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Abstract

With the continual expansion of face datasets, feature-
based distillation prevails for large-scale face recognition.
In this work, we attempt to remove identity supervision in
student training, to spare the GPU memory from saving
massive class centers. However, this naive removal leads to
inferior distillation result. We carefully inspect the perfor-
mance degradation from the perspective of intrinsic dimen-
sion, and argue that the gap in intrinsic dimension, namely
the intrinsic gap, is intimately connected to the infamous
capacity gap problem. By constraining the teacher’s search
space with reverse distillation, we narrow the intrinsic gap
and unleash the potential of feature-only distillation. Re-
markably, the proposed reverse distillation creates univer-
sally student-friendly teacher that demonstrates outstand-
ing student improvement. We further enhance its effective-
ness by designing a student proxy to better bridge the intrin-
sic gap. As a result, the proposed method surpasses state-
of-the-art distillation techniques with identity supervision
on various face recognition benchmarks, and the improve-
ments are consistent across different teacher-student pairs.

1. Introduction
Despite the unceasing emergence of larger and more

powerful models for face recognition (FR), industrial de-
ployment continues to demand for accurate and light-
weight solutions. Among other compression techniques like
pruning [27] and quantization [21], knowledge distillation
(KD) has been proven to be effective in producing high-
performing compact model from well-trained teacher. Un-
like classic KD [17] and its variants [14, 24, 43, 44] who
distill on logits, most of the existing works on FR distill on
features [11, 13] or feature-relations [8, 20, 35]. One key
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Figure 1. IResNet18 (IR18) is distilled by four different teach-
ers. Feature-only distillation (FO) shows performance degrada-
tion comparing to feature-based distillation with ID supervision
(FI). The proposed method (ReFO) significantly uplifts the perfor-
mance of FO distillation. For both FI and FO, the student perfor-
mance drops with larger teachers of lower intrinsic dimension. In
line plot: student performance (%) on MR-all benchmark [9]. In
bar plot: teacher’s intrinsic dimension (In.D).

reason is that the massive and still growing number of iden-
tities (IDs) in FR datasets, such as the 2 million IDs in Web-
Face42M [45], make it too expensive to save extra teacher’s
class centers for logits distillation.

The ground truth supervision from ID labels, which we
call ID supervision, is still retained when training student
models for better distillation results. Nonetheless, it is not
only non-trivial to find the right balancing weight [15, 33],
the obtained class centers are also not needed during infer-
ence in an open-set FR problem. This motivates the com-
plete removal of class centers in the student training for a
number of benefits: 1) speed, the student distillation breaks
free from the need of keeping any class center, providing
further training speed-up with even lower GPU memory oc-
cupancy; 2) access to unlabeled dataset, removing the de-
pendency on ID labels conveniently opens the door to the
vast quantity of unlabeled or uncleaned face images like
WebFace260M [45]; and 3) better focus on feature space,
which is what really matters in an open-set problem. Hence,
in this work, we are motivated to investigate feature distilla-
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tion for face recognition without ID supervision, which we
call feature-only (FO) distillation.

The capacity gap problem is widely observed in various
KD applications [7, 19, 30, 37], where the student finds it
increasingly difficult to learn from more powerful teacher
due to larger mismatch in network capacity. In FO distilla-
tion, the naive removal of ID supervision degrades student
performance with more severe capacity gap problem. As
shown in Fig. 1, comparing to the conventional feature dis-
tillation with ID supervision (FI distillation), the IResNet18
(IR18) students trained by four other teachers all experience
drops in performance when ID supervision is removed.

Pertinent works commonly agree that differing model
sizes cause the capacity gap issue [7, 20, 30, 40]. Some
remedies were proposed to mitigate the problem such as
early stopping [7] and training teacher assistants as inter-
mediate agents [30]. Liu et al. [26] further proved the im-
portance of teacher-student structural compatibility. For a
given teacher, their best student from Neural Architecture
Search outperformed other candidates of similar model size
in the search space. However, recent works like [3, 32]
showed that teachers of the same structure, same parameter
size and comparable accuracy can also have differing dis-
tillation results on the same student. Hence, there must be
other factors contributing to the capacity gap problem other
than model size and model structure.

In this work, we argue that the teacher-student gap in in-
trinsic dimension, namely the intrinsic gap, plays a part.
The intrinsic dimension [2, 16, 36] of a feature space is
the minimum number of variables needed to unambigu-
ously describe all points in the feature space. Specifically
for a model, lower intrinsic dimension is often associated
with better generalization power and better performance for
both general classification [2] and face recognition [16]. In
Fig. 1, as the teacher gets stronger with lower intrinsic di-
mension, we observe a drop in student performance with
wider intrinsic gap for both FI distillation and FO distilla-
tion. If narrower intrinsic gap is related to better distillation
result, can the capacity gap problem be mitigated by closing
the intrinsic gap? This sparkles the idea that whether it is
possible to narrow the intrinsic gap by raising teacher’s in-
trinsic dimension for easier student-learning, neither chang-
ing its model size nor model structure.

Firstly, we revisit FO distillation and point out the intrin-
sic gap as another factor that could cause ineffective dis-
tillation. Then a reverse distillation strategy is proposed
to solve the problem by injecting knowledge about higher
intrinsic dimensional feature space into the teacher train-
ing. With reverse-distilled teachers, students trained with
just FO distillation loss like mean-square-error (MSE) show
performance on par or even better than competitors trained
by sophisticatedly designed distillation loss with ID super-
vision [20, 35]. The proposed method is thus fast and ver-

satile, it can be online or offline and easily portable to unla-
beled datasets. On top of that, we further improve the dis-
tillation results by allowing the teacher to learn from more
light-weight student proxies. This better closes the intrin-
sic gap and we are able to obtain state-of-the-art (SOTA)
student models on popular face recognition benchmarks.

To summarize, the contribution of this work includes:

• We reconsider the capacity gap issue in FO distillation
and provide an alternative view from the perspective
of the intrinsic dimension. The gap in the intrinsic di-
mension between the teacher and the student is found
to be related to the distillation performance.

• We propose a novel training scheme that narrows the
teacher-student intrinsic gap via reverse distillation in
the teacher training. Furthermore, we enhance its ef-
fectiveness by designing light-weight student proxies
as the reverse distillation targets. Students trained
by the new teachers show consistent performance im-
provement on FO distillation.

• Our method pushes the limit of FO distillation with
easier-to-learn teacher. With only feature distillation
loss, resulting students are shown to be superior than
students trained by other SOTA distillation techniques
with ID supervision.

2. Related Works
Feature-based Knowledge Distillation. Over the past
decade, numerous distillation techniques emerged study-
ing where, what and how to distill. For face recognition,
feature-based distillation techniques are the most relevant.
FitNets [38] proposed to distill the intermediate feature
maps with the help of a regressor for dimension matching.
AT [25] encouraged the attention maps of the teacher and
the student to be similar. Works like FT [23] further stud-
ied how to transform teacher features and student features
for efficient distillation. These methods focus on individual
data point and are usually referred as instance-level distilla-
tion. From another perspective, relation-based distillations
focus on preserving the structural information between fea-
tures. RKD [33] proposed to transfer mutual relations in a
mini-batch via pair-wise distance loss and triplet-wise an-
gle loss on embeddings. CCKD [35] used the batch feature
correlation matrix as the medium for knowledge transfer.

Works specialized in face recognition are also worth
mentioning. ShrinkTeaNet [11] proposed to minimize
the angle between each teacher-student embedding pair.
MarginDistillation [8] reused teacher’s class weights in the
student training and forced the student to have the same
sample-to-prototype margin as the teacher. TripletDistil-
lation [13] followed triplet-based training scheme and en-
couraged the student margin to be simialr to the teachers.
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EKD [20] introduced a novel rank-based loss to select key
pair-relations to be distilled to the student.

The above mentioned methods all put emphasis on stu-
dent learning and neglect the teacher’s compatibility to the
student. Although some relational methods like EKD try to
make learning easier by imposing less stringent constraints
on the student, effective knowledge transfer can still be
challenging with exceedingly difficult teacher.

Knowledge Distillation with Customized Teachers.
Dealing with the notorious capacity gap problem, many
works have also attempted to solve the issue from the
teacher side. Mirzadeh et al. [30] proposed multi-step dis-
tillation via teacher assistant to bridge the gap, while Cho et
al. [7] discovered that early stopping of the teacher training
mitigates the problem. However, their effectiveness heav-
ily depends on choice of the right intermediate network
structure or the right epoch for early stopping. More re-
cently, SH-KD in [3] proposed to freeze the student clas-
sifier weights for the teacher training. SFTN [32] trained
teachers to optimize the student branches jointly with ID su-
pervision, providing a snapshot of the student in the teacher
training. It needs special design of the joint-training po-
sition and the distillation has to be online, requiring the
teacher backbone running multiple forward inferences dur-
ing the student distillation. This adversely affects distilla-
tion efficiency since teacher model tends to be large.

These works all used ID supervision in the student train-
ing. In the proposed method, the student is distilled with
just feature distillation loss. In our training of student-aware
teachers, we do not introduce any additional module and
there is no special design in the training loss.

3. Method
In this section, we first review the capacity gap problem

in FO distillation. A connection is established between the
teacher-student intrinsic gap and the student’s inability to
reproduce the teacher’s feature space. Reverse distillation
is then proposed as a remedy to the problem. Moreover, we
improve the strategy by designing more light-weight stu-
dent proxies used in reverse distillation, and further enhance
the distillation result with narrower intrinsic gap.

3.1. Feature-only Distillation and the Intrinsic Gap

The general loss function used in KD can be written as:

L = γLcls + αLlogit + βLfeat, (1)

where Lcls denotes the classification loss with ground truth
label, Llogit and Lfeat refer to the distillation loss on logits
and features respectively.

For FO distillation, γ and α are both zero, concerning
only with the design of the Lfeat term. For face recognition,

the prevalent choice is to take certain distance metric on the
network embeddings. Following common practices [3, 11,
35], we use MSE loss on normalized embeddings as shown
in Eq. (2).

Lemb = Lfeat(fs,f t) =
1

N

N∑
i=1

∥∥∥∥∥ f i
s∥∥f i
s

∥∥
2

− f i
t∥∥f i
t

∥∥
2

∥∥∥∥∥
2

2

,

(2)
where fs and f t refer to student embedding vector and
teacher embedding vector respectively, N is the batch size.
This is conceptually equivalent to matching embeddings on
the unit hypersphere or minimizing their angular distances.

Beyer et al. [4] proposed to view distillation as a pure
function matching task, where the student model is trained
to reproduce every output of the teacher model. They re-
moved Lcls and performed function matching on logits.
Similarly, our feature-only distillation is essentially a func-
tion matching task on the feature space of the embeddings.

Function matching in the feature space, however, is a
much more stringent constraint than function matching on
the logits. The later only specifies comparative similarities
to the class prototypes, which allows the student model to
establish its own preferred feature distribution as long as
the sample-to-prototype relationships hold. Feature-based
function matching, on the other hand, forces the student to
mimic the entire teacher’s feature space which can be too
ambitious to handle. When ID supervision signal is avail-
able, the points that are challenging to imitate can be guided
to attainable positions that satisfy the relational constraints
imposed by ID supervision. In the absence of ID super-
vision, the student loses guidance for free exploration and
relies solely on its ability to mimic the teacher.

The student’s inability to mimic the teacher’s feature
space now lies at the center of the problem. As inspired by
existing works on intrinsic dimension [2, 16], we estimate
the intrinsic dimension of common face recognition models
using the TwoNN [12] method as applied in [2]. The results
are listed in Tab. 1, which show that, in general, weaker
model inherently converges to a feature space of higher in-
trinsic dimension.

Geometrically, intrinsic dimension describes the com-
pactness of feature manifold and often indicates model per-
formance [2,16,28]. It represents the model’s ability to gen-
eralize against noise and non-discriminating variables for
the task. The lower the intrinsic dimension, the less non-
relevant noise in the feature space. In the process of FO dis-

Table 1. The intrinsic dimension (In.D) of common face recogni-
tion models. Details of the calculation can be found in Sec.2 of the
supplementary material.

Model MFN ires18 ires34 ires50 ires100

In.D 8.645 6.792 5.559 5.105 4.539
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Figure 2. The proposed ReFO training scheme. S′ is a student model trained with standard supervision on dataset D1. It is frozen to
extract embeddings to guide the training of teacher T with Lemb, and T is additionally trained by Lcls on D1. T is then frozen to extract
embeddings on D2 which acts as the sole supervision for training final student S with Lemb.

tillation, students learn to remove redundant information,
transforming towards more compact and teacher-like man-
ifold. Intrinsic gap essentially quantifies the complexity of
the required transform hence the distillation difficulty.

3.2. Reverse Distillation

Based on the above interpretation, if the student has
reached its bottleneck to mimic the teacher with lower in-
trinsic dimension, can the teacher raise its intrinsic dimen-
sion instead, to bridge the intrinsic gap and enabling easier
student learning? Note that the intrinsic dimension is not an
absolute performance predictor1. It is theoretically possible
to obtain model with higher intrinsic dimension under addi-
tional constraint without compromising its performance.

In this section, we propose to solve the aforementioned
problem by injecting knowledge about higher intrinsic di-
mensional feature space into the teacher training. As shown
in Fig. 2, the overall distillation process can be achieved by
a two-stage training scheme which we call Reverse distil-
lation empowered Feature-Only (ReFO) distillation.

The first stage is the reverse distillation from the student
to the teacher. First of all, an initial student S′ is trained on
dataset D1 with ID supervision Lcls. The parameters of S′

are frozen to obtain its embeddings on D1. The teacher
T is then trained on D1. Besides Lcls, its optimization
is guided with the embedding distillation loss Lemb by the
initial student S′. This essentially constrains the teacher’s
search space on higher intrinsic dimension, closer to the in-
nate disposition of the student. We refer to the teacher as
being tailored to S′, represented by T ← S′. In the second
stage of FO distillation, we freeze the teacher’s parameters
to obtain its embeddings on dataset D2. These embeddings
are used for the training of the final target student S. Fi-
nally, S is trained only by the embedding distillation loss

1E.g. the VGGs in Fig.4 of [2] does not compare meaningfully with the
ResNets but the trend still holds within the VGG family.

Lemb with embeddings from T .
Formally, the proposed ReFO distillation is described in

Algorithm 1. The distillation can be offline, where the fea-
tures obtained in step 2 and 4 are saved in advance to avoid
multiple forward inferences during training. For online dis-
tillation, these features can be generated on-site, providing
consistent distillation view across data augmentation [4].

Intrinsic dimension ultimately depends on the embed-
ding distribution in the feature space as it is estimated from
distances between neighboring points (Suppl. Eq.1). Re-
verse distillation encourages the teacher’s embedding distri-
bution to resemble the student’s, and essentially constrains
the teacher to optimize in restricted search space of higher
intrinsic dimension. Experiments in Sec. 4.3 show that this
design is able to raise the teacher’s intrinsic dimension and
brings consistent improvements to students trained by FO
distillation. The students generally converge faster and at-
tain much lower MSE loss, finding the new student-aware
feature space easier to learn.

Since the teacher training dataset D1 and the student
training dataset D2 are independent and no ID supervision
is required in the student training, the proposed method can
easily exploit abundant unlabeled datasets as D2 to reap ad-
ditional performance gains.

3.3. Further Bridging the Intrinsic Gap

Encouraged by the effectiveness of ReFO, we continue
the pursuit of pushing the limit FO distillation. It is ob-
served in Sec. 4.3.2 that teacher tailored to a specific stu-
dent shows universal improvements on other students. For
example, IResNet100 (IR100) tailored to IR18 brings 3% of
improvement on IR34 as well on MR-all [9]. We are won-
dering if it is possible guide teacher’s optimization with a
student of even higher intrinsic dimension, so that the in-
trinsic gap can be better bridged. Observing that smaller
models usually have higher intrinsic dimension, we propose
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Algorithm 1 ReFO Knowledge Distillation

1: Train a student model S′ on dataset D1 with standard
classification loss for face recognition.

L = Lcls.
2: Obtain features of model S′ on dataset D1.
3: Train tailored teacher model T on dataset D1 with clas-

sification loss and embedding distillation loss using fea-
tures from step 2.

L = Lcls + β1Lemb(f t,fs′).
4: Obtain features of model T on dataset D2.
5: Train final student model S on dataset D2 with embed-

ding distillation loss using features from step 4.
L = β2Lemb(fs,f t).

to design a light-weight student proxy as the target for re-
verse distillation.

Rather than using exactly the same student structure for
stage 1 and 2, we propose to train a half-depth student proxy
as S′ in step 1 of Algorithm 1. Specifically, for block-
based network structure like IResNet and MobileFaceNet
(MFN) [5], we reduce the number of blocks in each block
group according to a pre-set ratio Sd = 0.5. When non-
integer block number is incurred, we always round it down
but ensuring it is at least 1. For example, the block number
of an official MFN is [4, 6, 3]. If scale Sd = 0.5, the block
number is set to [2, 3, 1]. The rest of the distillation proce-
dure is the same as ReFO. This revised training scheme with
student proxy is referred as Enhanced-ReFO (ReFO+).

Besides depth reduction, there are many other ways to
design light-weight student proxies. We examine a few
choices in Sec. 4.4 and discover that there is a limit to how
small the student can be. The optimal student proxy struc-
ture may vary for each target student network, and we leave
the search for the optimal structure for future work. The
intention of this work is to show that using a more light-
weight student proxy can better close the intrinsic gap and
bring further improvement to the student.

4. Experiments

4.1. Datasets

Training. We use MS1MV2 [10] as the standard training
data for fair comparisons. Additionally, Glint360k [1] is
used without ID labels to show our effectiveness on unla-
beled dataset. MS1MV2 contains about 5.8M images of
85k individuals, while Glint360k contains 17M images.
Testing. Test results are reported on popular face bench-
marks, including LFW [18], CFP-FP [39], AgeDB [31],
IJB-C [29], MegaFace [22] and the newly proposed
ICCV21-MFR [9]. The first three are typical face veri-

fication test sets. IJB-C is a challenging template-based
benchmark with 3.5k IDs from images and wild video
frames. MegaFace evaluates face recognition (FR) accu-
racy on 100k images belonging to 530 IDs under the 1M
distractors images from 690k IDs. The largest and the
most recently introduced ICCV21-MFR is a comprehen-
sive large-scale benchmark for FR, containing the follow-
ing three tracks: Mask, Children, and Multi-racial (MR-all).
Specifically, Mask set contains 7k IDs, and Children set in-
cludes 14k IDs. The largest MR-all set contains 4.69M pos-
itive pairs and 2.6 trillion negative pairs, composed of 1.6M
images involving 242k IDs. We adopt ICCV21-MFR as the
primary criterion in design selection and ablation study.

4.2. Experimental Settings

Network input & output. We follow [10] to preprocess
the data with five landmarks [42]. Network inputs have the
size of 112× 112 and are normalized to [−1, 1]. The output
embedding size is 512.
Teacher-student pair. IResNet100-IResNet18 (IR100-
IR18) and IResNet50-MobileFaceNet (IR50-MFN) are the
two default teacher-student pairs. Various other networks
are also investigated. All models from the IResNet family
follow the original design in [10]. The standard Mobile-
FaceNet (MFN) is used with the default channel scale. For
MobileNetV2 (MNv2), the last Conv layer of the backbone
is modified for embedding size consistency.
Training. All experiments are conducted on 8 NVIDIA
Tesla V100 GPU with Pytorch [34]. All models are trained
from scratch using SGD with 20 epochs. The batch size is
512 on each GPU, and the learning rate starts at 0.4 with
poly scheduler. The momentum is 0.9 and the weight decay
is 5e−4. The default weights for β1 and β2 are 0.5 and 5.
The Arcface [10] loss with default settings is used as the ID
supervision. Random flip with a probability of 0.5 is the
only data augmentation strategy.
Testing. We follow prevailing test protocols in reporting
model performance. Specifically, 10-fold validation is used
for LFW, CFP-FP, AgeDB. For MegaFace, performance is
reported with provided refinement. For 1:N verification,
track identification(Id) is reported for the rank-1 face iden-
tification accuracy with 1M distractors. For 1:1 verification,
track verification(Ver) is reported for the face verification
TAR at 1e−6 FAR. For IJB-C, we follow common test pro-
cedure as in [9, 10]. For ICCV21-MFR [9], we report the
performance in all three tracks with official setting2.

4.3. Results on ReFO

ReFO turns out to be surprisingly effective for FO distil-
lation. As shown in Tab. 2, tailored teachers all have lower
intrinsic gaps with the students. The narrower intrinsic gaps

2True Positive Rate (TPR) @ False Positive Rate (FPR) = 1e−6 for
MR-all, TPR@FPR=1e−4 for Children and Mask
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Table 2. The Intrinsic gap and student performance of various
students with IR100 as the common teacher. ReFO boosts all stu-
dents’ performance (%), evaluated on MR-all. Corresponding in-
trinsic gaps (w.r.t. IR100) are found to be narrower.

Student Intrinsic Gap MR-all/%
FO ReFO FO ReFO

MFN 4.10 3.75 53.86 57.27
MNv2 3.53 3.08 58.33 63.04
IR18 2.25 2.03 61.70 66.13
IR34 1.02 0.97 73.17 75.07

are manifested as better distillation results, and improve-
ments are observed for multiple teacher-student pairs. On
average, the students taught by the tailored teachers outper-
form their peers by 3.6%.

The students also converge faster during training and
achieve lower MSE loss. As shown in Fig. 3a, the IR18 stu-
dent trained by the tailored IR100 teacher settles at around
half of the training loss compared to the one trained by the
original IR100 teacher. The faster convergence and lower
final loss suggest better and easier imitation of the teacher’s
feature space, which proves the effectiveness of ReFO and
confirms that better student performance comes from an
easier-to-learn feature space.

4.3.1 Impact on Teacher

Tailored teachers have higher intrinsic dimension as shown
in Tab. 3. This is observed for all teacher-student pairs, and
smaller student model produces teacher with the higher in-
trinsic dimension. The absolute change may not appear sig-
nificant, but the relative change in the intrinsic gap ranges
from 4.9% to 12.7% with reference to Tab. 2. With the in-
terpretation of intrinsic gap representaion distillation diffi-
culty, the relative change in intrinsic gap matters more.

Moreover, teachers’ accuracies are shown to be compa-
rable or even better than the baseline trained with standard
ID supervision. This sets ReFO apart from methods like
early stopping [7] that lowers the teacher’s performance to
bridge the capacity gap. In contrast, reverse distillation
pushes the teacher’s intrinsic dimension higher by imposing
extra constraints without compromising its accuracy. The
teacher is able to find a solution in the higher intrinsic di-
mensional space that is of the similar level of performance.

Table 3. Reverse distillation raises teacher’s intrinsic dimension
(In.D) without lowering its performance (%), evaluated on MR-
all.

Original IR100 tailored to
IR100 MFN MNv2 IR18 IR34

In.D 4.53 4.91 4.98 4.75 4.58
MR-all/% 79.06 80.07 81.30 81.67 81.53
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Figure 3. Training loss evolution of FO distillation with MSE loss.
The students trained by tailored teachers show faster convergence
and lower final loss. (a): IR18 model. (b): IR34 model. IR100:
the student trained by original IR100. IR100←IR18: the student
trained by IR100 tailored to IR18.

4.3.2 Universally Friendly ReFO Teacher

Interestingly, the benefit from reverse distillation is ob-
served to be non-exclusive to the student structure the
teacher being tailored to. As shown in Tab. 4, it is clear
that the teacher tailored to one student shows improvement
on another. For instance, the MNv2 model trained by IR100
tailored to MFN enjoys a boost in performance by 4.9%. We
repeat the experiment with teacher tailoring to IR18 and the
same phenomenon is observed.

By raising the teacher’s intrinsic dimension, reverse dis-
tillation has changed the teacher feature space in a generic
way in favor of FO distillation for all students. Fig. 3b also
shows that the IR34 model enjoys similar lowered training
loss as IR18 when trained by the IR100 tailored to IR18.

Table 4. Teachers tailored to MFN and IR18 show universal im-
provements on students’ accuracies (%) with FO distillation, eval-
uated on MR-all. A←B refers to A that is reverse-distilled by B.

Teacher Student
MFN MNv2 IR18 IR34

IR100 53.86 58.32 61.70 73.16
IR100←MFN 57.27 63.22 66.58 76.18
IR100←IR18 56.53 63.57 66.13 76.01

4.4. Ablation Studies on ReFO+

4.4.1 Ablation on Different Student Proxy

Inspired by the results in Tab. 4 that IR18 actually benefits
more from IR100 tailored to MFN. It is natural to wonder if
we can push the limit of FO distillation by designing a light-
weight student proxy S′. The effectiveness of the proposed
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half-depth proxy of IR18 and MFN are presented as ReFO+
in Tab. 6 and Tab. 7 respectively.

In this section, we further investigate the effect of dif-
ferent layer scale ratio Sd using MFN as an example. In
addition, we include experiments on channel slimming as
an alternative option for designing student proxy. For chan-
nel slimming, we proportionally reduce the number of all
channels to a pre-set ratio Sc (0.25, 0.5, and 0.75), except
for the final embedding which remains constant as 512.

As shown in Fig. 4, both designs bring extra performance
boost compared to the ReFO baseline (found at scaling ra-
tio = 1.0). Depth reduction shows superior performance
overall. For depth reduction, the best result is obtained at
Sd = 0.5 with the lowest intrinsic gap. When the Sd con-
tinues to drop to 0.25, leaving the student with only 140k
parameters, we observe a drop in student performance. This
shows that there is a limit to how small the student can be.
Notice that this drop in student performance is accompanied
by a rise in intrinsic gap as Sd changes from 0.5 to 0.25.

0.25 0.5 0.75 1.0
55

56

57

58

59

60

M
R-

Al
l A

cc
ur

ac
y/

%

channel
depth

2.0

3.0

4.0

5.0

6.0

7.0

In
tri

ns
ic 

Ga
p/

#

Figure 4. Effects of channel slimming and depth reduction on
MFN. In line plot with markers: student performance (%) eval-
uated on MR-all. In bar plot: the teacher-student intrinsic gap.

4.4.2 Ablation on Training Specification

We investigate the sensitivity of ReFO+ with respect to
a few training settings on the IR100-IR18 teacher-student
pair. With reference to Tab. 5, Norm indicates whether L2
normalization is performed on embeddings during reverse
distillation. LReverse

emb and LFO
emb refer to the type of distance

metric used in the reverse distillation and the FO distillation
respectively. We perform experiments on a combination of
these settings in Tab. 5. The student performance appear to
be comparable, exhibiting good robustness against changes
in training loss. The slightly better option in bold italic is
used as the final training setting.

In the last row, we add back ID supervision on top of
the optimal setting with γ = 1.0, and are surprised to find
a slight drop in the student performance. This may be a
result and inappropriate weight proportion in the loss func-
tion, which testifies the sensitivity of the balancing weight
for ID supervision as mentioned in Sec. 1.

Table 5. Ablation of training specifics on IR18 shows robustness
against changes in training loss. LReverse

emb and LFO
emb are the em-

bedding distance metric for stage 1 and 2 respectively. SmL1 refers
to Smooth L1 loss, and Lcls is arcface loss with default settings.

Stage 1 Stage 2

Norm LReverse
emb LFO

emb Lcls MR-all

✓ MSE MSE × 68.518
× MSE MSE × 68.500
× SmL1 MSE × 68.563
× SmL1 SmL1 × 68.239
× SmL1 MSE ✓ 68.269

4.5. Comparison with SOTA Methods

In this section, we compare our methods with sev-
eral SOTA competitors on various benchmarks using two
teacher-student pairs (IR100-IR18 & IR50-MFN). For our
method, we report the offline performance for ReFO and
ReFO+ with the settings specified in Sec. 4.2 and Sec. 4.4.

Additionally, since FO distillation can be easily extended
to Unlabeled Dataset. We further present ReFO+ (UD) as
an example to demonstrate the amount of improvement we
can obtain from a larger unlabeled face dataset.

In Tab. 6 and Tab. 7, we compare with general KD meth-
ods [6,17,33,35,38,41], FR specific KD methods [8,11,20]
and student-aware KD methods [3, 32]. They are further
grouped into three categories with horizontal rules for eas-
ier comparison. The first group are student-centric, where
teachers are not given any information about students. The
second group contains two recent student-aware methods.
The third group encapsulates our ReFO variants which are
also student-aware. When available, we cite the results
from [8, 20]. Results that we additionally reproduced are
labeled with ∗.

On the three small benchmarks (LFW, CFP-FP and
AgeDB) most distillation techniques show comparable per-
formances for both teacher-student pair. While EKD [20]
and SH-KD [3] produce better results than the rest, our
methods show the best performance. IJB-C and MegaFace
evaluate model performance on 1:1 verification and 1:N
identification. EKD [20], designed specially for 1:1 met-
ric, and student-aware methods [3, 32] generally show bet-
ter performance on these two benchmarks. Our methods are
also among the top performers with comparable results.

The last 3 columns report the results on the largest and
most comprehensive ICCV21-MFR benchmarks. Student-
aware methods, SFTN, SH-KD and our ReFO variants,
show clear advantage in this track for both teacher-student
pairs. ReFO+ demonstrates best performance overall, sur-
passing the best competitor on MR-all by 1.3% (IR18-
IR100) and 1.48% (IR50-MFN).

With unlabeled data, ReFO+ (UD) easily outperforms
ReFO and ReFO+ by a significant margin on almost all
benchmarks. On MR-all, it brings 3.79% (IR18-IR100) and
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Table 6. Comparison with SOTA methods, the IR100-IR18 pair. Lcls: whether ID supervision is used. ReFO+ attains overall SOTA
performance and shows great advantage on the most comprehensive ICCV21-MFR benchmark. With unlabeled dataset, ReFO+ (UD)
significantly outperforms ReFO+. The best and second best results excluding ReFO+ (UD) are in bold and italic respectively.

Method Lcls LFW* CFP-FP* AgeDB* IJB-C* MegaFace* ICCV21-MFR*
1e− 4 1e− 5 Id(R) Ver(R) MR-all Children Mask

IR100 (teacher) ✓ 99.78 98.40 98.27 96.39 94.58 98.73 98.98 79.07 48.57 59.43
IR18 (student) ✓ 99.67 94.60 97.33 93.99 91.14 96.22 96.66 65.97 38.44 45.41
KD (’15) [17] ✓ 99.72 94.11 97.35 93.89 89.90 96.44 96.83 63.70 39.11 45.38
FitNet (’15) [38] ✓ 99.68 95.07 97.60 94.18 91.21 96.44 96.72 65.53 40.04 44.55
DarkRank (’18) [6] ✓ 99.65 94.84 97.70 94.22 91.31 96.42 96.86 66.23 37.95 45.80
SP (’19) [41] ✓ 99.67 94.99 97.57 93.90 91.20 96.11 96.39 63.96 38.79 44.31
CCKD (’19) [35] ✓ 99.70 93.57 97.33 93.58 89.85 96.01 96.51 61.19 33.01 42.89
RKD (’19) [33] ✓ 99.52 93.46 97.00 93.56 90.20 95.87 96.31 63.69 38.96 44.14
EKD (’22) [20] ✓ 99.63 95.95 97.73 94.37 90.60 96.23 97.17 65.45 39.98 46.01
SFTN (’21) [32] ✓ 99.61 94.76 97.52 94.02 90.87 96.36 96.72 66.18 40.66 45.22
SH-KD (’22) [3] ✓ 99.65 95.33 97.80 94.34 90.93 96.54 97.06 67.26 40.19 45.61
ReFO (ours) × 99.65 95.79 97.63 94.31 90.90 96.42 96.96 66.13 40.46 47.09
ReFO+ (ours) × 99.72 96.23 97.83 94.28 91.31 96.42 97.06 68.56 41.49 48.72
ReFO+ (UD) (ours) × 99.65 97.39 97.70 94.95 92.47 96.90 97.33 72.35 43.54 53.78

Table 7. Comparison with SOTA methods, the IR50-MFN pair. Lcls: whether ID supervision is used. In general, ReFO or ReFO+ are
found among the top two performers. On the largest ICCV21-MFR benchmark, ReFO+ demonstrates clear superiority. With unlabeled
dataset, ReFO+ (UD) boosts the performance of ReFO+ by a large margin for all benchmarks. The best and second best results excluding
ReFO+ (UD) are in bold and italic respectively.

Method Lcls LFW CFP-FP AgeDB IJB-C* MegaFace ICCV21-MFR*
1e− 4 1e− 5 Id(R) Ver(R) MR-all Children Mask

IR50 (teacher) ✓ 99.80 97.63 97.92 96.05 93.96 98.14 98.34 75.48 49.41 54.50
MFN (student) ✓ 99.52 91.66 95.82 92.16 85.83 90.91 92.71 53.43 24.71 27.90
KD (’15) [17] ✓ 99.50 91.71 95.93 86.96 69.98 90.40 92.00 50.77 26.36 25.74
FitNet (’15) [38] ✓ 99.47 91.30 96.18 91.73 86.07 91.16 92.34 54.46 26.62 28.47
DarkRank (’18) [6] ✓ 99.55 91.84 95.60 92.15 86.28 90.76 92.41 56.82 28.84 30.07
SP (’19) [41] ✓ 99.53 92.33 96.17 91.79 87.22 91.25 92.41 54.44 26.63 29.75
CCKD (’19) [35] ✓ 99.47 91.90 95.83 91.73 85.75 91.17 92.76 55.64 27.65 30.22
RKD (’19) [33] ✓ 99.58 92.13 96.18 89.36 81.88 91.44 92.92 53.92 27.91 27.94
ShrinkTeaNet (’19) [11] ✓ 99.47 91.97 96.00 91.50 86.23 90.73 92.32 55.28 27.73 30.24
MarginKD (’21) [8] ✓ 99.61 92.01 96.55 91.02 83.39 91.70 92.96 50.73 25.14 28.54
EKD (’22) [20] ✓ 99.60 94.33 96.48 92.28 86.47 91.02 93.08 56.60 28.95 32.14
SFTN* (’21) [32] ✓ 99.48 92.77 96.30 90.96 82.67 91.69 93.38 55.50 28.51 29.66
SH-KD* (’22) [3] ✓ 99.47 94.67 96.53 91.75 85.76 92.51 93.93 57.69 30.15 32.01
ReFO (ours) × 99.55 94.51 96.92 92.23 87.55 92.38 93.80 56.63 33.36 31.88
ReFO+ (ours) × 99.65 94.77 96.42 92.41 87.80 92.41 93.75 59.17 32.80 32.24
ReFO+ (UD) (ours) × 99.67 95.61 97.07 93.51 89.41 93.23 94.16 63.32 33.21 37.72

4.15% (IR50-MFN) improvements on top of ReFO+.

5. Conclusion

In this work, we re-examined the capacity gap problem
in FO distillation in the context of face recognition. Besides
model size and model structure, we offered a new view on
capacity gap from the perspective of teacher-student intrin-
sic gap. We proposed to narrow the intrinsic gap by incorpo-
rating reverse distillation in teacher training. The resulting
teacher turned out to have universally easier-to-learn fea-
ture space for various student models. By designing more
light-weight student proxies used in reverse distillation, the
intrinsic gap was better bridged, yielding better perform-
ing student. With the proposed ReFO+, students trained by

only MSE loss outperformed competitors trained by other
advanced techniques with ID supervision.

6. Social Imapct and Limitation
Advocating for performance boosts with ReFO+ (UD),

this work may encourage the collection of large-scale face
datasets, and possibly induces the unauthorized or inappro-
priate use of these highly personal identifiable images.

There are still many limitations to our understanding of
intrinsic dimension in this work. We have yet to method-
ologically design the optimal student proxy and explore
more effective method to close the intrinsic gap to fill the
still significant performance gap.
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