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Abstract

The core of out-of-distribution (OOD) detection is to
learn the in-distribution (ID) representation, which is dis-
tinguishable from OOD samples. Previous work applied
recognition-based methods to learn the ID features, which
tend to learn shortcuts instead of comprehensive repre-
sentations. In this work, we find surprisingly that simply
using reconstruction-based methods could boost the per-
formance of OOD detection significantly. We deeply ex-
plore the main contributors of OOD detection and find that
reconstruction-based pretext tasks have the potential to pro-
vide a generally applicable and efficacious prior, which
benefits the model in learning intrinsic data distributions
of the ID dataset. Specifically, we take Masked Image Mod-
eling as a pretext task for our OOD detection framework
(MOOD). Without bells and whistles, MOOD outperforms
previous SOTA of one-class OOD detection by 5.7%, multi-
class OOD detection by 3.0%, and near-distribution OOD
detection by 2.1%. It even defeats the 10-shot-per-class out-
lier exposure OOD detection, although we do not include
any OOD samples for our detection. Codes are available at
https://github.com/lijingyao20010602/MOOD.

1. Introduction
A reliable visual recognition system not only pro-

vides correct predictions on known context (also known
as in-distribution data) but also detects unknown out-of-
distribution (OOD) samples and rejects (or transfers) them
to human intervention for safe handling. This motivates ap-
plications of outlier detectors before feeding input to the
downstream networks, which is the main task of OOD de-
tection, also referred to as novelty or anomaly detection.
OOD detection is the task of identifying whether a test sam-
ple is drawn far from the in-distribution (ID) data or not. It
is at the cornerstone of various safety-critical applications,
including medical diagnosis [5], fraud detection [45], au-
tonomous driving [14], etc.
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Figure 1. Performance of MOOD compared with current SOTA
(indicated by ‘*’) on four OOD detection tasks: (a) one-class OOD
detection; (b) multi-class detection; (c) near-distribution detection;
and (d) few-shot outlier exposure OOD detection.

Many previous OOD detection approaches depend on
outlier exposure [15, 53] to improve the performance of
OOD detection, which turns OOD detection into a simple
binary classification problem. We claim that the core of
OOD detection is, instead, to learn the effective ID repre-
sentation to discover OOD samples without any known out-
lier exposure.

In this paper, we first present our surprising finding – that
is, simply using reconstruction-based methods can notably
boost the performance on various OOD detection tasks.
Our pioneer work along this line even outperforms previ-
ous few-shot outlier exposure OOD detection, albeit we do
not include any OOD samples.

Existing methods perform contrastive learning [53,58] or
pretrain classification on a large dataset [15] to detect OOD
samples. The former methods classify images according to
the pseudo labels while the latter classifies images based on
ground truth, whose core tasks are both to fulfill the classifi-
cation target. However, research on backdoor attack [50,51]
shows that when learning is represented by classifying data,
networks tend to take a shortcut to classify images.
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In a typical backdoor attack scene [51], the attacker adds
secret triggers on original training images with the visibly
correct label. During the course of testing, the victim model
classifies images with secret triggers into the wrong cate-
gory. Research in this area demonstrates that networks only
learn specific distinguishable patterns of different categories
because it is a shortcut to fulfill the classification require-
ment.

Nonetheless, learning these patterns is ineffective for
OOD detection since the network does not understand the
intrinsic data distribution of the ID images. Thus, learning
representations by classifying ID data for OOD detection
may not be satisfying. For example, when the patterns sim-
ilar to some ID categories appear in OOD samples, the net-
work could easily interpret these OOD samples as the ID
data and classify them into the wrong ID categories.

To remedy this issue, we introduce the reconstruction-
based pretext task. Different from contrastive learning in
existing OOD detection approaches [53, 58], our method
forces the network to achieve the training purpose of recon-
structing the image and thus makes it learn pixel-level data
distribution.

Specifically, we adopt the masked image modeling
(MIM) [2, 11, 20] as our self-supervised pretext task, which
has been demonstrated to have great potential in both natu-
ral language processing [11] and computer vision [2,20]. In
the MIM task, we split images into patches and randomly
mask a proportion of image patches before feeding the cor-
rupted input to the vision transformer. Then we use the
tokens from discrete VAE [47] as labels to supervise the
network during training. With its procedure, the network
learns information from remaining patches to speculate the
masked patches and restore tokens of the original image.
The reconstruction process enables the model to learn from
the prior based on the intrinsic data distribution of images
rather than just learning different patterns among categories
in the classification process.

In our extensive experiments, it is noteworthy that
masked image modeling for OOD detection (MOOD) out-
performs the current SOTA on all four tasks of one-
class OOD detection, multi-class OOD detection, near-
distribution OOD detection, and even few-shot outlier ex-
posure OOD detection, as shown in Fig. 1. A few statistics
are the following.

1. For one-class OOD detection (Tab. 6), MOOD boosts
the AUROC of current SOTA, i.e., CSI [58], by 5.7%
to 94.9%.

2. For multi-class OOD detection (Tab. 7), MOOD out-
performs current SOTA of SSD+ [53] by 3.0% and
reaches 97.6%.

3. For near-distribution OOD detection (Tab. 2), AUROC
of MOOD achieves 98.3%, which is 2.1% higher than
the current SOTA of R50+ViT [15].

4. For few-shot outlier exposure OOD detection (Tab. 9),
MOOD (99.41%) surprisingly defeats current SOTA
of R50+ViT [15] (with 99.29%), which makes use of
10 OOD samples per class. It is notable that we do not
even include any OOD samples in MOOD.

2. Related Work
2.1. Out-of-distribution Detection

A straightforward out-of-distribution (OOD) approach is
to estimate the in-distribution (ID) density [10, 63, 67, 72]
and reject test samples that deviate from the estimated dis-
tribution. Alternative methods base on the image recon-
struction [1, 17, 33], learn the decision boundary between
in- and out-of-distribution data [27,37,68], compute the dis-
tance between train and test features [40,53,56,58,59], etc..

In comparison, our work focuses on distance-based
methods and yet includes the reconstruction-based methods
as a pretext task. The key idea of distance-based approaches
is that the OOD samples are supposedly far from the cen-
ter of the in-distribution (ID) data [65] in the feature space.
Representative methods include K-nearest Neighbors [59],
prototype-based methods [40, 56], etc.. We will explain the
difference between our work and previous OOD detection
methods later in this paper.

2.2. Vision Transformer

Transformer has achieved promising performance in
computer vision [2, 20] and natural language processing
[11]. Existing OOD detection research [15] performs vi-
sion transformer (ViT [13]) with classification pre-train on
ImageNet-21k [49]. It mainly explores the impact of dif-
ferent structures on OOD detection tasks while we deeply
explore the effect from four dimensions for OOD detection,
including various pretext tasks, architectures, fine-tune pro-
cesses, and OOD detection metrics.

It is notable that extra OOD samples are utilized in var-
ious previous methods [15, 53] to further improve perfor-
mance. In contrast, we argue that the exposure of OOD
samples violates the original intention of OOD detection.
In fact, a sufficient pretext task can achieve comparable or
even superior results. Therefore, in our work, we focus
on exploring an appropriate pretext task for OOD detection
without including any OOD samples.

2.3. Self-Supervised Pretext Task

It has been long in the community to pre-train vision net-
works in various self-supervised manners, including gener-
ative learning [2,11,46,60], contrastive learning [6,7,21,29]
and adversarial learning [18, 39, 69]. Among them, rep-
resentative generative approaches include auto-regressive
[46,60], flow-based [12,30], auto-encoding [2,11], and hy-
brid generative methods [55, 66].
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In-Distribution CIFAR-10 −→ CIFAR-100 −→
Out-of-Distribution SVHN CIFAR-100 LSUN Avg SVHN CIFAR-10 LSUN Avg

Classification 98.3 98.6 98.6 98.5 78.0 93.5 88.6 86.7
MoCov3 98.6 92.4 89.8 93.6 78.8 72.8 75.8 75.8

MIM 99.8 99.4 99.9 99.7 96.5 98.3 96.3 97.0

In-Distribution ImageNet-30 −→
Out-of-Distribution Dogs Places365 Flowers102 Pets Food Dtd Caltech256 Avg

Classification 99.7 98.4 99.9 99.6 98.3 98.6 96.8 98.8
MoCov3 88.2 82.0 99.3 81.1 71.4 91.3 88.5 86.0

MIM 99.4 98.9 100.0 99.1 96.6 99.5 98.9 98.9

Table 1. Pretext Task. AUROC (%) of OOD detection on ViT with different pretext tasks on ImageNet22k.

The self-supervised pretext task in our framework is
Masked Image Modeling (MIM). It generally belongs to
auto-encoding generative approaches. MIM was first pro-
posed in natural language processing [2]. Its language mod-
eling task randomly masks varying percentages of tokens of
text and recovers the masked tokens from encoding results
of the rest of text. Follow-up research [11, 20] transfers the
similar idea from natural language processing to computer
vision, masking different proportions of the image patches
to recover results.

Multiple existing methods take advantage of self-
supervised tasks to guide learning of representation for
OOD detection. The latest work [53, 58] presents con-
trastive learning models as feature extractors. However,
existing approaches of classifying transformed images ac-
cording to contrastive learning possess similar limitations
– that is, the model tends to learn the specific patterns of
categories, which are beneficial for classification but do not
help understand intrinsic data distributions of ID images.

Research of [15] also mentioned this problem. How-
ever, the introduced large-scale pre-trained transformers
[15] may not jump out of the loop, in our observation, be-
cause the pretext task remained to be classification. In our
work, we address this issue by performing the masked im-
age modeling task for OOD detection.

3. Method

In this section, we first explain the main factors to
help OOD detection and finally propose our framework to
achieve this goal.

We first define the notations. For a given dataset XID,
the goal of out-of-distribution (OOD) detection is to model
a detector that identifies whether an input image x ∈ XID

or x /∈ XID (that is, x ∈ XOOD). A majority of existing
methods for OOD detection define an OOD score function
s(x). Its abnormal high or low value represents that x is
from out-of-distribution.

3.1. Choosing the Pretext Task

In this section, we choose the pretext task that can pro-
vide the intrinsic prior to suit the OOD detection task. Most
previous OOD methods learn the ID representation through
classification [15, 23] or contrastive learning [53, 58] on ID
samples, which take advantage of either the ground truth or
pseudo labels to supervise the classification networks.

On the other hand, work of [50, 51] shows that classifi-
cation networks only learn different patterns among training
categories because it is a shortcut to fulfill classification. It
is indicated that the network actually does not understand
the intrinsic data distribution of the ID images.

In comparison, the reconstruction-based pretext task
forces the network to learn the real data distribution of the
ID images during training to reconstruct the image instead
of the patterns for classification. Benefiting from these pri-
ors, the network can learn a more representative feature of
the ID dataset. It enlarges the divergence between the OOD
and ID samples.

In our method, we pre-train the model with Masked Im-
age Modeling (MIM) pretext [11] on a large dataset and
fine-tune it on the ID dataset. We compare the performance
of MIM and contrastive learning pretext task MoCov3 [8]
in Tab. 1. It shows that the performance of MIM is much
increased by 13.3% to 98.66%.

3.2. Exploring Architecture

To explore an effective architecture [15], we evaluate
OOD detection performance on BiT (Big Transfer [31]) and
MLP-Mixer, in comparison with ViT. We adopt CIFAR-
100 and CIFAR-10 [32] as the ID-OOD pair. They have
close distributions because of their similar semantics and
construction. Results are in Tab. 2.

R50 + ViT [13, 22] is the current SOTA on near-
distribution OOD detection [15], which doubles the model
size and testing time but achieves only 96.23% (0.70%
higher than ViT). However, MIM on a single ViT signif-
icantly improves its AUROC to 98.30% (2.07% higher),
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Model
Fine-tuned

AUROC(%)
Test Acc(%)

BiT R50 [15] 87.01 81.71
BiT R101×3 [15] 91.55 90.10

ViT [15] 90.95 95.53
MLP-Mixer [15] 90.40 95.31

R50 + ViT (SOTA) [15] 91.71 96.23

Table 2. Architecture. AUROC (%) of OOD detection with var-
ious architectures. The last line shows our improvement. The ID
and OOD datasets are CIFAR-100 and CIFAR-10, respectively.

One-Class fine-tune
AUROC(%)

Dataset MIM-pt inter-ft fine-tune

CIFAR-10
✓ 72.2
✓ ✓ 97.9

CIFAR-100
✓ 66.3
✓ ✓ 96.5

ImageNet-30
✓ 75.2
✓ ✓ 92.0

Table 3. Fine-tuning (One-class). AUROC (%) of OOD detec-
tion with different fine-tuning processes on one-class CIFAR-10,
CIFAR-100 (super-classes) and ImageNet-30.

without any additional source assumption. It manifests that
efficient pretext itself is sufficient for producing distinguish-
able representation – there is no need to use a larger model
or combination of multiple models in this regard.

3.3. About Fine-Tuning

One-class Fine-tuning. For one-class OOD detection, we
pre-train the MIM model and finely tune it on ImageNet-
21k [49], as recommended by BEiT [2]. In particular,
when performing one-class OOD detection on ImageNet-
30, since we do not include the OOD labels during training,
we only pre-train it on ImageNet-21k without intermediate
fine-tuning. Therefore, we utilize the label smoothing [57]
to help the model learn from the one-class fine-tune task on
the ID dataset as

yLS
c = yc(1− α) + α/Nc, c = 1, 2, . . . , Nc (1)

where c is the index of category; Nc is the number
of classes; and α is the hyperparameter that determines
smoothing level. If α = 0, we obtain the original one-hot
encoded yc and if α = 1, we get the uniform distribution.

Label smoothing was used to address overfitting and
overconfidence in normal fine-tuning process. We, instead,
find that it can be utilized in one-class fine-tuning. The per-
formance of the model before and after one-class fine-tune
is illustrated in Tab. 3. It is clear that the model actually
learns information from the one-class fine-tuning operation.
This may be counter-intuitive because the labels are equal.

The reason is, due to label smoothing, the loss is larger than
0 and persuades the model to update parameters, although
the accuracy reaches 1.

Multi-class Fine-tuning. For multi-class OOD detection,
we pre-train the MIM model, intermediately use fine-tuning
on ImageNet-21k [49], and apply fine-tuning again on the
ID dataset. We perform experiments to validate the effec-
tiveness of each stage in Tab. 5. It proves that all stages
contribute well to the performance of OOD detection.

3.4. OOD Detection Metric is Important

Here, we compare the performance of several
commonly-used OOD detection metrics, including
Softmax [23], Entropy [23], Energy [38], GradNorm [26]
and Mahalanobis distance [34]. We perform OOD detection
with MIM pretext task with each metric – the results are
shown in Tab. 5. They prove that the Mahalanobis distance
is a better metric for MOOD.

3.5. Final Algorithm of MOOD

To sum up, in this section, we have explored the effect
of contributors to OOD detection, including various pre-
text tasks, architectures, fine-tuning processes, and OOD
detection metrics. In general, we find that the finely
tuned MOOD on ViT with Mahalanobis distances achieves
the best result. The outstanding performance of MOOD
demonstrates that an efficient pretext task itself is sufficient
for producing distinguishable representation, and there is no
need for a larger model or multi-models.

In Sec. 4, we will show that few-shot outlier exposure
utilized in multiple existing OOD detection approaches [15,
53] is also unnecessary. The algorithm of MOOD is shown
in the Appendix. It mainly includes the following stages.

1. Pre-train the Masked Image Modeling ViT on
ImageNet-21k.

2. Apply intermediate fine-tuning ViT on ImageNet-21k.
3. Apply fine-tuning of pre-trained ViT on the ID dataset.
4. Extract features from the trained ViT and calculate the

Mahalanobis distance metric for OOD detection.

4. Experiments
In this section, we compare Masked Image Model-

ing for OOD detection (MOOD) with current SOTA ap-
proaches in one-class OOD detection (Sec. 4.1), multi-class
OOD detection (Sec. 4.2), near-distribution OOD detection
(Sec. 4.3) and OOD detection with few-shot outlier expo-
sure (Sec. 4.4). Our MOOD outperforms all previous ap-
proaches on all four OOD detection tasks significantly.

Experimental Configuration. We report the commonly-
used Area Under the Receiver Operating Characteristic
Curve (AUROC) as a threshold-free evaluation metric for
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finetune CIFAR-10 −→ CIFAR-100 −→
MIM-pt inter ft ft SVHN CIFAR-100 LSUN Avg SVHN CIFAR-10 LSUN Avg

✓ 62.2 62.9 98.5 74.5 48.4 42.2 96.0 62.2
✓ ✓ 89.5 90.0 99.8 93.1 74.3 62.0 98.3 68.2
✓ ✓ 99.1 94.6 97.4 97.0 93.7 83.7 91.4 89.6
✓ ✓ ✓ 99.8 99.4 99.9 99.7 96.5 98.3 96.3 97.0

finetune ImageNet30 −→
MIM-pt inter-ft ft Dogs Places365 Flowers102 Pets Food Caltech256 Dtd Avg

✓ 60.2 82.7 28.6 41.9 72.5 42.2 29.4 51.1
✓ ✓ 100.0 97.9 99.9 99.6 97.1 96.9 98.2 98.2
✓ ✓ 91.3 97.0 95.1 93.8 99.3 84.0 95.4 92.9
✓ ✓ ✓ 99.4 98.9 100.0 99.1 96.6 99.5 98.9 98.9

Table 4. Fine-tuning (Multi-class). AUROC (%) of OOD detection with different fine-tuning processes on multi-class CIFAR-10, CIFAR-
100 and ImageNet-30.

In-Distribution CIFAR-10 −→ CIFAR-100 −→
Out-of-Distribution SVHN CIFAR-100 LSUN Avg SVHN CIFAR-10 LSUN Avg

Softmax [23] 88.6 85.8 90.7 88.4 81.9 81.1 86.6 83.2
Entropy [23] 99.9 97.1 98.1 98.4 93.7 94.1 88.7 92.2
Energy [38] 99.9 97.0 97.6 98.2 92.8 93.5 86.1 90.8

GradNorm [26] 99.6 94.3 87.8 93.9 61.6 87.7 38.4 62.6
Distance [34] 99.8 99.4 99.9 99.7 96.5 98.3 96.3 97.0

In-Distribution ImageNet-30 −→
Out-of-Distribution Dogs Places365 Flowers102 Pets Food Dtd Caltech256 Avg

Softmax [23] 96.7 90.5 89.7 95.0 79.8 90.6 90.1 90.3
Entropy [23] 92.5 87.2 97.5 90.6 69.6 94.9 85.7 88.3
Energy [38] 89.7 82.1 95.8 88.1 67.8 93.1 82.3 85.6

GradNorm [26] 74.8 78.7 92.0 70.6 61.5 90.3 74.3 77.5
Distance [34] 99.4 98.9 100.0 99.1 96.6 99.5 98.9 98.9

Table 5. Metric. AUROC (%) of OOD detection with different metrics on multi-class CIFAR-10, CIFAR-100 and ImageNet-30.

detecting OOD score. We perform experiments on (i)
CIFAR-10 [32], which consists of 50,000 training and
10,000 testing images with 10 image classes, (ii) CIFAR-
100 [32] and CIFAR-100 (super-classes) [32], which con-
sists of 50,000 training and 10,000 testing images with
100 and 20 (super-classes) image classes. respectively,
(iii) ImageNet-30 [49], which contains 39,000 training
and 3,000 testing images with 30 image classes, and (iv)
ImageNet-1k [49], which contains around 120k and 50k
testing images with 1k image classes. More details of train-
ing settings are given in the Appendix.

4.1. One-Class OOD Detection

We start with the one-class OOD detection. For a given
multi-class dataset of Nc classes, we conduct Nc one-class
OOD tasks, where each task regards one of the classes as in-
distribution and the remaining classes as out-of-distribution.
We run our experiments on three datasets, following prior
work [3, 16, 25], of CIFAR-10, CIFAR-100 (super-classes),

and ImageNet-30.
Table 6 summarizes the results, showing that MOOD

outperforms current SOTA of CSI [58] on all tested cases
significantly. The improvement is of 5.7% to 94.9% on
average. The improvement is comparatively smaller on
ImageNet-30 Tab. 6c. It is because we do not apply in-
termediate fine-tuning of the model on ImageNet-30. More
details are shown in Sec. 3.3. We provide the class-wise
AUROC in the Appendix for detailed exhibition.

4.2. Multi-Class OOD Detection

For multi-class OOD Detection, we assume that ID sam-
ples are from a specific multi-class dataset. They are tested
on various external datasets as out-of-distribution. We per-
form MOOD on CIFAR-10, CIFAR-100, ImageNet-30 and
ImageNet-1k. For CIFAR-10, We consider CIFAR-100
[32], SVHN [41] and LSUN [36] as OOD datasets. For
CIFAR-100, We consider CIFAR-10 [32], SVHN [41] and
LSUN [36] as OOD datasets. For ImageNet-30, OOD sam-
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Method Plane Car Bird Cat Dear Dog Frog Horse Ship Truck Average

OC-SVM [3] 65.6 40.9 65.3 50.1 75.2 51.2 71.8 51.2 67.9 48.5 58.8
DeepSVDD [48] 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1 64.8
AnoGAN [52] 67.1 54.7 52.9 54.5 65.1 60.3 58.5 62.5 75.8 66.5 61.8

OCGANOCGAN [44] 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4 65.7
Geom [16] 74.7 95.7 78.1 72.4 87.8 87.8 83.4 95.5 93.3 91.3 86.0
Rot [25] 71.9 94.5 78.4 70.0 77.2 86.6 81.6 93.7 90.7 88.8 83.3

Rot+Trans [25] 77.5 96.9 87.3 80.9 92.7 90.2 90.9 96.5 95.2 93.3 90.1
GOAD [3] 77.2 96.7 83.3 77.7 87.8 87.8 90.0 96.1 93.8 92.0 88.2

CSI (SOTA) [58] 89.9 99.1 93.1 86.4 93.9 93.2 95.1 98.7 97.9 95.5 94.3
ours 98.6±0.4 99.3±0.5 94.3±0.6 93.2±0.5 98.1±0.6 96.5±0.4 99.3±0.2 99.0±0.1 98.8±0.1 97.8±0.4 97.8±0.4

(improve) +8.7 +0.2 +1.2 +6.8 +4.2 +3.3 +4.2 +0.3 +0.9 +2.3 +3.5

(a) CIFAR-10

Method AUROC

OC-SVM [3] 63.1
Geom [16] 78.7
Rot [25] 77.7

Rot+Trans [25] 79.8
GOAD [3] 74.5

CSI (SOTA) [58] 89.6
ours 94.8

(improve) +5.2

(b) CIFAR-100

Method AUROC

Rot [25] 65.3
Rot+Trans [25] 77.9
Rot+Attn [25] 81.6

Rot+Trans+Attn [25] 84.8
Rot+Trans+Attn+Resize [25] 85.7

CSI (SOTA) [58] 91.6
ours 92.0

(improve) +0.4

(c) ImageNet-30

Table 6. One-class OOD detection. AUROC (%) of OOD methods on one-class (a) CIFAR-10, (b) CIFAR-100 (super-classes) and (c)
ImageNet-30. The reported results on CIFAR-10 are averaged over 3 trials. Subscripts denote standard deviation, and bold ones denote the
best results. The last line lists improvement of MOOD over the current SOTA.

ples are from CUB-200 [62], Stanford Dogs [28], Oxford
Pets [43], Oxford Flowers [42], Food-101 [4], Places-365
[70], Caltech-256 [19], and Describable Textures Dataset
(DTD) [9]. For ImageNet-1k, we utilize non-natural images
as OOD datasets, which includes iNatualist [61], SUN [64],
places [70], Textures [9].

As shown in Tab. 7, MOOD boosts performance of cur-
rent SOTA of SSD+ [53] by 3.0% to 97.6% and SOTA of
GradNorm [26] by 2.8% to 89.1% on ImageNet-1k. We re-
mark that when detecting hard (i.e., near-distribution) OOD
samples on ImageNet30 and Food, MOOD still yields de-
cent performance, while previous methods often fail.

Visualization. In Fig. 2, we illustrate the probability dis-
tribution of the test samples according to metrics of three
OOD detection approaches: baseline OOD detection [23],
SSD+ [53], and MOOD. The baseline OOD detection per-
forms softmax as its OOD detection metric, where ID sam-
ples tend to have greater value than OOD samples. MOOD
and SSD+ perform the Mahalanobis distance as their met-
rics.

As shown in the figure, the distance of a majority of test-
ing ID samples to the training data is close to zero, demon-
strating a similar representation of training and testing ID
samples. In contrast, the distances from most OOD samples

to the training data are much larger, especially on CIFAR-10
and ImageNet-30.

Also, in Fig. 2, we reveal that the difference in the distri-
bution of ID and OOD samples according to MOOD is sig-
nificantly larger compared with other approaches [23, 53].
It demonstrates that MOOD can separate ID and OOD sam-
ples more clearly. In order to illustrate the appearance of
images in each ID and OOD dataset, we plot several im-
ages as examples with their corresponding distances in the
Appendix.

4.3. Near-Distribution OOD Detection

Compared with existing approaches on normal OOD de-
tection tasks, SOTA results of near-distribution OOD de-
tection is much worse – AUROC of some ID-OOD pairs
[53, 58] is even lower than 70%. Therefore, improving
SOTA for near-OOD detection is essential for the applica-
tion to work on real-world data.

In Tab. 2, we have compared MOOD with the current
SOTA on near-distribution CIFAR10-CIFAR100 (ID-OOD)
pair, R50+ViT [15], and MOOD outperforms the latter sig-
nificantly by 2.07% to 98.30%. In this section, we focus on
the hard-detected pairs with similar semantics from Sec. 4.1
and Sec. 4.2.

For one-class OOD detection, we adopt 12 hard-detected
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In-Distribution CIFAR-10 −→ CIFAR-100 −→
Out-of-Distribution SVHN CIFAR-100 LSUN Average SVHN CIFAR-10 LSUN Average

Baseline OOD [23] 88.6 85.8 90.7 88.4 81.9 81.1 86.6 83.2
ODIN [35] 96.4 89.6 - 93.0 60.9 77.9 - 69.4

Mahalanobis [34] 99.4 90.5 - 95.0 94.5 55.3 - 74.9
Residual Flows [71] 99.1 89.4 - 94.3 97.5 77.1 - 87.3
Gram Matrix [54] 99.5 79.0 - 89.3 96.0 67.9 - 82.0

Outlier exposure [24] 98.4 93.3 - 95.9 86.9 75.7 - 81.3
Rotation loss [25] 98.9 90.9 – 94.9 - - - -

Contrastive loss [29] 97.3 88.6 92.8 92.9 95.6 78.3 - 87.0
CSI [58] 97.9 92.2 97.7 95.9 - - - -

SSD+ (SOTA) [53] 99.9 93.4 98.4 97.2 98.2 78.3 79.8 85.4
ours 99.8±0.0 99.4±0.0 99.9±0.0 99.7 96.5±0.6 98.3±0.1 96.3±0.6 97.0

(improve) -0.1 +6.0 +1.5 +2.5 -1.7 +20.0 +16.5 +11.6

(a) CIFAR

In-Distribution ImageNet-30 −→
Out-of-Distribution Dogs Places365 Flowers102 Pets Food Caltech256 DTD Average

Baseline OOD [23] 96.7 90.5 89.7 95.0 79.8 90.6 90.1 90.3
Contrastive loss [29] 95.6 89.7 92.2 94.2 81.2 90.2 92.1 90.7

CSI (SOTA) [58] 98.3 94.0 96.2 97.4 87.0 93.2 97.4 94.8
ours 99.4 98.9 100.0 99.1 96.6 99.5 98.9 98.9

(improve) +0.9 +4.9 +3.8 +1.7 +9.6 +6.3 +1.5 +4.1

(b) ImageNet-30

In-Distribution ImageNet-1k −→
Out-of-Distribution iNaturalist SUN Places Textures Average

Baseline OOD [23] 87.6 78.3 76.8 74.5 79.3
ODIN [35] 89.4 83.9 80.7 76.3 82.6
Energy [38] 88.5 85.3 81.4 75.8 82.7

Mahalanobis [34] 46.3 65.2 64.5 72.1 62.0
GradNorm (SOTA) [26] 90.3 89.0 84.8 81.1 86.3

ours 86.9 89.8 88.5 91.3 89.1
(improve) -3.4 +0.8 +3.7 +10.2 +2.8

(c) ImageNet-1k

Table 7. Multi-class OOD detection. AUROC (%) of OOD detection methods on multi-class CIFAR-10, CIFAR-100, ImageNet-30 and
ImageNet-1k. The reported results on CIFAR-10 and CIFAR-100 are averaged over 3 trials. Subscripts denote standard deviation, and bold
ones stand for the best results. The last line lists improvement of MOOD over the current SOTA approach.

ID-OOD pairs (AUROC under 90%) from the confusion
matrix of current one-class OOD detection SOTA of CSI
[58]. The semantics of these ID-OOD pairs are more sim-
ilar than normal ID-OOD combinations, such as trunk and
car, deer and horse, etc., leading to their poor OOD detec-
tion performance. As shown in Tab. 8, MOOD significantly
boosts the AUROC of current SOTA from 78.7% to 93.9%.

For multi-class OOD detection, we examine the large
mistakenly-classified value in the OOD-ID confusion ma-
trix, which represents the number of classifying the OOD
image to the category in the ID dataset. For example, when
the True-Positive Rate (TPR) is 95%, 48 testing tiger im-
ages from CIFAR-100 are classified as cat by the current
multi-class OOD detection SOTA method of SSD+ [53],

while only 2 of them are wrongly classified by MOOD.
More results are shown in Fig. 3. For the listed 12 ID-OOD
pairs, MOOD averagely reduces the number of mistakenly-
classified OOD samples notably by 79%.

4.4. OOD Detection with Outlier Exposure

Several representative OOD detection methods [15, 53]
utilize OOD samples to improve the performance in extra
stages. We note they are not included in our work because
we generally believe that exposure of OOD samples violates
the original intention of OOD detection.

In Tab. 9, we compare MOOD with current SOTA [15]
for near-distribution OOD detection with up to 10 OOD
samples per class. We surprisingly find that MOOD works
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Figure 2. Line chart to illustrate the relation between the proba-
bility distribution of test samples and OOD detection metrics on
(a) CIFAR-10, (b) CIFAR-100, and (c) ImageNet-30. Each line
in the sub-figures represents an OOD or ID dataset. We compare
three OOD detection approaches, including baseline OOD detec-
tion, SSD+ (current SOTA, [53] ), and our proposed MOOD. The
baseline OOD detection takes the maximum softmax probabilities
as its OOD detection metric, while SSD+ and MOOD both use the
Mahalanobis distance as their metrics.

ID OOD AUROC (%)
class class CSI [58] ours (improve)

Plane Automobile 74.1 99.0 +24.9
Plane Ship 79.6 99.4 +19.8
Plane Truck 82.8 98.5 +15.7
Bird Horse 83.2 94.3 +11.1
Cat Deer 83.3 92.6 +9.3
Cat Dog 67.0 75.5 +8.5
Cat Frog 89.6 92.5 +2.9
Cat Horse 79.0 95.5 +16.5

Deer Horse 69.0 100.0 +31.0
Dog Deer 88.1 96.4 +8.3
Dog Horse 76.6 95.5 +18.9

Trunk Automobile 72.3 87.8 +15.5

Average 78.7 93.9 +15.2

Table 8. Near-distribution OOD detection (one-class). AUROC
(%) of near-distribution pairs in one-class detection on CIFAR-10,
compared with current SOTA (CSI [58]).

better in terms of AUROC than current SOTA [15], even
though we do not include any OOD samples for detection.
The outstanding performance of MOOD demonstrates that
an effective pretext task is already sufficient for producing a
distinguishable representation that OOD detection requires.
Thus, there is no need to include extra OOD samples.

0 20 40 60 80
# mistakenly-classified OOD samples

Truck(Bus)
Cat(Hamster)

Deer(Kangaroo)
Cat(Leopard)

Cat(Mouse)
Automobile(Pickup)

Truck(Pickup)
Truck(Streetcar)

Cat(Tiger)
Truck(Tractor)

Truck(Train)
Dog(Wolf)

ID(OOD)

Method
SSD+*(Avg) ours(Avg) SSD+* ours

Figure 3. Near-distribution OOD detection (multi-class). Num-
ber of some mistakenly-classified OOD samples (when TPR =
95%). These samples are wrongly taken as ID samples by the
current SOTA of SSD+ [53] in multi-class detection on CIFAR-
10. ‘*’ indicates SOTA.

Method
# OOD samples

AUROC(%)
per class

R50+ViT (SOTA) [15]

0 98.52
1 98.96
2 99.11
3 99.17

10 99.29

ours 0 99.41
(improve) - +0.12

Table 9. Outlier Exposure OOD detection. AUROC (%) of cur-
rent SOTA of R50+ViT [15] for near-distribution OOD detection
and MOOD. SOTA utilizes up to 10 known OOD samples per class
for detection, while ours do not include any OOD samples.

5. Conclusion

In this paper, we have extensively explored the effect of
multiple contributors for OOD detection and observed that
reconstruction-based pretext tasks have the potential to pro-
vide effective priors for OOD detection to learn the real
data distribution of the ID dataset. Specifically, we take
the Masked Image Modeling pretext task for our OOD de-
tection framework (MOOD). We perform MOOD on one-
class OOD detection, multi-class OOD detection, near-
distribution OOD detection, and few-shot outlier exposure
OOD detection – MOOD all achieve new SOTA results, al-
though we do not include any OOD samples for detection.
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