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Abstract

Convolutional Neural Networks (CNNs) have achieved
remarkable performance in various computer vision tasks
but this comes at the cost of tremendous computational
resources, partly due to convolutional layers extract-
ing redundant features. Recent works either compress
well-trained large-scale models or explore well-designed
lightweight models. In this paper, we make an attempt
to exploit spatial and channel redundancy among features
for CNN compression and propose an efficient convolu-
tion module, called SCConv (Spatial and Channel recon-
struction Convolution), to decrease redundant computing
and facilitate representative feature learning. The pro-
posed SCConv consists of two units: spatial reconstruction
unit (SRU) and channel reconstruction unit (CRU). SRU
utilizes a separate-and-reconstruct method to suppress the
spatial redundancy while CRU uses a split-transform-and-
fuse strategy to diminish the channel redundancy. In addi-
tion, SCConv is a plug-and-play architectural unit that can
be used to replace standard convolution in various convolu-
tional neural networks directly. Experimental results show
that SCConv-embedded models are able to achieve better
performance by reducing redundant features with signifi-
cantly lower complexity and computational costs.

1. Introduction
In recent years, convolutional neural networks (CNNs)

have obtained widespread applications in computer vision
tasks [24] due to its ability in obtaining representative fea-
tures. However, such success relies heavily on intensive
resources of computation and storage, which poses se-
vere challenges to their efficient deployment on resource-
constrained environments. Therefore, to address these chal-
lenges, various types of model compression strategies and
network designs have been explored to improve network ef-
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ficiency [1, 2, 26]. The former includes network pruning,
weight quantization, low-rank factorization, and knowledge
distillation. To be specific, network pruning [17,22,30] is a
straightforward way to prune the uncritical neuron connec-
tions from an existing learned big model to make it thinner.
Weight quantization [9] mainly focuses on converting net-
work weights from floating-point types to integer ones to
save computation resources. Low-rank factorization [5] ap-
plies the matrix decomposition techniques to estimate the
informative parameters. Knowledge distillation [11, 34]
generates small student networks with the guidance of a
well-trained big teacher network. The common part of these
compression techniques is that they have been regarded as
post-processing steps, thus their performance is usually up-
per bounded by the given initial model. Meanwhile, the ac-
curacy of these methods drastically drops while achieving a
high compression rate.

Network design is another alternative way, which aims
at reducing the inherent redundancy in dense model param-
eters and further developing a lightweight network model.
For example, ResNet [10] and DenseNet [14] utilize an effi-
cient shortcut connection to improve the network topology,
which connects all preceding feature maps to diminish the
redundant parameters. ResNeXt [31] replaces traditional
convolutions with sparsely connected group convolutions
to reduce inter-channel connectivity. Networks like Xcep-
tion [4], MobileNet [12] and MobileNeXt [35] disentan-
gle standard convolution into depth-wise convolution and
point-wise convolution to further decrease the connection
density between channels. MicroNet [19] adopts micro-
factorized convolution to handle extremely low FLOPs by
integrating sparse connectivity into convolution. In addi-
tion, EfficientNet [27] learns to automatically search opti-
mal network architectures to lower the redundancy in dense
model parameters.

Moreover, in CNN architecture design, bottleneck struc-
ture has been well adopted, in which 3 × 3 convolutional
layers account for a majority of the model parameters and
FLOPs. Therefore various efficient convolutional opera-
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Figure 1. The architecture of SCConv integrated with Spatial Reconstruction Unit (SRU) and Channel Reconstruction Unit (CRU). This
figure shows the exact position of our SCConv module within a ResBlock.

tions, such as group-wise convolution (GWC), depth-wise
convolution (DWC) and point-wise convolution (PWC), a
variant of the standard convolution, are proposed to replace
the existing expensive convolutional operation. GWC,
which was first introduced in AlexNet [16], can be regarded
as a sparse convolution connection method that each out-
put channel is connected to only a certain group of input
channels. DWC [13] proposes to bring more efficiency by
keeping each channel separately convolved with filters and
without interaction between channels. PWC is used to keep
the information flowing across channels and enable dimen-
sionality reduction by reducing the number of filters. These
operations are similar in sparse connectivity and have ben-
efits in the number of parameters and FLOPs, which il-
lustrates that redundancy in channel dimension can be re-
duced reasonably. Hence, a variety of convolution opera-
tions are proposed to explore redundancy reduction. For ex-
ample, MobileNet [12] introduces inverted residual blocks
using DWC and PWC to filter the features, which decreases
the number of parameters while accelerating the training.
ShuffleNet [33] resorts to point-wise group convolution and
channel shuffle operation to improve the information flow
between different channel groups. HetConv [25] designs
heterogeneous convolutional filters where a 3 × 3 convolu-
tion kernels and a 1× 1 convolution kernels are included in
one single filter to extract features. TiedBlockConv [28]
shares the same convolutional filter over equal blocks of
channels to produce multiple responses within a single fil-
ter. SPConv [32] divides the input channels into two groups
for different processing but needs a relatively large amount
of calculation while extracting internal information. Ghost-
Net [8] considers the redundancy between feature maps and
uses cheap operations like DWC to learn redundant fea-
tures. SilmConv [23] adopts the operation of reducing the
channels of features and flipping the weights to reduce fea-
ture redundancy. In addition, orthogonal to channel redun-
dancy, OctConv [3] proposes octave convolution to separate
convolutional filters into high-frequency and low-frequency
components, processing the latter in low resolution to al-
leviate the spatial redundancy, which reduces calculations
while keeping the same number of parameters.

All these prior studies have proven that there indeed ex-
ists considerable redundancy in the deep neural networks,
not only in dense model parameters but also in the spatial
and channel dimension of feature maps. However, all the
above methods either focus on reducing the redundancy in
channel dimension or in spatial dimension, making the net-
work still suffer from the problems of feature redundancy.

In this paper, different from prior work, we design a
two-step procedure to exploit the redundancy of interme-
diate feature maps, with the goal of reducing the number of
parameters and computation without performance loss. To
this end, we propose a novel CNN compression approach
to jointly reduce spatial and channel redundancy in the con-
volutional layers, termed as SCConv (Spatial and Channel
reconstruction Convolution), which consists of two units,
spatial reconstruction unit (SRU) and channel reconstruc-
tion unit (CRU). The proposed SCConv module, which can
be embedded into various architectures without additional
modifications, is designed to efficiently restrict feature re-
dundancy. This module not only cuts down on the number
of model parameters and FLOPs but enhances the capability
of feature representation. We summarize our contributions
as follows:

• We propose a spatial reconstruction unit, termed as
SRU, which separates redundant features based on
weights and reconstructs them to suppress the redun-
dancy in spatial dimension and strengthen the repre-
sentation of features.

• We propose a channel reconstruction unit, termed as
CRU, which utilizes a split-transform-and-fuse strat-
egy to diminish the redundancy in channel dimension
as well as the computational costs and storage.

• We design a plug-and-play operation named SCConv
combining SRU and CRU in a sequential manner to
replace standard convolution for operating on a vari-
ety of backbone CNNs. It turns out that SCConv can
substantially save the computing load yet enhance the
model performance on challenging tasks.
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Figure 2. The architecture of Spatial Reconstruction Unit.

2. Methodology

In this section, we introduce the proposed SCConv as
illustrated in Figure 1, which consists of two units, Spa-
tial Reconstruction Unit (SRU) and Channel Reconstruction
Unit (CRU), placed in a sequential manner. Concretely, for
the intermediate input features X in the bottleneck resid-
ual block, we first obtain the spatial-refined features Xw

through SRU operation and subsequently we utilize CRU
operation to gain the channel-refined features Y . We ex-
ploit both spatial and channel redundancy among features
in our SCConv module, which can be seamlessly integrated
into any CNN architecture to decrease redundancy among
intermediate feature maps and boost the feature representa-
tion of CNNs.

2.1. SRU for Spatial Redundancy

To exploit the spatial redundancy of features, we intro-
duce Spatial Reconstruction Unit (SRU) as shown in Fig-
ure 2, which utilizes a Separate-and-Reconstruct operation.
Separate operation aims to separate those informative fea-
ture maps from less informative ones corresponding to the
spatial content. We leverage the scaling factors in Group
Normalization (GN) [29] layers to assess the informative
content of different feature maps. To be concrete, given an
intermediate feature map X ∈ RN×C×H×W , where N is
the batch axis, C is the channel axis, H and W are the spa-
tial height and width axes. We first standardize the input
feature X by subtracting mean µ and dividing by standard
deviation σ as follows:

Xout = GN(X) = γ
X − µ√
σ2 + ε

+ β (1)

where µ and σ are the mean and standard deviation in X ,
ε is a small positive constant added for the sake of division
stability, γ and β are trainable affine transformation.

Noted that we leverage the trainable parameters γ ∈ RC

in GN layers as a way to measure the variance of spatial
pixels for each batch and channel. The richer spatial infor-
mation reflects more variation in spatial pixels contributing
to a larger γ. The normalized correlation weights Wγ ∈ RC

are obtained by equation 2, which indicates the importance
of different feature maps.

Wγ = {wi} =
γi∑C
j=1 γj

, i, j = 1, 2, · · · , C (2)

Then the weight values of feature maps reweighted by
Wγ are mapped to the range (0, 1) by the sigmoid function
and gated by a threshold. We set those weights above the
threshold to 1 to obtain the informative weights W1 while
setting them to 0 to gain the non-informative weights W2

(the threshold is set to 0.5 in the experiments). The whole
process of acquiring W can be expressed as equation 3:

W = Gate(Sigmoid(Wγ(GN(X)))) (3)

Finally, we multiply input features X by W1 and W2

respectively, yielding two weighted features: the informa-
tive ones Xw

1 and less informative ones Xw
2 . Thus we suc-

cessfully separate the input features into two parts: Xw
1 has

informative and expressive spatial contents while Xw
2 has

little or no information, which is regarded as redundant.
In order to reduce the spatial redundancy, we further pro-

pose a Reconstruct operation that features with rich infor-
mation sum up with less informative ones to generate fea-
tures with richer information and save spatial space. Instead
of adding these two parts directly, we adopt a cross recon-
struct operation to sufficiently combine the weighted two
different informative features and strengthen the informa-
tion flow between them. Afterwards we concatenate the
cross-reconstructed features Xw1 and Xw2 to obtain the
spatial-refined feature maps Xw. The whole process of Re-
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Figure 3. The architecture of Channel Reconstruction Unit.

construct operation can be expressed as :

Xw
1 = W1 ⊗X,

Xw
2 = W2 ⊗X,

Xw
11 ⊕Xw

22 = Xw1,

Xw
21 ⊕Xw

12 = Xw2,

Xw1 ∪Xw2 = Xw.

(4)

where ⊗ is element-wise multiplication, ⊕ is element-wise
summation, ∪ is concatenation. After the SRU is applied to
the intermediate input features X , not only do we separate
the informative features from less informative ones, but also
we reconstruct them to enhance the representative features
and suppress the redundant features in spatial dimension.
Nevertheless, the spatial-refined feature maps Xw still re-
main redundant in channel dimension.

2.2. CRU for Channel Redundancy

To exploit the channel redundancy of features, we in-
troduce Channel Reconstruction Unit (CRU) as shown in
Figure 3, which utilizes a Split-Transform-and-Fuse strat-
egy. Normally, we use repetitive standard k × k convo-
lutions to extract features, resulting in some relatively re-
dundant feature maps along the channel dimension. Let
Mk ∈ Rc× k× k denotes a k × k convolution kernel and
X,Y ∈ Rc× h× w denotes the input and convolved output
features respectively. A standard convolution 1 can be de-
fined as Y = MkX . To be specific, we replace the standard
convolution with CRU, which is implemented via three op-
erators – Split, Transform and Fuse.

Split : For given spatial-refined features Xw ∈ Rc×h×w,
we first split the channels of Xw into two parts with αC
channels and (1 − α)C channels respectively, as shown in
the split part of Figure 3, where 0 ≤ α ≤ 1 is a split ra-
tio. Subsequently, we further utilize 1 × 1 convolutions to

1For simplicity, we omitt the bias term.

squeeze the channels of feature maps for its computing ef-
ficiency. Here we introduce a squeeze ratio r to control the
feature channels to balance the computational cost of the
CRU ( r = 2 is a typical setting in the experiments). Af-
ter the split and squeeze operations, we divide the spatial-
refined features Xw into the upper part Xup and the lower
part Xlow.

Transform : Xup is fed into the upper transformation
stage, serving as a “Rich Feature Extractor”. We adopt ef-
ficient convolutional operations (i.e. GWC and PWC) to
replace the expensive standard k × k convolutions to ex-
tract high-level representative information as well as reduce
the computational cost. Owing to sparse convolution con-
nections, GWC reduces the amount of parameters and cal-
culations but cuts off the information flow between chan-
nel groups. While PWC compensates for the information
loss and helps the information flow across feature channels.
Thus we perform k×k GWC (we set group size g = 2 in the
experiments) and 1 × 1 PWC operations on the same Xup.
Afterward, we sum up the output to form a merged repre-
sentative feature maps Y1 as shown in the Transform part of
Figure 3. The upper transformation stage can be formulated
as :

Y1 = MG Xup + MP1 Xup (5)

where MG ∈ R
αc
gr × k× k×c, MP1 ∈ Rαc

r × 1× 1×c is
a learnable weight matrix of GWC and PWC, Xup ∈
Rαc

r × h× w and Y1 ∈ Rc× h× w are the upper input and
output feature maps respectively. In short, the upper trans-
formation stage leverages a combination of GWC and PWC
on the same feature maps Xup to extract rich representative
features Y1 with less computational cost.

Xlow is fed into the lower transformation stage, where
we apply cheap 1 × 1 PWC operations to generate feature
maps with shallow hidden details as a supplementary to the
Rich Feature Extractor. In addition, we reuse features Xlow

to obtain more feature maps without extra cost. Lastly, we

6156



concatenate the generated and reused features to form the
output of the lower stage Y2 as follows:

Y2 = MP2 Xlow ∪Xlow (6)

where MP2 ∈ R
(1−α)c

r × 1× 1×(1− 1−α
r )c is a learnable

weight matrix of PWC, ∪ is concatenation operation,
Xlow ∈ R

(1−α)c
r ×h×w and Y2 ∈ Rc×h×w are the lower

input and output feature maps respectively. In a word, the
lower transformation stage reuses preceding features Xlow

and utilizes cheap 1 × 1 PWC to obtain features Y2 with
supplementary detailed information.

Fuse : After the transformation is performed, instead of
direct concatenating or adding two types of features, we uti-
lize the simplified SKNet method [18] to adaptively merge
the output features Y1 and Y2 from upper and lower trans-
formation stage as shown in the Fuse part of Figure 3.
We first apply a global average pooling (Pooling) to col-
lect global spatial information with channel-wise statistics
Sm ∈ Rc×1×1, which is calculated as:

Sm = Pooling(Ym) =
1

H ×W

H∑
i=1

W∑
j=1

Yc(i, j), m = 1, 2

(7)
Next, we stack the upper and lower global channel-

wise descriptor S1, S2 together and use channel-wise soft
attention operation to generate feature importance vector
β1, β2 ∈ Rc as follows:

β1 =
es1

es1 + es2
, β2 =

es2

es1 + es2
, β1 + β2 = 1 (8)

Finally, under the guidance of feature importance vector
β1, β2, the channel-refined features Y can be obtained by
merging the upper features Y1 and the lower features Y2 in
a channel-wise manner as follows:

Y = β1Y 1 + β2Y 2 (9)

In brief, we adopt CRU, using Split-Transform-and-Fuse
strategy, to further diminish the redundancy of spatial-
refined feature maps Xw along the channel dimension. Fur-
thermore, CRU extracts rich representative features through
lightweight convolutional operations while proceeds re-
dundant features with cheap operation and feature reuse
schemes. Overall, CRU can be used individually or in con-
junction with SRU operation. By arranging the SRU and
CRU in a sequential manner, the proposed SCConv is es-
tablished, which is highly efficient and capable of replacing
standard convolution operations.

2.3. Analysis on Complexities

Our SCConv is designed as a plug-and-play module
that can be easily embedded into various existing well-
designed neural architectures to reduce computation and

storage costs. In the SCConv module, all of the parame-
ters are concentrated on the transformation stage. Hence
we analyze the reduction of theoretical memory usage. The
parameters of standard convolution Y = MkX can be cal-
culated as:

Ps = k × k × C1 × C2 = k2C1C2 (10)

where k is kernel size of the convolution, C1 and C2 are the
number of input and output feature channels.

The parameters of the proposed SCConv module consist
of :

Psc =1× 1× αC1 ×
αC1

r
+ k × k × αC1

gr
× C2

g
× g

+ 1× 1× αC1

r
× C2 + (1− α)C1 ×

(1− α)C1

r

+ 1× 1× (1− α)C1

r
×

(
C2 −

1− α

r
C1

)
(11)

where α denotes the split ratio, r refers to the squeeze ra-
tio, g is the group size of GWC operation, C1 and C2 are
input and output feature channels respectively. Here, we
give a comparison to show the performance of the proposed
SCConv. In the experiment, the general parameter set is
α = 1

2 , r = 2, g = 2, k = 3, C1 = C2 = C , the amount
of parameters can be reduced by 5 times where Ps/Psc ≈ 5
while the model achieves better performance than standard
convolution.

3. Experiments
To evaluate the effectiveness of the proposed SCConv, in

this section, we perform a series of experiments on image
classification and object detection with only the widely used
3 × 3 kernels being replaced by SCConv module. Image
classification benchmarks includes CIFAR-10 [15], CIFAR-
100 [15] and ImageNet-1K [16]. Object detection bench-
marks include PASCAL VOC [6] and MS COCO [21].
Top-1 accuracy is reported as the evaluation metric for im-
age classification and the mean average precision (mAP)
is used to measure accuracy of object detection. For fair
comparisons, all models in each experiment, including re-
implemented baselines and SCConv-equipped models, are
trained from scratch on 2 NVIDIA Tesla V100 GPUs with
the default data augmentation and training strategy and no
other tricks are used. In each experiment, we train several
times with the same configuration to prevent the impact of
fluctuations and report the median of results.

3.1. Experimental Settings

Dataset. CIFAR dataset, including CIFAR-10 and
CIFAR-100, consists of 50k training images and 10k vali-
dation images, which are divided into 10 and 100 classes
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respectively. ImageNet-1K dataset is a large-scale image
classification dataset, containing 1.28 million training im-
ages and 50k validation images from 1k classes. PASCAL
VOC dataset, which has 20 classes, contains more than
22k images for training and 5k images for validation. MS
COCO dataset, which is divided into 80 classes, has more
than 118k images for training and 5k images for validation.

Training and Inference. 1) For CIFAR-10 and CIFAR-
100, we follow a similar training scheme in [10]. Net-
works are trained for 200 epochs with SGD optimizer with
a weight decay of 5 × e−4 and a momentum of 0.9. The
learning rate is initialized to 0.05 and is decayed by 0.1
at 100 and 150 of the epochs. It trains with a mini-batch
size of 128 on one GPU. Besides, according to different ar-
chitectures of networks, we set (h,w) to (8, 8) for ResNet,
WideResNet, ResNeXt and set it to (4, 4) for DenseNet. 2)
For ImageNet-1K dataset, we follow standard practices and
perform data augmentation with random cropping to size
224× 224 pixels. We apply SGD with a momentum of 0.9
and a weight decay of 1 × e−4. The initial learning rate is
set to 0.1 and divided by every 30 epochs for a total of 100
epochs. 3) For PASCAL VOC dataset, we use SGD opti-
mizer and set the batch size to 32. The initial learning rate
is set to 0.1 with a 500 iterations warmup. We train 20k iter-
ations totally and reduce the learning rate by a factor of 10
at 10k and 18k iterations. 4) For MS COCO dataset, we use
SGD optimizer and set the initial learning rate to 0.1 and
batch size to 16. The total iterations are set to 180k and the
learning rate is divided by 10 at 120k and 160k iterations.

3.2. Ablation Studies

In this section, we conduct ablation studies to inspect
the relative effectiveness of different components in the pro-
posed SCConv module. We choose ResNet50 as the base-
line network by replacing standard 3×3 convolution to con-
duct the following ablation experiments on CIFAR100.

SRU and CRU Our SCConv module includes a spatial
reconstruction unit (SRU) and a channel reconstruction unit
(CRU). Firstly we only apply SRU or CRU on ResNet50 to
examine the efficiency of a single unit. As shown in Ta-
ble 1, only embedding with SRU (ResNet50+S) achieves
nearly 1% improvement without extra increment in FLOPs,
while solely embedding with CRU (ResNet50+C) can save
38% parameters and FLOPs with 0.8% increase of Top-1
accuracy. The results imply that the single-unit-embedded
model boosts the accuracy significantly. In addition, we
compare three different ways of arranging the SRU and
CRU: sequential spatial-channel (S+C), sequential channel-
spatial (C+S), and parallel use of both units (C&S). We find
that the spatial-first order (S+C) achieves the best accuracy

Table 1. Experimental results with different combination methods
of SRU and CRU on CIFAR-100 dataset. (S and C is short for
SRU and CRU respectively)

Description Params FLOPs Top-1ACC(%)

ResNet50 23.71M 1.30G 78.60
ResNet50 + S 23.53M 1.30G 79.59
ResNet50 + C 14.74M 843.81M 79.21

ResNet50 + C & S 14.74M 843.81M 79.26
ResNet50 + C + S 14.74M 843.81M 79.54
ResNet50 + S + C 14.74M 843.81M 79.89

than other combination methods. Thus we adopt a sequen-
tial spatial-first combination (S+C) strategy to formulate our
SCConv and further improve the model performance.
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Figure 4. The trade-off between FLOPs and Accuracy on CIFAR-
100 with different split ratios α in SCConv-embedded ResNet50.

Analysis on split ratio α To explore the effect of differ-
ent split ratios α in CRU module, we vary the split ratio
from 1/8 to 7/8 gradually to compare the accuracy versus
FLOPs on CIFAR-100. As shown in Figure 4, the accuracy
of SCConv-embedded ResNet50 rises with the increase of
the split ratio α. The higher α represents the model can ob-
tain richer feature information in the transformation stage of
CRU, thereby improving the model’s overall performance.
When α = 1/2, the whole network achieves the best flops-
accuracy trade-off. Thus we adopt the optimal split ratio
α = 1/2 for SCConv in the following experiments for a
better trade-off between performance and efficiency.

Visualization To explore the feature representation of the
proposed SRU method, we visualize the feature maps of
the first stage of the original ResNet50 and SRU-embedded
ResNet50 in Figure 5. It can be observed that the pat-
tern in features of SRU-embedded ResNet50 is enriched in
comparison with original ResNet50. Not only the redun-
dant features is diminished but the representative features
are strengthened and diversified. The visualization demon-
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Figure 5. Left: Features from the first-stage of original ResNet50,
Right: Features from the first-stage of SRU-embedded ResNet50.

strates the SRU is capable of generating representative and
expressive features.

3.3. Image Classification on CIFAR

After studying the structure of the proposed SCConv
module for efficient feature learning, we continue to eval-
uate the SCConv-embedded architecture on various base-
line models and further make a comparison with the SOTA
methods over classification accuracy, the number of param-
eters and FLOPs on CIFAR-10 and CIFAR-100 dataset.
The related SOTA approaches include OctConv [3], Ghost-
Net [8], SPConv [32], SlimConv [23], TiedConv [28]. All
experiments are conducted by replacing the original convo-
lutional layers with the corresponding convolution methods.

As can be seen in Table 2, in all cases, our SCConv-
embedded models outperform all prior networks for ac-
curacy. For ResNet-56 model, the SCConv-R56 requires
only 62.7% parameters and FLOPs of the counterpart
ResNet56 while bringing over a 1% accuracy increase on
both datasets. For ResNet-50 model, the SCConv-R50
achieves better accuracy (nearly 1% and 1.3%) but around
37% parameters and 34% FLOPs reduction than the coun-
terpart ResNet50 on CIFAR-10 and CIFAR-100. Besides,
the SCConv-R50 requires the same computational costs as
SlimConv-R50 while bringing higher (over 1%) promotion
of accuracy. To show the generality of the proposed method,
we apply SCConv and other SOTA methods to ResNeXt-29,
WideResNet-28, and DenseNet-121. It can be observed that
the SCConv-embedded models still achieve superior perfor-
mance than other works with comparable model computa-
tions. For instance, the SCConv-RX29 achieves over 2.3%
improvement of accuracy while the computation is on par
with the GhostNet-RX29. The SCConv-WRN28 achieves
better accuracy (nearly 1.3%) than the SlimConv-WRN28
while saving parameters and FLOPs by 11.7% and 15.5%.

3.4. Image Classification on ImageNet

We conduct experiments for ResNet50 on the ImageNet-
1K dataset, comparing the performance of our approach

Table 2. Comparison of SOTA methods for common CNN ar-
chitectures over Top-1 accuracy, the number of parameters and
FLOPs on CIFAR-10 and CIFAR-100 dataset.

Network Architecture FLOPs Params
CIFAR-10
ACC(%)

CIFAR-100
ACC(%)

ResNet56 (R56)
OctConv-R56 (α=1/2)
SPConv-R56 (α=1/2)
GhostNet-R56 (s=2)
SlimConv-R56 (k=1)
TiedConv-R56 (b=2)
SCConv-R56 (Ours)

126.84M
126.84M
87.95M
68.35M
88.82M
94.99M
79.55M

0.86M
0.62M
0.58M
0.45M
0.60M
0.54M
0.52M

93.27
93.11
93.49
92.35
93.51
92.87
94.12

71.50
70.93
71.51
70.42
71.71
71.10
72.56

ResNet50 (R50)
OctConv-R50 (α=1/2)
GhostNet-R50 (s=2)
SlimConv-R50 (k=4/3)
SPConv-R50 (α=1/2)
SlimConv-R50 (k=1)
TiedConv-R50 (b=2)
SCConv-R50 (Ours)

1.30G
727.26M
632.45M
853.50M
972.31M
942.38M
998.78M
831.18M

23.52M
23.52M
14.56M
14.83M
16.14M
16.78M
15.03M
14.69M

95.09
95.25
94.30
95.05
95.32
95.35
95.44
95.92

78.60
78.91
77.54
78.85
79.23
79.26
79.52
79.89

ResNeXt-29 (RX29)
GhostNet-RX29 (s=2)
SPConv-RX29 (α=1/2)
SlimConv-RX29 (k=4/3)
TiedConv-RX29 (b=2)
SCConv-RX29 (Ours)

4.55G
3.60G
4.79G
4.38G
5.96G
3.57G

28.27M
22.22M
31.17M
28.24M
24.67M
22.31M

95.68
95.14
96.03
95.85
95.66
96.20

81.54
80.23
81.76
81.93
81.32
82.56

WideResNet-28 (WRN28)
GhostNet-WRN28 (s=2)
SPConv-WRN28 (α=1/2)
SlimConv-WRN28 (k=1)
TiedConv-WRN28 (b=2)
SCConv-WRN28 (Ours)

5.96G
3.98G
4.16G
4.25G
4.54G
3.75G

36.55M
22.12M
24.20M
25.00M
22.03M
21.12M

95.21
95.25
95.37
95.43
95.48
95.64

79.40
79.27
80.25
79.52
78.61
80.83

DenseNet-121 (D121)
GhostNet-D121 (s=2)
SPConv-D121 (α=1/2)
SlimConv-D121 (k=1)
TiedConv-D121 (b=2)
SCConv-D121 (Ours)

898.23M
517.36M
641.54M
670.21M
695.68M
594.34M

7.05M
5.04M
5.69M
5.97M
5.45M
5.45M

95.09
93.96
95.15
94.63
95.23
95.37

79.43
78.51
79.64
78.90
79.73
80.24

with the recent SOTA methods including OctConv [3], SP-
Conv [32], GhostNet [8], SlimConv [23], PfLayer [7], Tied-
Conv [28]etc. Noted that we only replace the bottleneck
3 × 3 convolutions with the corresponding convolution
methods. As shown in Table 3, our SCConv-R50 α=1/2
can achieve 34.4% computation reductions with 0.26% ac-
curacy increase over the ResNet50 model. When we further
increase the split ratio α to 3/4, our approach gains supe-
rior performance to all other state-of-the-art methods in the
growth of accuracy.

For instance, the SCConv-R50 α=3/4 achieves over
0.6% improvement of accuracy while the computation
is on a par with the PfLayer-R50 max. In addition,
the SCConv-R50 α=1/2 gains better performance than
SlimConv-R50 k=4/3 with comparable calculations. To
further prove the effectiveness of SCConv, we embed it with
the deep model ResNet101. With nearly 62% of computa-
tion costs, our SCConv-R101 brings a 0.68% accuracy in-
crease over the baseline model.

Besides, for better comparison, we select several state-
of-the-art methods to draw the FLOPs v.s. Top-1 accu-
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Table 3. Image classification results on ImageNet-1K dataset.

Network Architecture FLOPs(G) Params(M) Top-1 (%)

ResNet50 (R50) (Baseline) 4.09 25.56 76.15

Versatile-R50 (NIPS2018) 1.80 18.7 75.50
GhostNet-R50 s=2 (CVPR2020) 2.15 13.95 75.18
SlimConv-R50 k=8/3 (TIP2021) 1.88 12.10 75.32
SPConv-R50 α=1/2 (IJCAI2020) 2.97 18.34 76.26
OctConv-R50 α=1/2 (CVPR2020) 2.40 25.56 76.34
SlimConv-R50 k=4/3 (TIP2021) 2.65 16.76 76.12
PfLayer-R50 max (ICLR2022) 2.90 18.00 76.15
SlimConv-R50 k=1 (TIP2021) 3.00 18.81 76.32
TiedConv-R50 b=2 (AAAI2021) 3.19 17.07 76.04
SCConv-R50 α=1/2 2.70 16.78 76.41
SCConv-R50 α=3/4 2.87 17.69 76.79

ResNet 101(R101)(Baseline) 7.83 44.55 77.25
SCConv-R101 4.90 28.00 77.93
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Figure 6. Top1-Accuracy v.s. FLOPs for ResNet50 on ImageNet.

racy curve. From an overall view of Figure 6, the curve
of our proposed model is above all other methods includ-
ing ResNet, GhostNet, SP-ResNet, and SlimConv. It shows
that our proposed model gains higher accuracy with lower
computation costs. As for the same performance, the model
with our SCConv performs more compactly than others.

3.5. Object Detection

In order to further evaluate the generalization ability of
SCConv, we conduct experiments on two datasets for ob-
ject detection tasks. The one-stage RetinaNet [20] is used
as a detection framework. We adopt the backbone network
of ResNet-50, ResNet-101, and SCConv-embedded model
acts as a drop-in replacement for the backbone feature ex-
tractor.

Table 4. Object detection experiments on the PASCAL VOC 2007
and 2012 dataset.

Backbone Params(M)/FLOPs(G) AP@.5 AP@.75 mAP@[.5,.95]

ResNet50(R50) 25.56/63.09 77.89 55.31 52.26
SPConv-R50 19.76/49.23 78.05 55.47 52.48

SlimConv-R50 18.81/47.12 77.96 55.38 52.42
SCConv-R50 16.78/41.36 78.68 56.26 53.16

ResNet101(R101) 44.55/121.3 79.23 56.31 53.32
SCConv-R101 27.90/75.26 80.36 57.05 54.12

Table 5. Object detection results on MS COCO val2017.

Backbone Params(M)/FLOPs(G) AP@.5 AP@.75 mAP@[.5, .95]

ResNet50(R50) 25.56/63.09 54.2 37.4 35.2
SPConv-R50 19.76/49.23 54.5 37.6 35.3

SlimConv-R50 18.81/47.12 54.0 37.1 35.0
SCConv-R50 16.78/41.36 55.1 38.2 35.6

For the PASCAL VOC dataset, as shown in Table 4, the
AP@[.5] of RetinaNet with the SCConv-R50 and SCConv-
R101 are 78.68% and 80.36%, exceeding original ResNet50
and ResNet101 by 0.8% and 1.1% while reducing parame-
ters and FLOPs by 34.1% and 37%. For the MS COCO
dataset, as shown in Table 5, the AP@[.5] of RetinaNet with
SCConv-R50 is 55.1%, outperforming original ResNet-50
by 0.9% with over 22G FLOPs decreased.

In addition, our approach consistently surpasses current
state-of-the-art methods on both datasets. For instance, the
mAP@[.5,.95] of SCConv-R50 exceeds the SlimConv-R50
by nearly 0.8% and 0.6% on PASCAL VOC and MS COCO
datasets. In short, these results prove that the SCConv mod-
ule not only brings performance improvement but helps the
network learn better representative features with a smaller
amount of parameters, making it possible for object detec-
tion to be deployed on resource-limited devices.

4. Conclusion
In this paper, we have presented a novel spatial and chan-

nel reconstruction module (SCConv), an efficient architec-
tural unit to decrease computational cost and model stor-
age while improving the performance of CNN models by
reducing spatial and channel redundancies that widely ex-
ist in standard convolution. We diminish the redundancy
in feature maps with two distinctive modules, SRU and
CRU, which achieve considerable performance improve-
ment while cutting a substantial amount of computation
loads. Besides, SCConv is a plug-and-play module and
generic to replace the standard convolution without any
model architecture adjustment. In addition, the extensive
experiments with various SOTA methods on image classifi-
cation and object detection have indicated the superiority of
SCConv-embedded models for striking a much better trade-
off between performance and model efficiency. Finally, we
hope the proposed method can inspire research for more ef-
ficient architectural design.
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