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Figure 1. SECAD-Net for CAD reconstruction. Starting from a voxel grid (top), SECAD-Net learns Sketch-Extrude operations to
reconstruct CAD models (bottom), without any supervision of part segmentation and sketch labels.

Abstract

Reverse engineering CAD models from raw geometry
is a classic but strenuous research problem. Previous
learning-based methods rely heavily on labels due to the
supervised design patterns or reconstruct CAD shapes that
are not easily editable. In this work, we introduce SECAD-
Net, an end-to-end neural network aimed at reconstructing
compact and easy-to-edit CAD models in a self-supervised
manner. Drawing inspiration from the modeling language
that is most commonly used in modern CAD software, we
propose to learn 2D sketches and 3D extrusion parame-
ters from raw shapes, from which a set of extrusion cylin-
ders can be generated by extruding each sketch from a 2D
plane into a 3D body. By incorporating the Boolean op-
eration (i.e., union), these cylinders can be combined to
closely approximate the target geometry. We advocate the
use of implicit fields for sketch representation, which al-
lows for creating CAD variations by interpolating latent
codes in the sketch latent space. Extensive experiments on
both ABC and Fusion 360 datasets demonstrate the effec-
tiveness of our method, and show superiority over state-of-
the-art alternatives including the closely related method for
supervised CAD reconstruction. We further apply our ap-

*Corresponding author: jianwei.guo@nlpr.ia.ac.cn

proach to CAD editing and single-view CAD reconstruc-
tion. Code will be released at https://github.com/
BunnySoCrazy/SECAD-Net.

1. Introduction

CAD reconstruction is one of the most sought-after ge-
ometric modeling technologies, which plays a substantial
role in reverse engineering in case of the original design
document is missing or the CAD model of a real object is
not available. It empowers users to reproduce CAD mod-
els from other representations and supports the designer to
create new variations to facilitate various engineering and
manufacturing applications.

The advance in 3D scanning technologies has promoted
the paradigm shift from time-consuming and laborious
manual dimensions to automatic CAD reconstruction. A
typical line of works [3,6,35,47] first reconstructs a polygon
mesh from the scanned point cloud, then followed by mesh
segmentation and primitive extraction to obtain a bound-
ary representation (B-rep). Finally, a CAD shape parser is
applied to convert the B-rep into a sequence of modeling
operations. Recently, inspired by the substantial success
of point set learning [1, 32, 49] and deep 3D representa-
tions [9,28,30], a number of methods have exploited neural
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networks to improve the above pipeline, e.g., detecting and
fitting primitives to raw point clouds directly [25,27,40]. A
few works (e.g., CSG-Net [39], UCSG-Net [19], and CSG-
Stump [33]) further parse point cloud inputs into a construc-
tive solid geometry (CSG) tree by predicting a set of prim-
itives that are then combined with Boolean operations. Al-
though achieving encouraging compact representation, they
only output a set of simple primitives with limited types
(e.g., planes, cylinders, spheres), which restricts their rep-
resentation capability for reconstructing complex and more
general 3D shapes. CAPRI-Net [59] introduces quadric sur-
face primitives and the difference operation based on BSP-
Net [8] to produce complicated convex and concave shapes
via a CSG tree. However, controlling the implicit equation
and parameters of quadric primitives is difficult for design-
ers to edit the reconstructed models. Thus, the editability of
those methods is quite limited.

In this paper, we develop a novel and versatile deep neu-
ral framework, named SECAD-Net, to reconstruct high-
quality and editable CAD models. Our approach is inspired
by the observation that a CAD model is usually designed as
a command sequence of operations [7, 38, 50, 51, 57], i.e.,
a set of planar 2D sketches are first drawn then extruded
into 3D solid shapes for Boolean operations to create the
final model. At the heart of our approach is to learn the
sketch and extrude modeling operations, rather than CSG
with parametric primitives. To determine the position and
axis of each sketch plane, SECAD-Net first learns multiple
extrusion boxes to decompose the entire shape into multiple
local regions. Afterward, for the local profile in each box,
we utilize a fully connected network to learn the implicit
representation of the sketch. An extrusion operator is then
designed to calculate the implicit expression of the cylinders
according to the predicted sketch and extrusion parameters.
We finally apply a union operation to assemble all extrusion
cylinders into the final CAD model.

Benefiting from our representation, our approach is flex-
ible and efficient to construct a wide range of 3D shapes.
As the predictions of our method are fully interpretable, it
allows users to express their ideas to create variations or im-
prove the design by operating on 2D sketches or 3D cylin-
ders intuitively. To summarize, our work makes the follow-
ing contributions:

• We present a novel deep neural network for reverse en-
gineering CAD models with self-supervision, leading
to faithful reconstructions that closely approximate the
target geometry.

• SECAD-Net is capable of learning implicit sketches
and differentiable extrusions from raw 3D shapes with-
out the guidance of ground truth sketch labels.

• Extensive experiments demonstrate the superiority of
SECAD-Net through comprehensive comparisons. We

also showcase its immediate applications to CAD in-
terpolation, editing, and single-view reconstruction.

2. Related work
Neural implicit representation. 3D shapes can be repre-
sented either explicitly (e.g., point sets, voxels, meshes) or
implicitly (e.g., signed-distance functions, indicator func-
tions), each of them comes with its own advantages and
drawbacks. Recently, there is an explosion of neural im-
plicit representations [9, 28, 30] that allow for generating
detail-rich 3D shapes by predicting the underlying signed
distance fields. Thanks to the ability to learn priors over
shapes, many deep implicit works have been proposed
to solve various 3D tasks, such as shape representation
and completion [2, 10, 42], image-based 3D reconstruc-
tion [45, 52, 58], shape abstraction [16, 44] and novel view
synthesis [12, 29]. Theoretically, any of the above shape
representations can be used to represent sketches. How-
ever, primitive-based methods usually suppress the ability
cap of shape representation. In this work, we choose to fit
an implicit sketch representation using a neural network,
and show its superiority over other representations (e.g.,
BSP [8]) in the ablation study, see Sec. 5.4.
Reverse engineering CAD reconstruction. Over the past
decades, reverse engineering has been extensively studied;
it aims at converting measured data (a surface mesh or a
point cloud) into solid 3D models that can be further edited
and manufactured by industries. Traditional approaches ad-
dressing this problem consist of the following tasks: (1) seg-
mentation of the point clouds/meshes [5, 41, 60], (2) fitting
of parametric primitives to segmented regions [11, 36, 55],
(3) finishing operations for CAD modeling [4, 24]. Impor-
tant drawbacks of these conventional methods are the time-
consuming process and the requirement of a skilled operator
to guide the reconstruction [6].

With the release of several large-scale CAD datasets
(e.g., ABC [21], Fusion 360 [50]), SketchGraphs [37]), nu-
merous approaches have explored deep learning to address
primitive segmentation/detection [25, 56], parametric curve
or surface inference from point clouds [17, 27, 31, 40, 48]
or B-rep models [18, 23]. However, by only outputting in-
dividual curves or surfaces, these methods lack the CAD
modeling operations that are needed to build solid models.
Focusing on CAD generation rather than reconstruction task
as ours, some approaches propose deep generative models
that predict sequences of CAD modeling operations to pro-
duce CAD designs [26, 50, 51, 53, 54]. Aiming at CAD
reconstruction involving inverse CSG modeling [15], CS-
GNet [39] first develops a neural model that parses a shape
into a sequence of CSG operations. More recent works fol-
low the line of CSG parsing by advancing the inference
without any supervision [19], or improving representation
capability with a three-layer reformulation of the classic
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Figure 2. Network architecture for SECAD-Net: The embedding z encoded from the voxel input is first fed to the extrusion box head
to predict extrusion boxes. It is also sent to the sketch head network to calculate the sketch SDF Ŝi

sk after concatenating with the linear
transformed sampling point. Ŝi

cyl stands for the SDF of the cylinder, which is acquired by extruding Ŝi
sk with height hi. Then we convert

Ŝi
cyl to occupancy of cylinder Ôi and finally obtain the complete shape by union all the occupancies.

CSG-tree [33], or handling richer geometric and topological
variations by introducing quadric surface primitives [59].
While achieving high-quality reconstruction, CSG tends to
combine a large number of shape primitives that are not as
flexible as the extrusions of 2D sketches and are also not
easily user edited to control the final geometry.

Motivated by modern design tools, supervised methods
are proposed [22, 46] utilizing the sketch-extrude procedu-
ral models and learning 2D sketches that can be extruded
to 3D shapes. In contrast to their reliance on 2D labels,
SECAD-Net is trained in a self-supervised manner. Most
closely related to our work is ExtrudeNet [34]. SECAD-Net
distinguishes itself from ExtrudeNet in several significant
aspects: i) Following the traditional reconstruction process,
ExtrudeNet first predicts the parameters of Bézier curves
and then converts them into SDFs. In contrast, we jumped
out of this paradigm and directly used neural networks to
predict the 2D implicit fields of the profiles. ii) Extru-
deNet adopts closed Bézier curves to avoid self-intersection
in sketches. This makes ExtrudeNet can only predict star-
shaped profiles, which limits the expressive power of their
CAD shapes. Our method does not impose any restrictions
on the shape of the profile, thus having greater flexibility in
shape expression. iii) To pursue the reconstruction effect,
ExtrudeNet relies on a larger number of primitives, while
our method is able to predict more compact CAD shapes.

3. Problem Statement and Overview
In this section, we present an overview of the proposed

approach. To precisely explain our techniques, we first pro-
vide the definition of several related terminologies (Fig. 3).

3.1. Preliminaries

Definition 1 (Loop, Profile and Sketch) In CAD terminol-
ogy, a sketch is represented by a collection of geometric

extrusion box

loops profile

sketch sketch plane

cylinder

cylinder primitives

h

h

axis
x

y

z

Figure 3. Definitions of CAD terminologies used in this paper.
Note that the axis of the sketch plane in the figure is the same as
the z-axis in the extrusion box.

primitives. By referring to a closed curve as a loop and an
enclosed region composed of one or multiple inner/outer
loops as a profile, we define a sketch as the collection of
one profile and its loops.

Definition 2 (Sketch plane and Extrusion box) A sketch
plane is a finite plane with width w and length l, containing
one or more sketches with the same extrusion height h.
Then we define an extrusion box as a cuboid with the sketch
plane as the base and 2h as the height.

Definition 3 (Cylinder primitive and Cylinder) In this work,
a cylinder refers to the shape obtained by extruding a
sketch, and a cylinder primitive is obtained by performing
an extrude operation on a closed area formed by a loop. A
cylinder may contain one cylinder primitive or be obtained
from several cylinder primitives through the Difference op-
eration used in CSG modeling.

3.2. Overview

We formulate the problem of CAD reconstruction as
sketch and extrude inference: taking an input 3D shape,
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SECAD-Net aims to reconstruct the CAD model by pre-
dicting a set of geometric proxies that are decomposed to
sketch-extrude operations. The overall pipeline of SECAD-
Net is visualized in Fig. 2. Given a 3D voxel model, we first
map it into a latent feature embedding z by using an encoder
based on a 3D convolutional network. An extrusion box
head network is then applied to predict the parameters of the
sketch planes from z. We employ N sketch head network
to independently learn N 2D signed distance fields (SDFs)
as the implicit representation of a sketch. Next, we design a
differentiable extrusion operator to calculate the SDF of the
3D cylinder primitives corresponding to the sketches. Fi-
nally, an occupancy transformation operation and a union
operation transform the multiple SDFs into the full 3D re-
constructed shape as the output of the network.

4. Method
4.1. Sketch-Extrude Inferring

We apply a standard 3D CNN encoder to extract a shape
code z with size 256 from the input voxel. The code is then
passed to the proposed SECAD-Net to output the sketch
and extrusion cylinder parameters. Below we introduce the
main modules of SECAD-Net following the order of data
transmission during prediction.
Extrusion box prediction. We first apply a fully connected
layer to predict the parameters of the extrusion boxes. Tak-
ing the feature encoding z as input, a decoder, refereed
to sketch box head, outputs a set of sketch boxes B =
{si, ci, ri | i ∈ N}, where si ∈ R3 describes the 2D size
(i.e., length and width) of the box, ci ∈ R3 represents the
predicted position of the box’s center, and ri ∈ R4 is the ro-
tation quaternion. The positive z-axis of the extrusion box
determines the axial direction ei of the sketch plane, and the
height of the extrusion box is twice the height of the extrude
operation (see Fig. 3).
2D sketch inference. The sketches in each sketch plane
depict the shape contained within the sketch box. Inspired
by the recent neural implicit shapes [2, 46], we encode the
shape of each sketch into a sketch latent space. To this end,
we first project the 3D sampling points w.r.t the correspond-
ing occupancy value onto the sketch plane along the axis ei.
A sketch head network (SK-head) then computes the signed
distance from each sampling point to the sketch contour.
The distance is negative for points in the sketch and posi-
tive for points outside. Each SK-head contains Nlay layers
of fully connected layers, with softplus activation functions
used between layers, and we clamp the output distance to
[-1,1] in the last layer. Each 2D point is concatenated with
the feature encoding z as a global condition before being
fed into the SK-head. Regarding the i-th SK-head as an
implicit function fi, then formally we get:

Ŝi
sk = fi(x

t
i, z), (1)

where xt
i is the result of a linear transformation of the sam-

pling points contained in the i-th extrusion box, which can
be expressed as r−1

i (xi − ci). Ŝi
sk represents the signed

distance field of the i-th sketch plane.
Differentiable extrusion. Next, we calculate the SDF of
a cylinder based on the 2D distance field and the extrusion
height h. We denote Ω as the volume between two hyper-
planes pu and pl, where pu and pl are the upper and lower
surfaces on which the cylinder is located. Similarly, we de-
fine Ψ as the volume inside the infinite cylinder where the
side of the cylinder is located. The implicit field of the i-th
cylinder, Ŝi

cyl, is equal to one of the following cases: (1) the
distance from a point xi to pu or pl, when xi ∈ Ω ∩ Ψ∁,
where superscript ∁ stands for complement; (2) Ŝi

sk, when
xi ∈ Ω∁ ∩ Ψ; (3) the distance from xi to the intersection
curves of the cylinder and hyperplanes, when xi ∈ Ω∁∩Ψ∁;
(4) the maximum distance between Ŝi

sk and the point to pu

or pl, when xi ∈ Ω∁ ∩ Ψ. The sub-formulas for each case
are as follows:

Ŝi
cyl =


max(Ŝi

sk, |xiz | − hi) , (Ŝi
sk ≤ 0) ∧ (|xiz | ≤ hi)

|xiz | − hi , (Ŝi
sk ≤ 0) ∧ (|xiz | > hi)

Ŝi
sk , (Ŝi

sk > 0) ∧ (|xiz | ≤ hi)∥∥∥Ŝi
sk, (|xiz | − hi)

∥∥∥
2

, (Ŝi
sk > 0) ∧ (|xiz | > hi)

(2)
Combining the above four sub-formulas with the max and
min operations, the following result is obtained:

Ŝi
cyl = min(max(Ŝi

sk, |xiz | − hi), 0)

+
∥∥∥max(Ŝi

sk, 0),max(|xiz | − hi, 0)
∥∥∥
2

(3)

Occupancy conversion and assembly. The occupancy
function represents points inside the shape as 1 and points
outside the shape as 0, which can be transformed by SDF.
Following [13,33], we use the Sigmoid function to perform
differentiable transformation operations:

Ôi = Sigmoid(−η · Ŝi
cyl). (4)

We finally assemble the occupancy Ôi of each cylinder to
obtain the reconstructed shape. In order to express com-
plex shapes, many works use intersection, union, and differ-
ence operations in CSG in the assembly stage [8,19,33,59].
In contrast to them, we only use the union operation, be-
cause the extrusion cylinders can naturally represent con-
cave shapes. This helps us avoid designing intricate loss
functions or employing multi-stage training strategies with-
out losing the flexibility of reconstructing shape represen-
tations. We adopt the Softmax to compute the union op-
eration as it is shown to be effective in avoiding vanishing
gradients [33]:

Ôtotal =

N∑
i

Softmax(φ · Ôi) · Ôi, (5)
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where φ is the modulating coefficient and Ôtotal is the oc-
cupancy representation of the final reconstructed shape.

4.2. Loss Function

We train SECAD-Net in a self-supervised fashion
through the minimization of the sum of two objective terms.
The supervision signal is mainly quantified by the recon-
struction loss, which measures the mean squared error be-
tween the predicted shape occupancy Ôtotal and the ground
truth O∗

total:

Lrecon = Ex∈X

[
(Ôtotal −O∗

total)
2
]
, (6)

where x is a randomly sampled point in the shape volume.
However, we find that applying only Lrecon makes the

network always learn fragmented cylinders. To tackle this
problem, we design a 2D sketch loss to facilitate the net-
work to learn the axis of the sketch plane and the complete
profile. Specifically, each sketch plane cuts the voxel model
to form an occupancy cross-section Oi∗

cs. We project the 3D
sampling points inside the i-th extrusion box Bi onto the
sketch plane along the axial direction, and calculate the dif-
ference between the occupancy value of the projected points
Ôproj and ground truth Oi∗

cs :

Lsketch =

N∑
i=1

Ex∈Bi

[
(Ôi

proj −Oi∗

cs)
2
]
. (7)

The overall objective of SECAD-Net is defined as the com-
bination of the above two terms:

Ltotal = Lrecon + λLsketch, (8)

where λ is a balance factor.

4.3. CAD Reconstruction

The output of SECAD-Net during the training phase is
an implicit occupancy function of the 3D shape. In the pre-
diction stage, we reconstruct CAD models by using sketch-
extrude operations instead of the marching cubes method.
Sketch and extrusion. To convert a 2D implicit field (Fig. 4
(a)) in the sketch latent space into an editable sketch, we in-
put uniform 2D sampling points to the SK-head, and attach
the implicit value to the position of the sampling point to ob-
tain an explicit image-like 2D profile (Fig. 4 (b)). We then
use the Teh-Chin chain approximation [43] to extract the
contours of the profiles and the hierarchical relationships
between them. We further apply Dierckx’s fitting [14] to
convert the contours into closed B-splines (Fig. 4 (c)).

After extruding each sketch to get the cylinder primitives
according to half the height of Bi, we assemble cylinder
primitives into cylinders by alternately performing union or
difference operations according to the hierarchical relation-
ship between contours (primitive at hierarchy 0 difference

(c) Fitted Sketch Splines(b) Sample Points with Occupancy(a) Implicit Field

control points
splines at hierarchy 0
splines at hierarchy 1

Figure 4. Illustration of converting 2D implicit sketches into the
closed B-splines.

primitives at hierarchy 1 in the case of Fig. 4). Finally, we
take the union of all cylinders to obtain the CAD model.
Post-processing. We take two post-processing operations
to clean up overlapping and shredded shapes in the result.
First, for any two cylinders, when their overlapping coeffi-
cient is greater than 0.95, the smaller of them is discarded.
Second, we delete all cylinders whose height is less than
0.01 in the reconstruction result. We demonstrate our final
reconstructions in Fig. 5 and Fig. 6.

4.4. Implementation Details

SECAD-Net is implemented in PyTorch and trained on
a TITAN RTX GPU from NVIDIA®. We train our model
using an Adam optimizer [20] with learning rate 1 × 10−4

and beta parameters (0.5, 0.99). We set both the number
of MLP layers in the sketch head network and the number
of output cylinders to 4. For hyper-parameters in Eq. 4,
Eq. 5 and Eq. 8, we set η = 150, φ = 25 and λ = 0.01
in default, which generally works well in our experiments.
Employing a similar training strategy to [59], we first pre-
train SECAD-Net on the training datasets for 1,000 epochs
using batch size 24, which takes about 8 hours, and fine-
tuning on each test shape for 300 epochs, which takes about
3 minutes per shape.

5. Experimental Results
In this section, we examine the performance of SECAD-

Net on the ABC dataset [21] and Fusion 360 Gallery [50].
Through extensive comparisons and ablation studies, we
demonstrate the effectiveness of our approach and show
its superiority over state-of-the-art reference approaches for
CAD reconstruction.

5.1. Setup

Dataset preparation. For the ABC dataset, the voxel grids
and sampling point data are provided by [59]. We use 5,000
groups of data for training and 1,000 for testing. For Fusion
360, which does not contain available voxels, we first ran-
domly select 6,000 meshes, then discretize them into inter-
nally filled voxels. The train-test split is the same as ABC.
We obtain sampling points with the corresponding occu-
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Table 1. Quantitative comparison between reconstruction results
on ABC dataset.

Methods CD↓ ECD↓ NC↑ #P↓
UCSG-Net [19] 1.849 1.255 0.820 12.84
CSG-Stump [33] 4.031 0.754 0.828 17.18
ExtrudeNet [34] 0.471 0.914 0.852 14.46

Ours 0.330 0.724 0.863 4.30

Table 2. Quantitative comparison between reconstruction results
on Fusion 360 dataset.

Methods CD↓ ECD↓ NC↑ #P↓
UCSG-Net [19] 2.950 5.277 0.770 10.84
CSG-Stump [33] 2.781 4.590 0.744 12.08
Point2Cyl [46] 13.889 14.657 0.669 2.76

ExtrudeNet [34] 2.263 3.558 0.819 15.72
Ours 2.052 3.282 0.803 5.44

pancy value following [9]. The resolution of voxel shapes is
643 for both datasets, and the number of sampling points is
8,192. Considering that fine-tuning each method and gener-
ating high-accuracy meshes is time-consuming, we take 50
shapes from each dataset to form 100 shapes for quantitative
evaluation.
Evaluation metrics. For quantitative evaluations, we fol-
low the metrics that are commonly used in previous meth-
ods [33, 59], including symmetric Chamfer Distance (CD),
Normal Consistency (NC), Edge Chamfer Distance (ECD).
Details of computing these metrics are given in the supple-
mental materials. Additionally, we also report the number
of generated primitives, #p, as a measure of how easy the
output CAD results are to edit.

5.2. Comparison on CAD Reconstruction

We thoroughly compare our method with two types of
primitive-based CAD reconstruction methods that output
editable CAD models, including two CSG-like methods
(i.e., UCSG-Net [19], CSG-Stump [33]) and two cylin-
der decomposition counterpart (i.e., point2Cyl [46]), Extru-
deNet [34]. For each method, we adopt the implementation
provided by the corresponding authors, and use the same
training strategy for training and fine-tuning. For CSG-
Stump, we set the number of intersection nodes to 64, mak-
ing it output a comparable number of primitives to other
methods. Those methods provide a plethora of comparisons
to other techniques and establish themselves as state-of-the-
art. Note that for point2Cyl, we only report its results on
Fusion 360 dataset, as the ABC dataset does not provide
the labels needed to train point2Cyl.

Quantitative results on the ABC and Fusion 360 datasets
are reported in Table 1 and Table 2, respectively. It can be
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Figure 5. Visual comparison between reconstruction results on
ABC dataset.

seen that the proposed SECAD-Net outperforms both kinds
of methods on all evaluation metrics while still generating a
relatively small number of primitives. Fig. 5 and Fig. 6 dis-
play several qualitative comparison results. For fairness, all
the reconstructed CAD models are visualized using march-
ing cubes (MC) with 256 resolution. Visually as shown
in the figures, our method achieves much better geometry
and topological fidelity with more accurate structures (e.g.,
holes, junctions) and sharper features.

5.3. CAD Generation via Sketch Interpolation

Although without ground truth labels as guidance,
SECAD-Net can learn plausible 2D sketches from raw 3D
shapes. Thanks to the implicit sketch representation, we
are able to generate different CAD variations when a pair of
shapes is interpolated in the complete and continuous sketch
latent space, as shown in Fig. 7. The results suggest that the
generated sketch is gradually transformed even if the pair of
shapes have significantly different structures, and we draw
two further conclusions: (1) the predicted position of each
extrusion box is relatively deterministic, although the input
shape is different (see the left and right column sketches
in the leftmost group); (2) when an extrusion box does not
contain a shape, our SK-head does not generate a sketch,
making the network output an adaptive number of cylin-
ders (see the middle column sketches of the leftmost and
the rightmost groups).
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Figure 6. Visual comparison between reconstruction results on
Fusion 360 dataset.

Table 3. Ablation study on network design and sketch loss. We
adopted setting (e) in the final model.

Settings (a) (b) (c) (d) (e)
Nsh 1 4 4 4 4
Nlay 2 2 2 4 4
Ncyl 4 4 8 4 4

Lsketch ✓ ✓ ✓ ✗ ✓

CD↓ 2.627 0.993 1.504 0.336 0.330
ECD↓ 1.754 0.882 1.098 0.772 0.724
NC↑ 0.713 0.835 0.761 0.863 0.863

5.4. Ablations

We perform ablation studies to carefully analyze the ef-
ficiency of major components of our designed model. All
quantitative metrics are measured on the ABC dataset.
Effect of network design and sketch loss. We first exam-
ine the effect of the number of components/parameters in
SECAD-Net, including the number of SK-heads (Nsh), the
number of fully connected layers (Nlay) in each SK-head,
and the number of output cylinders (Ncyl). Then we show
the necessity of the sketch loss by deactivating it to train the

Figure 7. For each example, we encode the sketches of top and
bottom shapes in latent vector space and then linearly interpolate
the corresponding latent codes.

Table 4. Ablation study on sketch representation.

Representation CD↓ ECD↓ NC↑ #P↓
Box primitives 0.523 0.982 0.825 5.38

BSP 0.612 0.838 0.852 5.84
SK-head (Ours) 0.330 0.724 0.863 4.30

network. The quantified results are presented in Table 3.
Settings (a), (b), and (c) show that reducing the number of
SK-heads or increasing the number of cylinder outputs will
damage the model prediction accuracy. Settings (b), (d),
and (e) show that increasing the number of MLP layers in
SK-head or enabling Lsketch will improve the prediction
accuracy.
Effect of implicit sketch representation. To assess the ef-
ficiency of neural implicit sketch representation, we adopt
two other classical shape representations, namely binary
space partitioning (BSP [8]) and box-like primitives, to
compare with our SK-head in SECAD-Net. For BSP, we set
the number of output convex shapes to 8, each containing 12
partitions. The assembly method is consistent with [8] to

16822



INPUT SK HEAD GTBSPBOXES

Figure 8. Visual comparison results for ablation study on sketch
representation.
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Figure 9. SECAD-Net can aid in more applications. Left: the
results of single-view reconstruction. Right: a subsequent CAD
editing by changing the predicted cylinder primitives.

represent 2D sketches. For box-like primitives, 24 rectan-
gles are predicted. We divide them into two subsets in half,
take the union operation separately, and subtract the other
from one of the union results. The numerical and visual
comparison results are shown in Table 4 and Fig. 8, respec-
tively. It can be seen that our implicit field can represent
the smoothest shape while obtaining the best reconstruction
results.

5.5. Other Applications

By replacing the voxel encoder, SECAD-Net is flexible
to reconstruct CAD models from other input shape repre-
sentations, e.g., images and point clouds. Fig. 9 shows the
results of SECAD-Net in solving single-view reconstruc-
tion (SVR) task. Following the training strategy of previous
work [8, 9], we first use voxel data to complete the train-
ing of the 3D auto-encoding task, and then train an image
encoder with the feature encoding of each shape as the tar-
get. The voxels and input images used for the SVR task are
obtained directly from Fusion 360. Replacing more input
representations, while feasible and meaningful, is not the
focus of this paper and we leave it to future research.

Finally, the parameters of both 2D sketches and 3D
cylinders are available, thus the CAD results output from
SECAD-Net can be directly loaded into existing CAD soft-
ware for further editing. As shown in the right side of Fig. 9,
interpretable CAD variations can be produced via spe-
cific editing operations, such as sketch-level curve editing,
primitive-level displacement, rotation, scaling, and Boolean
operations between primitives.

6. Conclusion and Future Work

We have presented a novel neural network that succes-
sively learns shape sketch and extrusion without any expen-
sive annotations of shape segmentation and labels as the su-
pervision. Our approach is able to learn smooth sketches,
followed by the differentiable extrusion to reconstruct CAD
models that are close to the ground truth. We evaluate
SECAD-Net using diverse CAD datasets and demonstrate
the advantages of our approach by ablation studies and com-
paring it to the state-of-the-art methods. We further demon-
strate our method’s applicability in single-image CAD re-
construction. Additionally, the CAD shapes generated by
our approach can be directly fed into off-the-shelf CAD
software for sketch-level or cylinder primitive-level editing.

In future work, we plan to extend our approach to learn
more CAD-related operations such as revolve, bevel, and
sweep. Besides, we find that current deep learning models
perform poorly on datasets with large differences in shape
geometry and structure. Therefore, another promising
direction is to explore how to improve the generalization of
neural networks and enhance the realism of the generated
shapes by learning structural and topological information.
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[4] Pál Benkő, Ralph R Martin, and Tamás Várady. Algo-
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