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Abstract

Source-free domain adaptation (SFDA) is an emerging
research topic that studies how to adapt a pretrained source
model using unlabeled target data. It is derived from unsu-
pervised domain adaptation but has the advantage of not
requiring labeled source data to learn adaptive models.
This makes it particularly useful in real-world applications
where access to source data is restricted. While there has
been some SFDA work for images, little attention has been
paid to videos. Naively extending image-based methods to
videos without considering the unique properties of videos
often leads to unsatisfactory results. In this paper, we pro-
pose a simple and highly flexible method for Source-Free
Video Domain Adaptation (SFVDA), which extensively ex-
ploits consistency learning for videos from spatial, tempo-
ral, and historical perspectives. Our method is based on
the assumption that videos of the same action category are
drawn from the same low-dimensional space, regardless
of the spatio-temporal variations in the high-dimensional
space that cause domain shifts. To overcome domain shifts,
we simulate spatio-temporal variations by applying spatial
and temporal augmentations on target videos and encour-
age the model to make consistent predictions from a video
and its augmented versions. Due to the simple design, our
method can be applied to various SFVDA settings, and ex-
periments show that our method achieves state-of-the-art
performance for all the settings.

1. Introduction

Action recognition is a crucial task in video understand-
ing and has been receiving tremendous attention from the
vision community. In recent years, it has made significant
progress, primarily due to the development of deep learning
techniques [11, 43, 45] and the establishment of large-scale
annotated datasets [2, 13, 42]. However, it is acknowledged
that an action recognition model trained with annotated data
drawn from one distribution typically experiences a per-

formance drop when tested on out-of-distribution data [4].
This is the so-called domain shift problem.

To tackle this problem, Unsupervised Video Domain
Adaptation (UVDA) has been proposed. The goal is to
learn an adaptive model using labeled video data from one
domain (source) and unlabeled video data from another do-
main (target). Typical UVDA methods use videos from both
domains as input and train a model by minimizing the clas-
sification risk on labeled source videos and explicitly align-
ing videos from both domains in a class-agnostic fashion.
Although most image-based domain alignment techniques
can be applied to video domain alignment, such as adver-
sarial learning [22, 37, 44], methods that align domains by
considering the richer temporal information in videos have
shown superior performance [6, 33, 36].

While UVDA methods help alleviate the domain shift
problem, their assumption that labeled source videos are
available for domain alignment can be problematic in real-
world applications where access to source videos is re-
stricted due to privacy or commercial reasons [24,50]. This
motivates a new research topic, Source-Free Video Domain
Adaptation (SFVDA) [50], which aims to learn an adap-
tive action recognition model using unlabeled target videos
and a source model pre-trained with labeled source videos.
SFVDA is similar to UVDA in learning an adaptive model
using labeled source and unlabeled target videos but dif-
fers in that labeled source videos are only used for learning
the source model. Adaptation only involves target videos,
which avoids leaking annotated source videos. However,
the absence of labeled source videos makes SFVDA a more
challenging problem than UVDA since there is no reliable
supervision signal, and no data drawn from the distribution
to be aligned, which makes it even more challenging.

Very recently, Xu et al. [50] proposed a pioneering ap-
proach to SFVDA based on temporal consistency. They
adapt the source model by encouraging it to keep the ca-
pability of understanding motion dynamics despite domain
shifts. They train the model to produce features/predictions
for a video clip consistent with those of other clips within
the same video or that of the entire video. Despite im-
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Figure 1. Conceptual illustration of applying spatial and temporal
augmentations to simulate domain shifts and encouraging predic-
tion consistency for SFVDA.

proved performance over baseline methods, this method
only considers adapting the source model from a tempo-
ral perspective and ignores spatial factors (the appearance
of frames) that also account for domain shifts. Adapting
the model without encouraging it to surpass the visual ap-
pearance variations could still produce sub-optimal adapta-
tion results. Besides, clips from the same video often share
high similarity, and the model can produce consistent fea-
tures/predictions even though it has not been well adapted.

In this paper, we propose a novel SFVDA method that
overcomes the limitation of the existing methods by ex-
ploiting Spatial-Temporal-Historical Consistency (STHC).
Our underlying assumption is that videos of the same ac-
tion category are drawn from the same low-dimensional
space, regardless of spatio-temporal variations in the high-
dimensional space that cause domain shifts. To achieve
this, we simulate spatio-temporal variations with target
videos and adapt the source model by encouraging it to
surpass the variations and produce consistent predictions.
Specifically, we apply spatial and temporal augmentations
to each unlabeled target video in a stochastic manner to sim-
ulate spatio-temporal variations. By encouraging consistent
classification predictions for the video and its augmented
versions, we ensure that they are drawn from the same low-
dimensional space. After adapting the model in this way, it
is expected to generalize well on test videos that fall into the
same low-dimensional space as the training videos. Figure
1 provides an illustration of this concept.

More concretely, we randomly select a clip from the
video and apply stochastic frame-wise spatial augmenta-
tion, resulting in a perturbed version of the clip. In addi-
tion, we also apply stochastic temporal augmentation by
randomly masking some frames to generate a temporally-
perturbed clip. To ensure prediction consistency, we en-
force the spatial consistency (SC) of the clip with its per-
turbed version and the temporal consistency (TC) of the
clip with its temporally-perturbed version. Besides these
two techniques, we propose a third technique that enforces
consistent predictions for the clip and other clips from the
same video. This technique is similar to that in [50], but

we implement this in a nearly no-cost way: We store his-
torical predictions of all the clips (with randomly sampled
frames) from each video in a memory bank and retrieve pre-
dictions from the bank to enforce prediction consistency for
the current clip. This technique reinforces temporal consis-
tency and we call it historical consistency (HC). Notably,
TC and SC produce “hard” versions of a clip and encourage
the model to overcome the hard factors and make consis-
tent predictions. Therefore, the model must have a strong
understanding of the target domain to fulfill these tasks, fa-
cilitating model adaptation.

Thanks to simplicity in design, our STHC method can
be easily extended to other SFVDA settings, including the
open-set setting where the target domain contains classes
that are absent in the source domain, the partial setting
where the source domain contains classes that are absent
in the target domain, and the black-box setting where only
outputs of the source model are available and the model
weights are not accessible. Experiments show that STHC
outperforms existing methods for all the SFVDA settings.
Our contributions can be summarized as follows:

• We comprehensively exploit consistency learning for
videos and propose STHC model for SFVDA. STHC
performs stochastic spatio-temporal augmentations on
each video and enforces prediction consistency from
spatial, temporal, and historical perspectives.

• We extend STHC to address various domain adap-
tation problems under the SFVDA setting. To our
best knowledge, most of these problems have not been
studied before and we establish the evaluation bench-
marks that will help future development.

• STHC achieves state-of-the-art performance for
SFVDA in various problem settings.

2. Related Work
2.1. Video Domain Adaptation

While image-based domain adaptation has been exten-
sively investigated [20, 21, 28, 37, 44], video domain adap-
tation (VDA) has only recently been explored. A straight-
forward approach to VDA is to extend image-based meth-
ods to videos by applying adaptation techniques to the fea-
ture representation level. However, this naive extension of-
ten yields unsatisfactory results due to the failure of mod-
eling the temporal information [4–6, 8, 29, 33, 36]. Vari-
ous techniques have been proposed to address this issue.
Some methods use attention mechanisms to perform align-
ment in the temporal direction, either by modeling the tem-
poral relationship [4] or highlighting common key frame-
works [33]. Some methods employ self-supervised learning
techniques by learning pretext tasks with videos from both
domains, e.g., clip order prediction [6], contrastive learn-
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ing [5, 36], etc. Other methods extend adversarial learn-
ing to the temporal direction [5] or leverage frame graph to
bridge the domain gap between video datasets [29]. While
most existing VDA methods study the unsupervised set-
ting where adaptation is from one labeled source dataset
to another unlabeled target dataset, some works also in-
vestigate other adaptation scenarios, including the multi-
modality setting [14,32,41,51] where both RGB and motion
information are available for domain alignment, the partial
domain adaptation setting [48] where action categories in
the target domain is a subset of those of the source domain,
and the source-free setting [50] which is studied in this pa-
per. Due to the absence of source data for adaptation, most
existing video domain alignment techniques are not appli-
cable to SFVDA. [50] addresses this problem with temporal
consistency learning. We differ from it in that we also con-
sider spatial consistency. Additionally, [50] enforces con-
sistency between video clips and other clips or the whole
video, we use spatio-temporal augmentation to encourage
consistency among different augmented versions.

2.2. Source-Free Domain Adaptation

The absence of source data for adaptation renders
most mature domain alignment techniques impractical for
Source-Free Domain Adaptation (SFDA). To work around
this issue, several SFDA methods propose to generate
“proxy” source samples, such as generating images with a
learned image generation model [19], producing class pro-
totypes by a conditional feature generator [34], or generat-
ing features with a parametric distribution estimation model
[35]. Other methods adapt the model without relying on ex-
isting unsupervised domain alignment techniques. Liang et
al. suggest adapting the feature extractor with target data
and encouraging it to produce feature representations that
result in certain predictions by the classifier [24]. Xia et
al. propose a dual-classifier model to achieve contrastive
category-wise matching and adversarial domain-level align-
ment [46]. Yang et al. address this problem by ensur-
ing similar samples are assigned the same labels, either
for semantically similar samples [53] or for spatially sim-
ilar samples in the feature space [52]. Some works also
study variant problems of SFDA, for example, the multi-
source adaptation variant [1] and universal adaptation vari-
ant [18]. Some works also study the SFDA problem for
other tasks beyond image classification, e.g., semantic seg-
mentation [17, 27] and object detection [23]. Our method
studies the SFDA problem for videos and explores both spa-
tial and temporal information for model adaptation, and is
thus essentially different from these image-based methods.

3. Algorithm
Source-Free Video Domain Adaptation (SFVDA) is de-

rived from unsupervised video domain adaptation (UVDA):

It shares the same goal as UVDA of learning an adap-
tive video classification model H using a source dataset
S = {(X1, y1), (X2, y2), . . . , (XM , yM )} of M labeled
videos and a target dataset T = {U1,U2, . . . ,UN} of N
unlabeled videos. The difference lies in how they access
these datasets. UVDA learns model H simultaneously with
access to both S and T , whereas SFVDA learns model H
in two steps, first on S in a standard supervised manner, and
then on T by adapting the learned model in an unsupervised
manner. While this process is more complicated, separating
S from adaptation prevents the labeled data from being dis-
closed, enabling a privacy-safe adaptation solution.
Source model generation. To generate the source model,
we follow the same learning protocols as the existing
SFVDA method [50]. We decouple model H as H =
F ◦ G ◦ C where F , G, and C are the frame feature ex-
tractor, the temporal information encoder, and the classi-
fier, respectively. For each video (X, y) ∈ S, we perform
segment-wise frame sampling to obtain clips. Specifically,
let X = {x1,x2, . . . ,xm} be the frames. We divide the
frames evenly into K segments and sample one frame from
each segment. This produces a K-frame video snippet of
class y, i.e., (X̄, y) where |X̄| = K. We input X̄ to F to
produce a sequence of frame features, which are then sent
toG to encode the temporal information. After that, we per-
form average pooling of all frame features (outputted by G)
and get a vector representation for X̄, which we send to C
for calculating the cross-entropy loss with y. H is updated
accordingly with the standard gradient back-propagation.

3.1. Spatial-Temporal-Historical Consistency

Given model H with weights learned from S, we pro-
pose the STHC model to adapt it to the target domain using
unlabeled data T . We achieve this by encouraging H to
surpass spatio-temporal variations that account for domain
shifts. To simulate spatio-temporal variations, we apply
stochastic augmentations and generate spatially-augmented
and temporally-augmented views for each target video. We
then train H to encourage it to make consistent predictions
for the video and its augmented versions from spatial, tem-
poral, and historical aspects. Figure 2 shows our frame-
work. In the following sections, we will delve into the
specifics of the three consistency learning techniques.

3.1.1 Spatial Consistency

For an unlabeled target video U ∈ T with n frames, we
perform segment-wise random sampling which evenly di-
vides the n frames into K parts, and one frame is ran-
domly selected from each part, producing a K-frame se-
quence Ū = {u1,u2, . . . ,uK}. We apply per-frame data
augmentation and get Ūs as

Ūs = {ψ(u1), ψ(u2), . . . , ψ(uK)}, (1)
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Figure 2. Framework of the proposed STHC method. It includes a pretraining stage that learns a source model using labeled source videos
(Left) and an adaptation stage that adapts the source model using unlabeled target videos (Right). During the adaptation stage, for each
unlabeled target video, we apply spatial and temporal augmentations and encourage consistent predictions with three types of consistency
learning techniques, e.g., spatial consistency, temporal consistency, and historical consistency. The entropy minimization loss is used to
encourage the model to make individually uncertain and globally diverse predictions.

where ψ is a stochastic function, which implies that differ-
ent augmented versions can be obtained when ψ is applied
at different time. This is important because a potentially in-
finite number of augmented videos can be generated, and
all these videos should lie around Ū in the low-dimensional
space. Inspired by recent semi-supervised learning meth-
ods [40, 47], we adopt RandomAugment [7] as the stochas-
tic function ψ which randomly selects image transforma-
tions out of a pool (including color inversion, translation,
contrast adjustment, etc.) and apply them on each frame.
After that, CutOut [9] is applied which sets a random square
patch of pixels to gray.

As mentioned earlier, Ūs is supposed to be spatially ad-
jacent with Ūs in the low-dimensional manifold space, as
it is generated from Ūs with frame content perturbed; the
semantic category information should be preserved. We en-
force this spatial proximity constraint by minimizing the
discrepancy of the predictions of Ū and Ūs as

Ls = KLD
(
H(Ūs), H(Ū)

)
, (2)

where KLD represents the KL-divergence. Since Ūs can
be viewed as a harder version of Ū with the content being
perturbed, enforcing prediction consistency between them
encourages the model to surpass spatial factors that account
for domain shifts and thus facilitates model adaptation.

3.1.2 Temporal Consistency

Similarly, we generate temporally augmented videos and
enforce prediction consistency to learn the manifold struc-
ture in the temporal direction. For the sampled frame se-
quence Ū = {u1,u2, . . . ,uK}, we apply stochastic tem-
poral augmentation and get Ūt as

Ūt = {ϕ(u1), ϕ(u2), . . . , ϕ(uK)}, (3)

where ϕ denotes a stochastic function which drops uk out of
the sequence at a rate 0.5. This makes Ūt a sparser version
of Ū. Despite with fewer frames, we expect Ūt still pre-
serves the motion dynamics as in Ū and enforce prediction
consistency between them as,

Lt = KLD
(
(H(Ūt), H(Ū)

)
. (4)

Since every frame from Ū has a random possibility of
being dropped, we can thus produce numerous augmented
versions of Ūt. All the augmented versions should be adja-
cent with Ū in the low-dimensional manifold space, which
helps learn the neighboring manifold structure of Ū. As
Ūt can be viewed as the harder version of Ū with differ-
ent motion dynamics, enforcing prediction consistency be-
tween them thus encourages the model to surpass the mo-
tion dynamics variations between domains, and facilitate
model adaptation.

3.1.3 Historical Consistency

The historical consistency is proposed to reinforce the tem-
poral consistency. Recall that Ū = {u1,u2, . . . ,uk} is ran-
domly sampled fromK evenly divided video segments. We
generate Ūt to encourage temporal consistency by mask-
ing some frames from Ū to make a hard augmented ver-
sion. However, this technique only considers the inter-
segment consistency but ignores the intra-segment consis-
tency. When a video is long (e.g., 1000 frames) and the seg-
ment number k is small (e.g., k = 5), the variations within
each segment (200 frames) could be large. The above tem-
poral consistency does not consider this aspect.

The straightforward solution is to sample another se-
quence, in the same way as constructing Ū, and enforce
its prediction consistently with that of Ū. However, this
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will introduce additional memory and computation burden.
Here we introduce a nearly cost-free solution by leveraging
historical predictions. As in each training round, we use the
same way to randomly sample a sequence from a video, the
past sequences thus can be viewed as other versions of the
current sequence; we can enforce consistency between past
predictions to the current one to achieve temporal consis-
tency. Specifically, we construct a memory bank M which
stores past Q predictions for each video. We employ M to
calculate the historical consistency loss as,

Lh = E
pu∼M

[
KLD

(
pu, H(Ū)

)]
, (5)

where pu is a historical prediction for a video clip sampled
from U. We should not set Q to be very large, as other-
wise predictions produced by obsolete models are stored in
the memory bank; enforcing consistency with this obsolete
knowledge prevents the model from learning new knowl-
edge. Empirically, we find setting the Q as 2 reaches well
generalizable results.

3.1.4 Overall Learning Objective

We train our STHC model with the following learning ob-
jective,

L = Lim + α
(

E
Ū∼T

(Ls + Lt + Lh)
)

(6)

where α is a hyper-parameter. Lim is the information max-
imization (IM) loss [12, 15] which was used by previous
source-free domain adaptation methods [24, 50] as,

Lim = − E
Ū∼T

R∑
r=1

H(Ū) logH(Ū) +

R∑
r=1

pr log pr, (7)

where p = −EŪ∼TH(Ū) is the mean predictions over all
target videos; pr is r-th dimension of p. The first term of
Eq. (7) minimizes the entropy of the probability, encourag-
ing the model to make confident predictions. The second
term maximizes the entropy of p, encouraging the samples
are evenly distributed over all classes. Algorithm 1 outlines
the main steps of the proposed method.

3.2. Extending to Other DA Settings

Thanks to the neat design, our STHC model can be eas-
ily extended to address other video domain adaptation prob-
lems under the source-free constraint.
Partial Domain Adaptation (PDA). PDA studies the do-
main adaptation scenario where classes in the target domain
are a subset of classes in the source domain. Under the
source-free constraint, this implies that only samples from
a part of all the classes the source model is trained are used
for adapting the model. Our STHC model can be directly

Algorithm 1 Proposed STHC model
Input: Model H and unlabeled target data T .
Output: Adapted model H .

1: Initialize an empty memory bank M for storing predic-
tions for all training videos.

2: while not done do
3: Randomly sample U ∼ T .
4: Get a sequence of frames Ū from U with segment-

wise random sampling.
5: Get Ūs from Ū by spatial augment. with Eq. (1).
6: Get Ūt from Ū by temporal augment. with Eq. (3).
7: Calculate predictions H(Ū), H(Ūs), and H(Ūt).
8: Calculate spatial consistency loss Ls with H(Ū),

H(Ūs) according to Eq. (2).
9: Calculate temporal consistency loss Lt with H(Ū),

H(Ūt) according to Eq. (4).
10: if M is not empty for U then
11: Calculate historical consistency loss Lh with

H(Ū) and M according to Eq. (5).
12: end if
13: Calculate IM loss Lim according to Eq. (7).
14: Update M withH(Ū) with the first-in-first-out prin-

ciple.
15: Update H with the overall loss according to Eq. (6).
16: end while

applied to this setting. The three consistency term in Eq.
(6) has no assumption on the class distribution in the tar-
get domain. The only necessary modification comes from
the class-balancing term (the second term in Eq. (7)) of the
IM loss. This term encourages samples to evenly distribute
across all classes and thus contradicts the unbalancing re-
ality of the target domain. Thus, we drop this term for the
PDA setting.
Open-Set Domain Adaptation (OSDA). OSDA studies
class-asymmetric domain adaptation too, but for the sce-
nario where source classes are a subset of target classes.
This brings challenge for model adaptation as samples from
unknown class may cast negative impact on the source
model. We adopt the same strategy proposed in [24] to
avoid this problem. We utilize the entropy of predictions
as a measurement of uncertainty and divide target samples
into two groups using K-means clustering with the uncer-
tainty scores. The group with mean uncertainty higher than
the global mean of uncertainty for the whole dataset is re-
garded as samples from unknown classes and will be re-
jected for adaptation. Note that the uncertainty scores are
updated during the adaptation process; samples initially re-
garded as unknown could be included for adaptation later,
and vice versa.
Black-Box Model Adaptation (BBMA). BBMA is a vari-
ant of source-free domain adaptation which assumes that
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even the source model is not available for adaption; it serves
as a black-box which produces outputs for given inputs [25].
We extend our STHC model to this setting with a simple
two-stage based solution. In the first stage, we treat the
black-box model as the teacher model and train a student
model of randomly initialized weights via knowledge dis-
tillation on target data. In the second stage, we adapt the
student model in the same ways as adapting an accessible
source model in the SFVDA setting.

4. Experiments

4.1. Experimental Setup

Benchmarks. We conduct experiments on the follow-
ing four common benchmarks in this field [36, 50]. (1)
UCF-HMDB includes videos from the 12 overlapping
classes from the UCF101 (U) dataset [42] and the HMDB51
(H) dataset [16]. We evaluate 2 tasks, adapting U↔H
videos. (2) UCF-Kinetics is from the SportsDA bench-
mark [50] which originally included 3 datasets, UCF101
(U) [42], Kinetics-600 (K) [2], and Sports-1M [13] from
23 action classes. These 3 datasets form 6 cross-domain
tasks. However, Sports-1M is crawled from Youtube and
we found many of the videos no longer exist, our dataset
was much smaller than that of the SportsDA benchmark.
For ease of future experiments, we exclude Sports-1M and
have 2 tasks adapting U↔K videos. (3) Jester is a large-
scale hand gesture dataset [30]. A subset of this dataset is
used to construct two domains, JS and JT, which containing
51, 498 and 51, 415 video clips, respectively from 7 classes.
Following the previous method [36], we evaluate the adap-
tation from JS to JT. (4) DailyDA is another large-scale
cross-domain action recognition benchmark. It includes
4 datasets, namely, ARID (A) [49], HMDB51 (H) [16],
Moments-in-Time (M) [31], and Kinetics (K) [2]. Videos
from 8 shared classes are used for cross-domain evaluation.
The four datasets result in a total of 12 tasks.
Implementation details. We follow the existing SFVDA
method, ATCoN [50], and adopt the Temporal Relation Net-
work [54] as the model for experiments. Specifically, we
use ResNet-50 [11] as our frame feature extractor F and a
Multi-Layer Perceptron (MLP) as our temporal encoder G.
The frame features are averaged as a single vector for action
prediction by the classifier C, which is implemented as one
fully-connected layer. When performing segment-wise ran-
dom sampling to train the model. we evenly divide a video
into 5 segments, i.e., K = 5, and sample one frame from
each segment. The hyper-parameter α in Eq. (6) is set as
α = 0.1. For all experiments, we train the model with 15
epochs at an initial learning rate of 10−3 for the two small
benchmarks, UCF-HMDB and UCF-Kinetics, and a smaller
initial learning rate of 10−4 for the large-scale benchmarks,
Jester and DailyDA.

Methods
UCF-HMDB UCF-Kinetics

U→H H→U Avg. K→U U→K Avg.

TRN (source) 82.2 88.1 85.2 92.7 82.5 87.6
SHOT 82.2 81.2 81.7 94.1 75.3 84.7

ATCoN 85.6 90.2 87.9 95.3 87.3 91.3
STHC (ours) 90.9 92.1 91.5 96.1 89.8 93.0

Table 1. Results on UCF-HMDB and UCF-Kinetics. The best
results are in bold.

C1 C2 C3 C4 C5 C6 C7 Avg.

TRN (source) 43.4 99.4 2.7 14.2 60.8 97.9 94.2 50.3
SHOT 19.9 99.6 88.2 21.0 98.7 91.4 78.8 63.6

ATCoN 0.4 99.4 22.8 46.1 99.1 91.4 88.4 54.0
STHC (ours) 66.1 99.4 76.5 60.3 98.3 96.6 83.5 78.4

Table 2. Results on Jester. C1∼C7 represent the 7 classes from
the datasets.

Baseline methods. We mainly compare with SHOT [24]
and ATCoN [50]. SHOT is a well established source-free
domain adaptation method. It was for image classification
but can be easily extended to videos by applying the tech-
niques on video feature embeddings. ATCoN is an existing
SFVDA method. Please note while we use the same net-
works and learning recipe as ATCoN, and develop based on
the released code1, we find that, by using the released code
with the suggested instructions, we can get source models
of much better results than the reported ones. This means
we start from better source models than those reported in
the ATCoN paper. To make fair comparison, we do not cite
the results from the paper and use our reproduced results
instead, which are much better than the reported ones.

4.2. Comparative Studies

Small-scale benchmarks. Table 1 shows the results on the
two small-scale benchmarks, i.e., UCF-HMDB and UCF-
Kinetics. We can see that in both benchmarks, the proposed
STHC method improves the source TRN model and reaches
the best performance compared with the other two baseline
methods. Surprisingly, the performance gets worse after us-
ing SHOT to adapt the source model. The reason might be
that SHOT treats videos in the same way as images and does
not consider the crucial temporal information in videos,
which leads to negative adaptation effect. In contrast, both
ATCoN and STHC include techniques for adaptation in the
temporal aspect and hence achieve positive adaptation re-
sults. Compared with ATCoN, STHC further incorporates
adaptations to spatial aspects, which contributes to the su-
perior performance.
Large-scale benchmarks. Table 2 and Table 3 show the
results on the two large-scale benchmarks, i.e., Jester and

1https://github.com/xuyu0010/ATCoN
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TRN (source) SHOT ATCoN STHC (ours)

K→A 24.4 20.1 14.6 15.5
K→H 50.0 49.1 49.1 48.7
K→M 32.5 36.8 35.8 34.8
M→A 31.2 16.1 13.6 18.4
M→H 50.8 53.3 58.3 56.3
M→K 75.9 42.8 71.7 76.6
H→A 17.4 14.3 10.2 13.8
H→M 32.3 35.0 38.8 39.8
H→K 43.7 36.9 45.8 50.1
A→H 17.9 34.2 40.0 44.6
A→M 18.3 27.3 27.3 27.3
A→K 22.3 41.8 36.8 44.7
Avg. 34.7 34.0 36.8 39.2

Table 3. Results on DailyDA. “K”, “A”, “H” and “M” are short for
the four datasets in the benchmark.

DailyDA, respectively. We can see from Table 2 that the
proposed STHC model achieves impressive results. It lifts
the source TRN model by 28.1 for the average accuracy,
and meanwhile beats the two existing methods by large mar-
gins. It is observed that all the three baseline methods have
sharp result variances for different classes, for example, AT-
CoN achieves nearly perfect performance for C5, but near
zero performance for C1. This extremely imbalanced per-
formance towards different classes indicates that the em-
bedding spaces of these methods are dominated by several
major classes, such that data are collapsed into the spaces
of these several major classes. The accuracies could be very
high for the major classes but very low for the minor classes.
In contrast, our method exploits stochastic augmentations
from both spatial and temporal aspects, and is essentially
able to mitigate class imbalance and prevents overfitting.
This explains the astonishing performance gains.

Table 3 shows quite different phenomenon. While STHC
still owns advantages over the other methods for the average
accuracy and gets the best results for 6 out of the 12 tasks,
it performs worse even to the source TRN model in several
tasks. We analyze the main reason could be that this bench-
mark is so hard; the source models in most cases can only
get less than 30% in accuracy, which makes the following
adaptation process extremely vulnerable. SHOT, ATCoN
and our STHC model all encourage confident predictions;
if the starting source model is not able to produce reason-
ably reliable prediction, the error will be accumulated and
leads to negative adaptation.

4.3. Property Analysis

Ablation study. The main technical contribution of this
paper is the three consistency learning techniques. Ta-
ble 4 show the affect of removing the three techniques on
one small-scale benchmark (UCF→ HMDB) and one large-
scale benchmark (JS→ JT). We can see that in both cases,
removing any of the three technique leads to performance

UCF→HMDB JS→JT

w/o spatial consistency 87.8 75.0
w/o temporal consistency 88.9 70.1
w/o historical consistency 89.8 76.6
w/o training the classifier 88.1 70.4
Full Model 90.8 78.4

Table 4. Ablation studywith UCF→HMDB and JS→JT, which
represent small-scale and large-scale benchmarks, respectively.

PDA
OSDA

OS OS*

TRN (source) 73.81 61.0 61.7
SHOT 65.24 63.0 71.4
ATCoN 71.90 65.8 74.5
STHC (ours) 75.00 69.5 73.9

Table 5. Results for partial domain adaptation (PDA) and open-
set domain adaptation (OSDA) with UCF→HMDB. “OS” denotes
accuracy over all classes and “OS*” measures accuracy only for
known classes.

drop, which verifies the effectiveness. Remarkably, while
the spatial consistency is most important for the small-scale
benchmark, removing the temporal consistency results in
the most significant performance drop. In both cases, the
historical consistency is least important, which is reason-
able as it is used to reinforce the temporal consistency.
Effect of updating the classifier. Starting from SHOT
[24], many SFDA works adapt the source model by fix-
ing the classifier and only updating the feature extractor
[26, 50]. ATCoN [50] adopts this learning paradigm for
SFVDA too. However, we empirically found that freezing
the classifier leads to performance drop for our method. As
shown in Table 4, the accuracy drops by 2.7 and 8 points for
the small-scale and large-scale benchmarks, respectively.
We speculate the reason could be that we perform model
adaptation by forcing it to produce augmentation-variant
predictions in which the classifier plays a vital role. The
previous methods performed model adaptation by forcing
the feature extractor to produce source-like feature repre-
sentations for target data; so the classifier served as a guide
and was better not updated.
Partial domain adaptation (PDA) We employ a bench-
mark established in [48] for PDA evaluation. The bench-
mark was originally for unsupervised video domain adap-
tation, and comprises of 2, 780 videos from 14 common
classes of UCF101 and HMDB51. We evaluate the adapta-
tion task from UCF101 to HMDB51. The first 7 categories
in alphabetic order of HMDB51 are chosen as the target cat-
egories. To utilize this benchmark for the source-free set-
ting, we first train a source model with videos from all the
14 classes in UCF101, then we adapt the source model us-
ing unlabeled videos from the 7 classes in HMDB. Table 5
shows the results. We can see that while both SHOT and AT-
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TRN (black-box) 82.2

TRN (source)† 81.1
SHOT 76.7
ATCoN 86.4
STHC (ours) 87.8

Table 6. Results for black-box model adaptation with
UCF→HMDB. †The source model here is trained from scratch by
taking the black-box source model as the teacher with knowledge
distillation on target data.

Figure 3. t-SNE visualization of video embeddings before (Left)
and after (Right) adaptation on the target domain of the Jester
benchmark. Samples from the same class are in the same color.

CoN suffer from negative transfer and obtain results worse
than the source model, our STHC model manages to get
some improvements. This shows the robustness of STHC
on coping with different video domain adaptation problems.
Open-set domain adaptation (OSDA). We adapt the above
PDA benchmark for OSDA evaluation. As in OSDA,
the target domain contains unknown classes absent in the
source domain, we select the first 7 categories in alphabetic
order in UCF101 as the source categories and all the 14
classes in HMDB51 as the target categories. We train a
source model using data from the 7 source categories and
adapt the model with data from the 14 target categories. For
evaluation, we follow previous methods [24, 38] and mea-
sure the accuracy over all classes OS = 1

K+1

∑K+1
k=1 Acck,

where K denotes the number of known classes, and (K +
1)-th class represent the unknown class. We also calculate
accuracy only for known classes asOS∗ = 1

K

∑K
k=1. Table

5 shows the results. We can see that all the three adaptive
methods achieve a positive adaptation and reach better per-
formance than the baseline source method. While ATCoN
performs slightly better than STHC for the OS∗ measure-
ment, it is much worse than STHC for the OS measure-
ment, which indicates that ATCoN wrongly predicts much
more known class samples as unknown than our method.
Black-box model adaptation (BBMA). We propose a two-
step learning strategy to extend our method to the BBMA
setting, first training a student model using the black-box
source model as the teacher via knowledge distillation, and
adapting the student model. We use the same strategy
to extend SHOT and ATCoN to this setting too. Table 6
shows the results with UCF→HMDB. We can see that the
knowledge distillation step looks very effective: while the
teacher source model gets an accuracy of 82.2, the student

α 0.001 0.01 0.1 1 10

Acc. 84.9 89.2 90.9 83.0 8.2

Table 7. Sensitive analysis for α with UCF→HMDB.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Avg.

0 0 0 0 0 100 0 0 0 0 0 0 8.2

Table 8. Per-class accuracy with UCF→HMDB when α = 10.

model performs only slightly lower and obtains 81.1 in ac-
curacy. With this fairly good student model, our STHC
model achieves the best adaptation performance. This fur-
ther verifies our advantage for the SFVDA problem.
Parameter analysis. Table 7 shows the parameter analysis
results for α which balances the consistency loss terms and
the Information Minimization (IM) loss term in Eq. (6). It
is shown that the model degrades with a big α. We analyze
the reason could be that the proposed consistency learning
techniques can only help learn the space structure around
each individual sample; the separation of the samples from
different classes still relies on the IM term, which enforces
the model to make certain predictions, and thus drives de-
cision boundaries away from data-dense regions [3, 10, 39].
If the consistency terms dominate the loss, the model will
degenerate to a point where samples from all classes are
collapsed to the same local space. This is verified in Table
8 where we can see the major class gets perfect accuracy,
while other classes get zero accuracy.
t-SNE visualization. Figure 3 shows the t-SNE visualiza-
tion of the feature embeddings of test videos from JT in the
Jester benchmark. We can see that the embeddings exhibit
better clustering structure after adaptation. The number of
clusters overlapping with each other is reduced from 3 to 2
out of the 7 clusters

5. Conclusions
We introduced in this paper the STHC model for

SFVDA. STHC adapts a source model by encouraging it
to surpass spatio-temporal variations in the video space that
account for domain shifts and to make consistent predic-
tions for video with different variations. To simulate spatio-
temporal variations, we constantly apply stochastic spatial
and temporal augmentations on each target video and en-
force three types of consistency learning on the video and
its augmented versions, including spatial consistency, tem-
poral consistency and historical consistency. STHC is very
flexible and can be easily extended to various other do-
main adaptation settings. Extensive experiments show that
all the three consistency learning techniques help improve
performance, and STHC outperforms existing methods for
both small-scale and large-scale benchmarks for the stan-
dard SFVDA setting, as well as other adaptation settings.
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