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Abstract

Significant progress has been made in self-supervised
image denoising (SSID) in the recent few years. However,
most methods focus on dealing with spatially independent
noise, and they have little practicality on real-world sRGB
images with spatially correlated noise. Although pixel-
shuffle downsampling has been suggested for breaking the
noise correlation, it breaks the original information of im-
ages, which limits the denoising performance. In this paper,
we propose a novel perspective to solve this problem, i.e.,
seeking for spatially adaptive supervision for real-world
sRGB image denoising. Specifically, we take into account
the respective characteristics of flat and textured regions
in noisy images, and construct supervisions for them sepa-
rately. For flat areas, the supervision can be safely derived
from non-adjacent pixels, which are much far from the cur-
rent pixel for excluding the influence of the noise-correlated
ones. And we extend the blind-spot network to a blind-
neighborhood network (BNN) for providing supervision on
flat areas. For textured regions, the supervision has to be
closely related to the content of adjacent pixels. And we
present a locally aware network (LAN) to meet the require-
ment, while LAN itself is selectively supervised with the out-
put of BNN. Combining these two supervisions, a denoising
network (e.g., U-Net) can be well-trained. Extensive exper-
iments show that our method performs favorably against
state-of-the-art SSID methods on real-world sRGB pho-
tographs. The code is available at https://github.
com/nagejacob/SpatiallyAdaptiveSSID.

1. Introduction

Image denoising aims to restore clean images from noisy

observations [5, 11, 14], and it has achieved noticeable im-

provement with the advances in deep networks [2, 10, 21,

29–31, 33, 38, 40, 41, 46–48, 50, 51]. However, the mod-

els trained with synthetic noise usually perform poorly in

real-world scenarios in which noise is complex and change-

(a) Noisy Input (b) CVF-SID [35]

(c) AP-BSN+R3 [27] (d) Ours

Figure 1. Visual comparison between self-supervised denoising

methods on the DND dataset [37]. PSNR (dB) and SSIM with

respect to the ground-truth are marked on the result for quantitative

comparison. Our method performs better in removing spatially

correlated noise from real-world sRGB photographs.

able. A feasible solution is to collect real-world clean-

noisy image pairs [1, 37] and take them for model train-

ing [2, 15, 21, 46, 47]. But building such datasets generally

requires strictly controlled environment as well as compli-

cated photographing and post-processing, which is time-

consuming and labor-intensive. Moreover, the noise statis-

tics vary under different cameras and illuminating condi-

tions [43,54], and it is impractical to capture pairs for every

device and scenario.

To circumvent the limitations of noisy-clean pairs

collection, self-supervised image denoising (SSID) ap-
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proaches [3, 17, 19, 20, 24, 26–28, 34–36, 42, 45] have been

proposed, which can be trained merely on noisy im-

ages. However, the noise model assumptions of a large

amount of SSID methods do not match the characteristics

of real-world noise in sRGB space. For instance, HQ-

SSL [26] improves the denoising performance with poste-

rior inference, but requires explicit noise probability den-

sity. Noise2Score [20] and its extension [19] propose a

closed-form image denoising schema with score matching

followed by noise model and noise level estimation, but

the noise is bounded to Tweedie distribution. Although

some methods [17,42] are designed for distribution agnostic

noise, they can only deal with spatially independent noise.

Recently, a few attempts have been explored to remove

spatially correlated noise in a self-supervised manner. CVF-

SID [35] disentangles the image and noise components

from noisy images, but the difficulty of optimization lim-

its its performance. Some methods [44, 57] break the spa-

tial noise correlation with pixel-shuffle downsampling (PD),

then utilize spatially independent denoisers (e.g., blind-spot

network [6,26,44]) to remove the uncorrelated noise. How-

ever, PD breaks the original information of the images and

leads to aliasing artifacts, which largely degrade the image

quality. AP-BSN [27] applies asymmetric PD factors and

post-refinement processing to seek for a better trade-off be-

tween noise removal and aliasing artifacts, but it is time-

consuming during inference.

In this paper, we present a novel perspective for SSID

by considering the respective characteristics of flat and tex-

tured regions in noisy images, resulting in a spatially adap-

tive SSID method for real-world sRGB images. Instead

of utilizing pixel-shuffle downsampling and blind-spot net-

work to learn denoising results directly, we seek for spa-

tially adaptive supervision for a denoising network (e.g., U-

Net [39]). Concretely, for flat areas, the supervision can be

safely derived from non-adjacent pixels, which are much far

from the current pixel for excluding the influence of noise

correlation. We achieve it by extending the blind-spot net-

work (BSN) [26] to a blind-neighborhood network (BNN).

BNN modifies the architecture of BSN to expand the size

of blind region, and takes the same self-supervised train-

ing schema as BSN. Note that it is difficult to determine

whether an area is flat or not from the noisy images, so we

directly apply BNN to the whole image and it has little ef-

fect on the handling of flat areas. Moreover, such an op-

eration can give us a chance to detect textured areas from

the output of BNN, whose variance is usually higher. For

textured areas, neighboring pixels are essential for predict-

ing the details and they can not be ignored. To this end,

we present a locally aware network (LAN), which focuses

on recovering the texture details solely from adjacent pix-

els. LAN is supervised by flat areas of BNN output. When

training is done, LAN will be applied to textured areas to

generate supervision information for these areas.

Combining the learned supervisions for flat and textured

areas, a denoising network can be readily trained. Dur-

ing inference, BNN and LAN can be detached, only the

ultimate denoising network is used to restore clean im-

ages. Extensive experiments are conducted on SIDD [1] and

DND [37] datasets. The results demonstrate our method is

not only effective but also efficient. In comparison to state-

of-the-art self-supervised denoising methods, our method

behaves favorably in terms of both quantitative metrics and

perceptual quality. The contributions of this paper can be

summarized as follows:

• We propose a novel perspective for self-supervised

real-world image denoising, i.e., learning spatially

adaptive supervision for a denoising network accord-

ing to the image characteristics.

• For flat areas, we extend the blind-spot network to a

blind-neighborhood network (BNN) for providing su-

pervision information. For texture areas, we present a

locally aware network (LAN) to learn that from neigh-

boring pixels.

• Extensive experiments show our method has superior

performance and inference efficiency against state-of-

the-art SSID methods on real-world sRGB noise re-

moval.

2. Related Work
2.1. Deep Image Denoising

The development of convolutional neural networks

(CNNs) has led to great improvement on deep image de-

noising [50, 51]. DnCNN [50] outperforms traditional

patch-based methods [5, 11, 14] on Gaussian denoising.

FFDNet [51] takes a noise level map as input, which can

handle various noise levels with a single model. Other

learning based methods, such as RED30 [33], Mem-

Net [40], and MWCNN [31], are also developed with

advanced architectures. Nevertheless, models trained on

AWGN generalize poorly to real scenarios due to the do-

main discrepancy between synthetic and real noise.

In order to mitigate the gap between synthetic and real

noise, one feasible way is to simulate realistic noise as

much as possible and introduce it during the network train-

ing [15, 49]. For example, CBDNet [15] inverses the de-

mosaicing and gamma correction steps in image signal pro-

cessing (ISP), then synthesizes signal-dependent Poisson-

Gaussian noise [12] in raw space. Zhou et al. [57] break

spatial-correlated noise into pixel-independent one with

pixel-shuffle downsampling, then handle it with AWGN-

based denoiser. Another way is to capture paired noisy-

clean images for constructing real-world datasets [1, 37].
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Taking such datasets for training, models have better po-

tential to generalize to the corresponding real noise [2, 10,

21, 29, 38, 41, 46–48]. However, conducting well-aligned

training pairs generally requires a controlled environment

and much human labor. Moreover, noise statistics vary

under different cameras and different illuminating condi-

tions [43, 54]. It is impractical to collect datasets for every

device and scenario.

2.2. Unpaired Image Denoising

Unpaired methods [8, 16, 18, 44] mitigate the data col-

lecting issue by training networks with unpaired noisy and

clean datasets. Most of which [8, 16, 18] learn to model

the noise statistics with adversarial training. A noise gen-

erator is first trained to match the noise distribution of the

noisy images, then used to map the clean images to pseudo-

noisy ones. Finally, the denoising network is trained with

synthetic pseudo-noisy and clean image pairs. In addition,

Wu et al. [44] learn the noise distribution by jointly training

a denoising network and a noise estimator. And the ultimate

denoising network is trained with pseudo-noisy and clean

pairs as well as noisy and denoised pairs. However, as the

noise distribution in sRGB space is very complex and diffi-

cult to model [23], the performance of unpaired methods is

still limited when facing real-world photographs.

2.3. Self-Supervised Image Denoising

In order to get rid of dependence on clean images, self-

supervised methods are proposed, which are trained with

noisy images only. Noise2Noise [28] suggests to learn a

model from paired noisy images, which remains limited in

practice. Subsequently, Noise2Void [24] and Noise2Self [3]

separate noisy images into input and target pairs with a

mask strategy. Blind-spot networks take a step further by

excluding the corresponding input noisy pixel from the re-

ceptive field for each output pixel, which can be imple-

mented with multiple network branches [7, 26] or dilated

and masked convolutions [6, 44]. Moreover, probabilistic

inference [25, 26] and regular loss functions [42] are pro-

posed to alleviate the information loss issue at the blind

spot. In addition, Noisier2Noise [34] and NAC [45] take

the noisy images as target, and synthesize and add new

noise to the noisy images for model training. More recently,

Noise2Score [20] and its extension [19] propose a closed-

form denoising for Tweedie distributions with score match-

ing and posterior inference. SelfIR [55] introduce blurry

images for self-supervised denoising task. Nevertheless, the

above self-supervised methods can only handle noisy im-

ages with spatially independent noise.

A few attempts have been done to remove the spatially

correlated noise in a self-supervised manner. R2R [36] re-

verses the noisy images to raw space to synthesize training

pairs, then renders the synthetic raw images back to sRGB

space. But it requires several priors, such as the param-

eters of the camera ISP and noise model. StructN2V [4]

adapts the blind mask from a single pixel [24] to match

the structure of the noise. CVF-SID [35] disentangles

noisy images into clean images and noise components.

Among the self-supervised approaches for real-world sRGB

noise, AP-BSN [27] propose asymmetric PD factors and

post-refinement processing to make a better trade-off be-

tween noise removal and aliasing artifacts, but it is time-

consuming during inference.

3. Method
Self-supervised denoising aims to predict the denoised

images x̂ from the noisy observations y, without the su-

pervision from clean images x. In this paper, we propose

a new perspective for self-supervised denoising. Specifi-

cally, we extract appropriate supervisions from noisy im-

ages according to the image characters (i.e., flatness) for de-

noising network training. In this section, we first introduce

how to learn the supervision for flat (Sec. 3.1) and textured

(Sec. 3.2) areas, respectively. Then we discuss how to uti-

lize the supervisions for the denoising network in Sec. 3.3.

3.1. Supervision for Flat Areas

For a noisy image, denoising of flat areas is generally

easier than that of textured areas whose edges and details

need to be preserved well [56]. And the same goes for

our extraction of supervision information. Thus, we handle

these two areas separately with the consideration of their

different characteristics. In this subsection, we first learn

the supervision for flat areas.

For removing spatially correlated noise in real-world

sRGB images, pixel-shuffle downsampling (PD) has been

applied to break the noise correlation [27, 44, 57]. Then

blind-spot network (BSN) [6, 26, 44] can be applied to the

downsampled sub-images to remove the spatially indepen-

dent noise. However, the high-frequency information is dis-

torted during downsampling [13], leading to aliasing arti-

facts. Moreover, apart from noise-correlated neighbor pix-

els, a large amount of non-neighboring pixels are removed,

which degrades the denoising performance.

In terms of flat areas in noisy images, a pixel of the

underlying clean images is similar to a large number of

surrounding pixels, not only the neighboring pixels but

also non-neighboring ones. The non-neighboring pixels

can be far enough from the current pixel that exceeds the

noise correlation range. Thus, instead of PD, we can en-

large the blind-spot of BSN into a blind-neighborhood until

covering all noise-correlated pixels. We present a blind-

neighborhood network (BNN) to achieve it, as shown in

Figure 2(a). Different from PD, BNN can make full use

of the uncorrelated noisy pixels and preserve the original

information as much as possible. Similar to BSN, the loss
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(a) Training Stage 1: Blind-Neighborhood Network (b) Training Stage 2: Locally Aware Network

(c) Training Stage 3: Denoising Network (d) Inference with the 3rd-Stage Denoising Network

Noisy Image Denoising Result

Textured
or Flat ?

Figure 2. Overview of our self-supervised denoising framework. (a) In training stage one, the blind-neighborhood network (BNN) learns to

remove the spatially correlated noise for flat areas in a self-supervised manner. (b) In training stage two, the locally aware network (LAN)

is supervised by flat areas of BAN outputs. When training is done, LAN will be applied to texture areas to generate texture details. (c) In

training stage three, the denoising network is supervised by the first two stages’ results with adaptive coefficients. (d) During inference, the

3rd-stage denoising network can be deployed to denoise real-world photographs.

function of BNN is as follows:

LBNN = ‖x̃1 − y‖1 , (1)

where x̂1 is the output of BNN, y is the noisy image. As the

random noise can not be predicted, the output of BNN will

converge to the clean image.

In addition, the network architecture of BNN is modi-

fied from the BSN used in HQ-SSL [26]. The BSN applies

four network branches whose receptive fields are restricted

in different directions. At the end of each branch, a sin-

gle pixel shift is applied to the features to create the blind-

spot. We increase the pixel shift size from 1 to k to create

a (2k−1)×(2k−1) blind-neighborhood. Referring to the

analysis of spatial correlation on real-world noise in AP-

BSN [27], we set k=5 for 9×9 blind-neighborhood. More

experimental analysis on the blind-neighborhood size can

be seen in Sec. 5.3. The details of network architecture are

provided in the supplementary material.

3.2. Supervision for Texture Areas

Note that we apply BNN to the whole image. On the one

hand, it is difficult to predetermine whether an area is flat or

not from noisy images. Such an operation has little effect on

the supervision prediction of flat areas. On the other hand,

textured areas can be easily detected from the full output

of BNN for their supervision extraction. In this subsection,

we illustrate how to determine and extract supervision for

textured areas.

Determination of Textured Areas. In flat areas, BNN suf-

ficiently removes the noise, and the corresponding variance

is low. In texture areas, although BNN is ambiguous in re-

serving details, the output is still not flat and the variance

is high. With the above observations, we can infer the flat-

ness from the local variance of BNN output x̃1. Specifically,

we densely extract image patches for each spatial location

(i, j), then calculate the standard deviation map σ,

σ(i, j) = std(x̃1(i−
n−1

2
: i+

n−1

2
, j− n−1

2
:j+

n−1

2
)), (2)

where std(·) represents the standard deviation function and

is measured on 1-channel patches by averaging RGB val-

ues. n denotes the local window size, which we empirically

set n = 7. Binarization σ(i, j) to determine the flatness

(textured or flat) is rough and sometimes incorrect. Instead,

we convert the standard deviation map σ into soft coeffi-

cients α which are normalized to [0, 1]. In our experiments,

σ is a reliable indicator that it is usually high in the textured

areas (e.g., edges, texts) and is low in flat areas. Io generate

the coefficient α that indicating flatness, we convert σ to α
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with a piecewise function,

α(i, j) =

⎧⎪⎨
⎪⎩

S(σ(i, j)− 1), σ(i, j) ≤ l

0.5, l < σ(i, j) ≤ u

S(σ(i, j)− 5), σ(i, j) > u

(3)

where S(·) denotes the Sigmoid function. We empirically

set l = 1 and u = 5 respectively. Higher α(i, j) means the

local area is more textured.

Locally Aware Network. Blind-neighborhood network

performs poorly in texture areas, as it ignores the adjacent

pixels which are essential for details prediction. To extract

proper supervision for texture areas, we present a locally

aware network (LAN). LAN is carefully designed to have a

local receptive field, which focuses on recovering the tex-

ture details from neighboring pixels. Nonetheless, LAN is

a supervised network to be well-trained that requires clean

supervision. Fortunately, the flat areas of BNN output give

a chance to supervise LAN. On the one hand, the flat areas

of BNN are well-denoised to approximate clean signal, and

LAN can be trained safely. On the other hand, The small

receptive field of LAN makes it able to preserve texture de-

tails. The loss function for training LAN is as follows:

LLAN = (1−α) · ‖sg(x̃1)− x̃2‖1 , (4)

where x̃1 and x̃2 is the output of BNN and LAN, respec-

tively. sg(·) denotes stop gradient operation [9]. When

training is done, LAN will have a transfer ability to predict

the supervision for textured areas.

The network structure of LAN is simple yet delicate. We

stack 3×3 convolution layers to create the local receptive

field, specifically, k 3×3 layers can make up (2k+1)×(2k+1)
receptive field. In order to further refine the color informa-

tion, we additionally add several 1×1 convolution blocks

with channel attention mechanism [53]. More details are

provided in the supplementary material.

3.3. Denoising with Learned Supervisions

The learned images of BNN and LAN can be lever-

aged in two ways: image-level fusion or use as supervi-

sions to train a denoising network. We note that image-

level fusion suffers from performance and efficiency issues.

From the performance perspective, although BNN and LAN

are designed to denoise flat and texture areas respectively,

they still have their weaknesses. BNN may generate over-

smooth results in flat areas, while LAN can not completely

remove the noise in texture areas. Image-level fusion can

not avoid these drawbacks and only provides limited im-

provement. Instead, utilizing the results as supervision to

train a denoising network achieves a better trade-off be-

tween detail preserving and noise removal, which yields

better performance. From the efficiency perspective, BNN

is computationally complex due to the special network de-

sign for blind-neighborhood. Training additional denoising

network provides more flexibility on the network complex-

ity. Thus, we tend to train a denoising network with learned

spatially adaptive supervisions. More experimental analysis

about the two ways can be seen in Sec. 5.2.

We choose a common and representative network struc-

ture, i.e., U-Net [39], as our denoising network. As shown

in Figure 2(c), the U-Net is trained with the following loss,

LD = (1−α) · ‖sg(x̃1)− x̂‖1 +α · ‖sg(x̃2)− x̂‖1 , (5)

where x̂ is the output of U-Net, x̃1 and x̃2 are the output of

BNN and LAN, respectively. sg(·) is stop gradient opera-

tion [9] and α is the adaptive coefficients mentioned above.

4. Experiments

4.1. Experimental Settings

Datasets. We conduct experiments on SIDD [1] and

DND [37], which are widely used datasets for real-world

image denoising. SIDD dataset captures noisy-clean pairs

with smartphone cameras. Each noisy image is captured

multiple times, and the mean image is served as the ground-

truth. It provides 320 image pairs (SIDD-Medium) for

training, 1,280 patches for validation, and 1280 patches for

benchmark testing. DND [37] dataset provides 50 image

pairs for testing only. Its noisy-clean pairs are conducted

by shooting the same scene twice with different ISO set-

tings. The high-ISO images are taken as noisy inputs, while

the corresponding low-ISO images are nearly noise-free and

can serve as ground-truth. The benchmark testing results

(i.e., PSNR and SSIM) can be achieved by uploading the

denoised patches to their official websites. We note that

SIDD and DND benchmarks provide evaluations in both the

raw space and sRGB space. As our method is developed to

remove the spatially correlated noise of sRGB images, we

do not compare with the self-supervised denoising meth-

ods [6, 17, 42] for raw images.

Implementation Details. We only leverage the noisy

images of SIDD Medium dataset [1] to train our denois-

ing framework. Our BNN, LAN and the denoising network

are trained successively with the same training settings. We

crop the training images into patches of size 256×256, and

augment the image patches with random flipping and rota-

tion. The augmented patches are formed as mini-batches

of size 8 to facilitate network training. Each network is

trained with Adam optimizer [22] for 400k iterations, for

a total of 1200k iterations. The learning rate is initially set

to 3 × 10−4, and decreased to zero with cosine annealing

scheduler [32].
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Table 1. Quantitative comparison of PSNR (dB), SSIM and LPIPS on SIDD [1] and DND [37] datasets. LPIPS is calculated on SIDD

validation dataset only as the ground-truth images on benchmark datasets are not available. Hereinafter, red and blue indicate the best and

the second best results among unpaired and self-supervised methods, respectively.

Method
SIDD Validation SIDD Benchmark DND Benchmark

PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑

Non-learning based
BM3D [11] 25.71 / 0.576 / 0.657 25.65 / 0.685 34.51 / 0.851

WNNM [14] 26.05 / 0.592 / 0.635 25.78 / 0.809 34.67 / 0.865

Supervised

(Synthetic pairs)

DnCNN [50] 26.21 / 0.604 / 0.712 26.25 / 0.599 32.43 / 0.790

CBDNet [15] 33.07 / 0.863 / 0.288 33.28 / 0.868 38.05 / 0.942

Zhou et al. [57] 33.96 / 0.899 / 0.258 34.00 / 0.898 38.40 / 0.945

Supervised

(Real pairs)

DnCNN [50] 37.73 / 0.943 / 0.245 37.61 / 0.941 38.73 / 0.945

Baseline, N2C [39] 38.98 / 0.954 / 0.201 38.92 / 0.953 39.37 / 0.954

VDN [46] 39.29 / 0.956 / 0.208 39.26 / 0.955 39.38 / 0.952

Restormer [48] 39.93 / 0.960 / 0.198 40.02 / 0.960 40.03 / 0.956

Unpaired

GCBD [8] - - 35.58 / 0.922

UIDNet [16] - 32.48 / 0.897 -

C2N [18] 35.36 / 0.932 / 0.192 35.35 / 0.937 37.28 / 0.924

Wu et al. [44] - - 37.93 / 0.937

Self-Supervised

Noise2Void [24] 27.48 / 0.664 / 0.592 27.68 / 0.668 -

Noise2Self [3] 29.94 / 0.782 / 0.556 29.56 / 0.808 -

NAC [45] - - 36.20 / 0.925

R2R [36] - 34.78 / 0.898 -

CVF-SID [35] 34.15 / 0.911 / 0.423 34.71 / 0.917 36.50 / 0.924

AP-BSN+R3 [27] 36.74 / 0.934 / 0.281 36.91 / 0.931 38.09 / 0.937

Ours 37.39 / 0.934 / 0.176 37.41 / 0.934 38.18 / 0.938

(a) Noisy Input (b) Baseline, N2C [39] (c) Noise2Void [24] (d) CVF-SID [35] (e) AP-BSN+R3 [27] (f) Ours

Figure 3. Qualitative comparison on SIDD benchmark dataset [1]. Sub-figure (b) denotes the result of our denoising network trained on

SIDD dataset in a supervised manner. Sub-figures (c)-(f) are from self-supervised denoising methods.

4.2. Results for Real-World Denoising

Quantitative Comparison. The quantitative compari-

son results of SIDD [1] and DND [37] datasets can be seen

in Table 1. Our method outperforms all unpaired and self-

supervised approaches. In terms of PSNR and SSIM met-

rics, our method is comparable to DnCNN [50] trained with

real-world pairs. It demonstrates our method further mit-

igates the performance gap between self-supervised meth-

ods and supervised ones. Among self-supervised methods,

Noise2Void [24] and Noise2Self [3] fail to handle the noise

in sRGB images due to their spatially independent noise as-

sumption. NAC [45] and R2R [36] depend on the param-

eters of the camera ISP to simulate training pairs, which
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(a) Noisy Input (b) Baseline, N2C [39] (c) NAC [45] (d) CVF-SID [35] (e) AP-BSN+R3 [27] (f) Ours

Figure 4. Qualitative comparison on DND benchmark dataset [37]. Sub-figures (c)-(f) are from self-supervised denoising methods.

are usually unavailable. CVF-SID [35], AP-BSN [27] and

our method are directly trained on noisy images, while our

method achieves the best performance. We also provide

LPIPS [52] results on SIDD validation dataset to measure

the perceptual quality. Our method shows the lowest LPIPS

score in all competing denoising methods. It shows that

our denoised images are most perceptually similar to the

ground-truth.

Qualitative Comparison. The visual comparison of

state-of-the-art self-supervised methods on the benchmark

datasets is shown in Figure 3 and Figure 4. As the clean

ground-truth image is not provided, we train a supervised

counterpart of our denoising network for reference, which

is called baseline N2C. From Figure 3, our method removes

most spatially correlated noise and recovers the texture de-

tails better. Other methods hardly generate visually plea-

sure results. Noise2Void [24] has little denoising effect and

seems to converge into the noisy image. CVF-SID [35]

can not decouple the noisy and clean components well from

the noisy observations, leading to partially denoised results.

AP-BSN [27] suffers from aliasing artifacts due to pixel-

shuffle downsampling, e.g., the texture details on the fabric

are missed. The qualitative comparison on DND benchmark

testing dataset [37] is shown in Figure 4. In comparison

with other competitive methods, our result is cleaner and

more photo-realistic.

5. Ablation Study
We conduct extensive ablation studies on SIDD valida-

tion dataset [1] to analyze the effectiveness of the proposed

framework.

5.1. Effects of Supervision Components

Table 2 shows that each component of the proposed

model is essential for the denoising network training. From

the table, x̃1 and x̃2 are not ideal supervisions and have

their pros and cons. Supervision by x̃1 clearly removes the

noise but at the risk of smoothing-out fine details. Supervi-

sion by x̃2 preserves the texture details but exhibits inferior

denoising effect. The network trained with both supervi-

sions makes a tradeoff between noise removal and texture

preserving, thus showing better results than separate ones.

Each one of them alone is not sufficient enough to facilitate

the denoising network training. Specifically, using BNN

output as supervision alone leads to 0.46dB performance

drop, and using LAN output as supervision alone widens the

gap to 1.35dB. This demonstrates that both BNN and LAN

provide indispensable supervisions for training the denois-

ing network. Adaptive coefficients α is used for balancing

the supervision strength of BNN and LAN outputs accord-

ing to the local flatness. We apply α to the loss function

(i.e., Eqn. (5)) to emphasize the BNN output in flat areas, as

well as the LAN output in texture areas. It provides 0.09dB

performance boost, which demonstrates the effectiveness of

learning spatially adaptive supervision for self-supervised

denoising.

5.2. Comparison with Image-Level Fusion

Apart from as supervisions, the outputs of BNN and

LAN can also serve as denoised images directly, and fur-

ther fused to get better results. However, as illustrated in

Sec. 3.3, the way of image-level fusion have performance

and efficiency limits. We try spatially adaptive fusion strat-

egy that the outputs of BNN and LAN are weighted av-

eraged according to the adaptive coefficients α, the result

is shown in Table 3. Although the fusion strategy has im-

provement over individual images, it still falls 0.55dB from

our proposed method. Besides, due to the complexity of

BNN, the inference time of the fusion strategy is much

higher. Figure 5 provides visual comparison between the

fused image and our denoising network output x̂. x̂ shows

better denoising effects. It further demonstrates the effec-

tiveness of taking BNN and LAN outputs as supervisions.
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Table 2. Ablation study of supervision components. The notation

of x̃1, x̃2 and α follows Eqn. (5).

Supervision of x̃1 � � �
Supervision of x̃2 � � �

Adaptive Coefficients α �
PSNR of x̂ 36.84 35.95 37.30 37.39

Table 3. Comparison between image-level fusion strategy and our

method.

Image x̃1 x̃2 (1−α) · x̃1 +α · x̃2 x̂

PSNR 36.37 35.00 36.84 37.39

Time (ms) 16.7 5.9 22.9 4.8

(a) x̃1 (b) x̃2 (c) α (d) Fused (e) x̂

Figure 5. Visual comparison with image-level fusion strategy. (d)

denotes the spatially adaptive fusion result (1−α) · x̃1 +α · x̃2.

5.3. Blind-Neighborhood Size

As illustrated in Sec. 3.1, the blind-neighborhood of

BNN should cover the spatially correlated noisy pixels

accurately. Figure 6(a) analyses the effects of blind-

neightborhood size of BNN. For 1×1 blind-neighborhood

size, BNN degrades to BSN which does not work for

spatially correlated noise. When gradually increasing the

blind-neighborhood size, BNN shows better denoising ef-

fect as more noise-correlated pixels are excluded from the

receptive field. The max performance of BNN is achieved

at 9×9 blind-neighborhood size, which means all the noise

correlation pixels have lain in this range. It is consistent

with the observation in AP-BSN [27]. Further increasing

the blind-neighborhood size excludes noise-independent

pixels from the receptive field, which is harmful to denois-

ing performance. The visualization of denoised images in

Figure 7(a) also supports the 9×9 blind-neighborhood size.

In addition, the calculation of adaptive coefficients α and

the training of LAN are highly depend on the denoising

quality of BNN on flat areas. Thus, the performance of the

denoising network shows the same trend as BNN.

5.4. Local Receptive Size

Figure 6(b) and 7(b) show the effects of local receptive

size of LAN. For 1×1 local receptive size, LAN has little

denoising effect due to no neighboring pixels are leveraged.

For larger local receptive sizes, LAN can effectively predict

the favorable signal from neighbor pixels with good details.

(a) Blind-neighborhood size. (b) Local receptive size.

Figure 6. Effects of the blind-neighborhood size and local re-

ceptive size. (a) BNN achieves best performance with blind-

neighborhood size 9×9. (b) LAN achieves better performance as

the local receptive size increases, but the final denoising network

performs best with local receptive size 3×3.

1×1 3×3 5×5 7×7 9×9 11×11

(a) BNN output with different blind-neighborhood sizes.

(b) LAN output with different local receptive sizes.

Figure 7. Visual comparison of different blind-neighborhood sizes

and local receptive sizes.

But at the same time, the output of LAN tends to be more

blurry. The outputs of LAN should serve as good supervi-

sion of texture areas for the denoising network training. The

best performance of our denoising framework is achieved

when LAN has 3×3 local receptive size.

6. Conclusion
In this work, we propose a novel perspective to solve

real-world image self-supervised denoising, i.e., seeking

for spatially adaptive supervision for a denoising network

according to the image characteristics. The clean signal

in flat areas can be inferred from non-neighboring noise-

independent pixels, while the texture details should come

from neighboring ones. Thus, blind-neighborhood network

(BNN) is proposed to learn the supervision for flat areas.

Adaptive coefficients and locally aware network (LAN) are

proposed to determine the flatness and learn the supervi-

sion for texture areas, respectively. The denoising network

trained by learned supervisions outperforms state-of-the-art

self-supervised and unpaired methods with better efficiency.
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