 2 also
demonstrate the superiority of CLIPMat over MDETR and
CLIPSeg, e.g., the best CLIPMat model reduces the error of
MDETR on the RefMatte test set by over 50% and the error
of CLIPSeg on RefMatte-RW100 by about 60%. Again,
using a larger backbone and the refiner help reduce the error.
As seen from the second row in Figure 5, CLIPMat outper-
forms others in extracting the fine details of the flame, which
are very close to the ground truth. The test image in the third
row is from RefMatte-RW100. Compared with CLIPSeg,
which produces the wrong foreground, CLIPMat is able to
find the right foreground by pop-upping the correct visual
semantic feature owing to the TSP module. The MDE mod-
ule helps CLIPMat preserve more details, e.g., the woman’s
hair, compared with MDETR. The results show the good
generalization ability of CLIPMat on real-world images and
confirm the value of the proposed RefMatte dataset.

5.3. Ablation Studies

We conduct ablation studies to validate the effectiveness
of our proposed modules. The experiments are carried out
in the keyword-based setting of RefMatte. We show the
results in Table 3. We can see that each module contributes
to performance improvement in terms of all the metrics, e.g.,
the combination of MDE and TSP reduces the SAD from
22.88 to 14.55. The use of CP further reduces the SAD to

TSP MDE Pre-CP Post-CP SAD MSE MAD
22.88 0.0097 0.0131

✓ 18.28 0.0068 0.0105
✓ ✓ 14.55 0.0050 0.0083
✓ ✓ ✓ 11.48 0.0036 0.0065
✓ ✓ ✓ 12.96 0.0045 0.0074
✓ ✓ ✓ ✓ 9.91 0.0028 0.0057

Table 3. Ablation studies results. TSP: text-driven semantic pop-
up; MDE: multi-level details extractor; Pre-/Post-CP: pre or post
context-embedded prompt. We use ViT-B/16 as the backbone.

9.91, validating that the customized matting prefix and the
learnable queries provide useful context for the text encoder
to understand the language instruction for image matting.2

6. Conclusion
In this paper, we define a novel task named referring im-

age matting (RIM), establish a large-scale dataset RefMatte,
and provide a baseline method CLIPMat. RefMatte provides
a suitable test bed for the study of RIM, thanks to its large
scale, high-quality images, and abundant annotations, as
well as two well-defined experiment settings. Together with
the RefMatte-RW100, they can be used for both in-domain
and out-of-domain generalization evaluation. Besides, the
CLIPMat shows the value of special designs for the RIM task
and serves as a valuable reference to the model design. We
hope this study could provide useful insights to the image
matting community and inspire more follow-up research.

2We show more ablation studies, experiment details, failure cases, and
more visual results in the supplementary materials.
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