
SteerNeRF: Accelerating NeRF Rendering via Smooth Viewpoint Trajectory

Sicheng Li Hao Li Yue Wang Yiyi Liao∗ Lu Yu∗∗

Zhejiang University

Abstract

Neural Radiance Fields (NeRF) have demonstrated su-
perior novel view synthesis performance but are slow at ren-
dering. To speed up the volume rendering process, many ac-
celeration methods have been proposed at the cost of large
memory consumption. To push the frontier of the efficiency-
memory trade-off, we explore a new perspective to accel-
erate NeRF rendering, leveraging a key fact that the view-
point change is usually smooth and continuous in interac-
tive viewpoint control. This allows us to leverage the in-
formation of preceding viewpoints to reduce the number of
rendered pixels as well as the number of sampled points
along the ray of the remaining pixels. In our pipeline, a
low-resolution feature map is rendered first by volume ren-
dering, then a lightweight 2D neural renderer is applied
to generate the output image at target resolution leverag-
ing the features of preceding and current frames. We show
that the proposed method can achieve competitive render-
ing quality while reducing the rendering time with little
memory overhead, enabling 30FPS at 1080P image reso-
lution with a low memory footprint.

1. Introduction

Novel View Synthesis (NVS) is a long-standing problem
in computer vision and computer graphics with applications
in navigation [40], telepresence [60], and free-viewpoint
video [51]. Given a set of posed images, the goal is to ren-
der the scene from unseen viewpoints to facilitate viewpoint
control interactively.

Recently, Neural Radiance Fields (NeRF) have emerged
as a popular representation for NVS due to the capacity to
render high-quality images from novel viewpoints. NeRF
represents a scene as a continuous function, parameterized
by a multilayer perceptron (MLP), that maps a continuous
3D position and a viewing direction to a density and view-
dependent radiance [23]. A 2D image is then obtained via
volume rendering, i.e., accumulating colors along each ray.

∗ Corresponding author. ∗∗ Co-corresponding author.

Volume
Rendering

Volume
Rendering

Volume
Rendering

Neural
Rendering

Smooth Viewpoint
Trajectory

Low Resolution 
Feature

High Resolution
Result

Neural
Rendering

Figure 1. Illustration. We exploit smooth viewpoint trajectory to
accelerate NeRF rendering, achieved by performing volume ren-
dering at a low resolution and recovering the target image guided
by multiple viewpoints. Our method enables fast rendering with a
low memory footprint.

However, NeRF is slow at rendering as it needs to query
the MLP millions of times to render a single image, pre-
venting NeRF from interactive view synthesis. Many recent
works have focused on improving the rendering speed of
NeRF, yet there is a trade-off between rendering speed and
memory cost. State-of-the-art acceleration approaches typi-
cally achieve fast rendering at the expense of large memory
consumption [13, 56], e.g., by pre-caching the intermedi-
ate output of the MLP, leading to hundreds of megabytes
to represent a single scene. While there are some attempts
to accelerate NeRF rendering with a low memory foot-
print [16,25], the performance has yet to reach cache-based
methods. In practice, it is desired to achieve faster rendering
at a lower memory cost.

To push the frontier of this trade-off, we propose to speed
up NeRF rendering from a new perspective, leveraging the
critical fact that the viewpoint trajectory is usually smooth
and continuous in interactive control. Unlike existing NeRF
acceleration methods that reduce the rendering time of each
viewpoint individually, we accelerate the rendering by ex-
ploiting the information overlap between multiple consecu-
tive viewpoints. Fig. 1 illustrates our SteerNeRF, a simple
yet effective framework leveraging the SmooTh viEwpoint
trajEctoRy to speed up NeRF rendering. Here, “steer” also
refers to a user smoothly controlling the movement of a
camera during interactive real-time rendering.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20701



Exploiting the smooth view trajectory, we can acceler-
ate volume rendering by reducing the number of sample
points while maintaining image fidelity using efficient 2D
neural rendering. More specifically, our method comprises
a rendering buffer, neural feature fields, and a lightweight
2D neural renderer. We first render a low-resolution feature
map at a given viewpoint via volume rendering. The sam-
pling range along each ray is reduced by fetching a depth
map from the rendering buffer and projecting it to the cur-
rent view. This effectively reduces the volume rendering
computation as both the number of pixels and the number
of samples for the remaining pixels are reduced. Next, we
combine preceding and current feature maps to recover the
image at the target resolution using a 2D neural renderer,
i.e., a 2D convolutional neural network. The neural feature
fields and the 2D neural renderer are trained jointly end-to-
end. The combination of low-resolution volume rendering
and high-resolution neural rendering leads to fast render-
ing, yet maintains high fidelity and temporal consistency at
a low memory cost.

We summarize our contributions as follows. i) We pro-
vide a new perspective on NeRF rendering acceleration
based on the assumption of smooth viewpoint trajectory.
Our method is orthogonal to existing NeRF rendering accel-
eration methods and can be combined with existing work to
achieve real-time rendering at a low memory footprint. ii)
To fully exploit information from preceding viewpoints, we
propose a simple framework that combines low-resolution
volume rendering and high-resolution 2D neural render-
ing. With end-to-end joint training, the proposed frame-
work maintains high image fidelity. iii) Our experiments
on synthetic and real-world datasets show that our method
achieved a rendering speed of nearly 100 FPS at an image
resolution of 800 × 800 pixels and 30 FPS at 1920 × 1080
pixels. It is faster than other low-memory NeRF accel-
eration methods and narrows the speed gap between low-
memory and cache-based methods.

2. Related Work

Advances in NeRF: Neural radiance fields [23] have re-
ceived significant attention with photorealistic novel view
synthesis performance. Meanwhile, the vanilla NeRF has
several limitations. Many works have been conducted to
address the limitations of NeRF, including unseen scene
generalization [6, 21, 47, 57], dynamic scene representa-
tion [18,19,29–32,34], sparse view training [8,26], surface
reconstruction [28, 46, 53, 54], and training acceleration [5,
39, 55]. In addition to representing a single scene, NeRF is
widely applied in generative modeling [3, 4, 9, 12, 27, 37],
and robotics [38, 61]. In this paper, we focus on render-
ing acceleration, which is critical for practical applications,
e.g., interactive viewing control.

NeRF Rendering Acceleration: There are two common
ways to accelerate NeRF rendering: reduce computation per
sample or reduce the number of sample points.

In the first category, one line of works reduces the com-
putation by caching MLP output [7, 11, 13, 14, 42, 45, 49,
56, 58] or using a voxel grid to represent the scene [39, 55].
These methods achieve fast rendering by retrieving the pre-
stored information instead of querying a deep network. An-
other line of work replaces large MLPs with thousands of
smaller ones [10,35,50] for reducing computation per point.
Despite achieving fast rendering, all these methods scarify
memory over time, indicating the trade-off between render-
ing speed and memory cost.

The second category reduces the number of sampling
points on each ray based on the content to speed up render-
ing without increasing memory cost. Existing works in this
area demonstrate that the number of sampling points can be
effectively reduced to a small number [16, 25, 33], or even
to one as in neural light fields based methods [1, 44]. How-
ever, these methods have not yet achieved the same speed as
tabulation-based ones. Concurrent to our work, an efficient
volumetric rendering toolbox NeRFAcc [17,41], offers sub-
stantial speedups to NeRF by leveraging empty space skip-
ping and early ray termination.

In contrast to the aforementioned methods, our method
combines low-resolution volume rendering and high-
resolution neural rendering using preceding frames to re-
duce rendering time. It is compatible with existing acceler-
ation methods and has a small additional memory cost due
to the lightweight neural renderer. More importantly, when
combined with tabulation-based approaches for volume ren-
dering, the resolution of the voxel grid for pre-caching could
be reduced sufficiently since there is no need to render high-
resolution content during the volume rendering stage.

Super-resolution for Rendered Content: A few research
works focus on leveraging super-resolution techniques for
rendering acceleration, particularly for game engine con-
tent. Xiao et al. [52] propose a temporal super-resolution
design that takes low-resolution texture, depth, and motion
vectors from the game engine as input. Another similar
work is DLSS [2], a proprietary software of NVIDIA that is
not fully disclosed. Unlike the above works, our method
cannot obtain a high-precision motion vector for super-
resolution. Instead, we take a volume-rendered noisy depth
map to warp the preceding frame to align with the current
frame and train the low-resolution rendering and the super-
resolution network end-to-end. Note that Instant-NGP inte-
grates DLSS in their recent update. Despite enhancing the
rendering speed with convincing visual quality, we demon-
strate in our experiments that its PSNR drops in highly tex-
tured regions. Another related work, NeRF-SR [43], gener-
ates higher-resolution images with low-resolution supervi-
sion but is not applicable for real-time rendering.

20702



3. Method
In this work, we propose fully exploiting the smoothly

changing viewpoints to accelerate the rendering process of
NeRF. In general, we achieve rendering acceleration by re-
ducing the total number of 3D points that need to be queried
in volume rendering for each frame.

Fig. 2 gives an overview of our proposed pipeline con-
sisting of a rendering buffer, neural feature fields, and a
2D neural renderer. Specifically, the rendering buffer saves
low-resolution feature maps and depth maps of previous
viewpoints. From the current viewpoint, a low-resolution
feature map and depth map is rendered, accelerated by the
rendering buffer. Next, the lightweight neural renderer takes
the preceding and the current feature maps as input to gen-
erate the output image at the target resolution.

In the following, we first introduce preliminaries of
NeRF model in Section 3.1. Next, we present the accel-
erated volume rendering in Section 3.2, the buffer-guided
neural rendering in Section 3.3, and the training procedure
in Section 3.4. Finally, we describe implementation details
in Section 3.5.

3.1. Background

NeRF represents a scene as a continuous function fθ pa-
rameterized by learnable parameters θ that maps a 3D point
x ∈ R3 and a viewing direction d ∈ S2 and to a volume
density σ and a color value c:

fθ : (x ∈ R3,d ∈ S2) 7→ (σ ∈ R+, c ∈ R3) (1)

Given a target viewpoint, the color cr and depth dr at a
camera ray r is obtained via volume rendering integral ap-
proximated by the numerical quadrature [22]:

cr =

N∑
i=1

T i
rα

i
rc

i
r dr =

N∑
i=1

T i
rα

i
rt

i
r (2)

αi
r = 1− exp(−σi

rδ
i
r) T i

r =

i−1∏
j=1

(1− αj) (3)

where T i
r and αi

r denote transmittance and alpha value of a
sample point xi.

Rendering Time: The rendering time of NeRF is propor-
tional to the amount of computation required to render an
image. Let H×W denote the target image resolution, N the
number of samples on each ray and F the FLOPs of query-
ing one sample’s color and density. We can roughly esti-
mate the amount of computation as H×W ×N×F . Exist-
ing NeRF acceleration strategies mainly focus on how to de-
crease the FLOPs F of each query by pre-caching the output
of fθ or directly using a voxel grid [13] [11] [42] [56] [55],
thus leading to large memory consumption. There are a few
attempts to reduce the sampling points N along the ray via

early ray termination, empty space skipping [49] or adap-
tive sampling [16], yet using these techniques alone has not
yet reached the performance of pre-cache based methods.

Our solution can elevate rendering speed from a new per-
spective, reducing the number of pixels H × W and the
number of samples N for volume rendering via fully utiliz-
ing the smooth viewpoint trajectory. Besides, our solution
can cooperate with the existing work to achieve high-speed
rendering, leading to a higher rendering framerate while
maintaining visual quality.

3.2. Accelerating Volume Rendering

We propose to learn neural feature fields that render a
low-resolution feature map suited for the subsequent neural
renderer. The acceleration of our framework comes from
1) rendering the feature map at a lower resolution and 2)
reducing the sampling range guided by the rendering buffer.

Low-Resolution Feature Rendering: We render a feature
map via volume rendering. Our neural feature fields maps
the input x and the viewing direction d to a density value
and a feature vector f :

fθ : (x ∈ R3,d ∈ S2) 7→ (σ ∈ R+, f ∈ RK) (4)

where K is the number of channels of our feature vector.
Despite providing more information, rendering extra chan-
nels leads to very little overhead in time as we only expand
the last layer of the MLP to predict more channels.

We can obtain a feature vector fr at each ray r via volume
rendering.

fr =

N∑
i=1

T i
rα

i
rf

i
r (5)

We render the feature vector at a subset of the rays, yielding
a feature map F ∈ RH

4 ×W
4 ×K = {fr}. The corresponding

low-resolution depth value D ∈ RH
4 ×W

4 is also rendered.
Both the feature map F and D are stored in our rendering
buffer for subsequent frames.

Buffer-Guided Sampling Range Reduction: The depth
information of adjacent frames rendered previously pro-
vides a coarse scene geometry. Thus, warped depth from
the preceding frame could be used as guidance to determine
sampling positions and thus accelerate rendering. Specifi-
cally, given a low-resolution depth map Dt′,t′<t of the pre-
vious frame, it is first unprojected to a 3D point cloud and
then projected to the current viewpoint. More formally, the
following unprojection and projection functions are applied
to each pixel (u, v) of Dt′ with depth dt′ :

p = ξ−1
t′ K−1

l dt′ [u, v, 1]
T (6)

dt′→t[ut′→t, vt′→t, 1]
T = Klξtp (7)

20703



Neural Feature

 Fields

Rendering Buffer

 

Sampling Range

Reduction

Neural Renderer

Project to 

Low Res.

Upsample

Project to 

High Res.
Unproject

 

Ours

 

GT

Figure 2. SteerNeRF. The rendering buffer saves low-resolution feature maps {Ft−L, . . . ,Ft−1} and depth maps {Dt−L, . . . ,Dt−1}
of previous L viewpoints. At the current viewpoint t, a low-resolution feature map Ft and a depth map Dt are rendered acceler-
ated by the rendering buffer. Next, the lightweight neural renderer takes as input the reprojected features maps at the high resolution
{F̂t−L→t, . . . , F̂t−1→t} and the upsampled feature map F̂t to generate the output image It. As illustrated by the blue arrows, during
training, we apply the reconstruction loss L to an image patch and jointly optimize the entire model end-to-end, including preceding
frames in the rendering buffer.

where p denotes a 3D point and Kl is the intrinsic matrix of
the low-resolution image. This yields the reprojected depth
map Dt′→t where

Dt′→t(⌊ut′→t⌉, ⌊vt′→t⌉) = dt′→t. (8)

Note that here we simply round (ut′→t, vt′→t) and observe
a negligible impact on the performance. Given Dt′→t, the
sampling range at frame t can be limited to the depth in-
terval [Dt′→t − ϵ,Dt′→t + ϵ] for rendering Ft and Dt at
the camera viewpoint ξt. This simple strategy further de-
creases the number of 3D sample points and accelerates the
rendering of the low-resolution feature map.

3.3. Buffer-Guided Neural Rendering

Given the rendering buffer consisting of L preced-
ing feature maps {Ft−L, . . . ,Ft−1} and depth maps
{Dt−L, . . . ,Dt−1}, we combine them with the feature map
at the current viewpoint t to recover the output image It us-
ing a 2D neural renderer. We first project frames in the ren-
dering buffer to the current viewpoint. Next, we use a 2D
neural renderer to recover the target image.

Preceding Frames Reprojection: Inspired by natural
video superresolution approaches, our method warps pre-
vious frames to align with the current frame to ease the task
of the subsequent neural renderer. Instead of reprojecting
the depth map to the low-resolution image as in Eq. 7, we
directly project the 3D point cloud to the target resolution to
achieve higher precision, i.e., maintain sub-pixel precision
in terms of the low-resolution image:

dt′→t[ût′→t, v̂t′→t, 1]
T = Khξtp (9)

where Kh denotes the intrinsic matrix of the high-
resolution image. This allows us to obtain the reprojected
high-resolution feature map F̂t′→t ∈ RH×W×K :

F̂t′→t(⌊ût′→t⌉, ⌊ût′→t⌉) = Ft′(u, v). (10)

Neural Renderer: We use a lightweight 2D convolutional
network for fast inference. The reprojected high-resolution
feature maps {F̂t′→t} are concatenated with the upsampled
feature map F̂t and mapped to the output target image:

gθ : ({F̂t′→t}, F̂t) 7→ It ∈ RH×W×3 (11)

In practice, we choose a simple modified U-Net as our neu-
ral renderer. Compared to traditional U-Net, we reduce
the number of convolution layers for high-resolution fea-
tures and increase the depth of convolution layers for low-
resolution features. The simple adjustment allows us to
greatly reduce the inference time and keep visual quality
when the number of parameters is almost the same. We use
an off-the-shelf inference acceleration toolbox, NVIDIA
TensorRT, to optimize neural renderer to reduce the infer-
ence time.

3.4. Training

The training strategy is crucial to achieving high-quality
novel view synthesis. In practice, we first pre-train our neu-
ral feature fields and then train the full model jointly in an
end-to-end training fashion.

Pre-training: We pre-train our neural feature fields on the
target resolution H×W . Here, we render a high-resolution

20704



feature map F̃ ∈ RH×W×K and apply an L2 reconstruc-
tion loss on the first three channels supervised by the high-
resolution ground truth image. We leave other output chan-
nels without the constraint of supervision as pretraining on
the first three channels is sufficient to learn reasonable vol-
ume density.

End-to-end Joint Training: With the pre-trained neural
feature fields, we train our full model end-to-end using an
L2 loss L on the final output image I ∈ RH×W×3. Note
that we do not apply reconstruction loss to the rendered fea-
ture map during end-to-end training and let the neural fea-
ture fields learn features suited for the 2D neural renderer.
During training, the loss L is applied to image patches. As
the training viewpoints are scattered in the space without
a smooth trajectory, we generate a short sequence of pre-
ceding camera poses for each training image to train the
buffer-based neural renderer. Note that this process does
not introduce additional supervision as we only apply the
loss L to the training viewpoints despite taking preceding
feature maps as input.

3.5. Implementation Details

Network Architecture: Our method is compatible with
different NeRF approaches for learning the neural feature
fields. In this work, we implement our neural feature fields
based on Instant-NGP [24] using a third-party PyTorch im-
plementation1. This allows more efficient feature map ren-
dering than the vanilla NeRF. We follow the original archi-
tecture of Instant-NGP that uses multi-resolution hash ta-
bles where the table length at each resolution is fixed to 219.
Following Instant-NGP, empty space skipping and early ray
termination is applied when rendering the low-resolution
feature map. Regarding the 2D neural renderer, we adopt a
shallow U-Net [36] with the detailed architecture described
in the supplementary.

Distillation: When the number of training views is rel-
atively small, the 2D neural renderer tends to overfit the
training views, yielding degenerated performance on the
test poses. In this case, we leverage a pre-trained NeRF
model to synthesize more viewpoints as our pseudo ground
truth by randomly sampling viewpoints within the avail-
able viewing zone. Adding the randomly sampled pseudo
ground truth alleviates the overfitting problem.

Inference Optimization: Optimizing trained neural ren-
derer for real-time inference and lower memory footprint is
necessary. Thus, we leverage NVIDIA TensorRT to opti-
mize the 2D neural renderer. Prior to testing, we optimize
the 2D neural renderer into two versions in FP16 and INT8
precision separately.

1https://github.com/kwea123/ngp pl

Measurement Platform: Our test system consists of
an NVIDIA GTX 3090 consumer GPU, an Intel Core i7-
10700K CPU with 3.80GHz, and 32GB of RAM.

4. Experiments
In this section, we evaluate our method’s performance

through quantitative comparisons with prior work, runtime
breakdown analysis of two representative datasets, and ex-
tensive ablation studies to validate our design decisions.

Datasets: We evaluate our performance using the NeRF-
Synthetic dataset, consisting of eight synthetic scenes ren-
dered by Blender at 800 × 800 resolution, and a subset of
the Tanks & Temples dataset [15], a real-world dataset at
1920× 1080 resolution. We follow NSVF [20] in selecting
a subset and cropping image backgrounds.

Baselines: We consider two groups of baseline methods
based on their real-time rendering capabilities. The first
group consists of vanilla NeRF and NSVF, while the sec-
ond group comprises real-time rendering methods including
PlenOctree, DIVeR, and Instant-NGP. We use the real-time
version of DIVeR called DIVeR32 (RT). For Instant-NGP,
we mainly compare to the third-party PyTorch implementa-
tion (denoted as Instant-NGP∗) for a fair comparison. We
further evaluate the official implementation of Instant-NGP
to compare our relative speed gain with DLSS [2].

Metrics: We evaluate our method from efficiency, qual-
ity, and memory usage. The efficiency is measured by the
number of frames per second. The quality is measured by
PSNR, SSIM [48], and LPIPS [59]. Memory usage is mea-
sured by megabytes.

4.1. Comparisons to Baseline

We first compare our method with all baselines in Tab. 1.
Here, we consider Instant-NGP∗ for a fair comparison.
Tab. 1 (left) reports the results on Tanks & Temples dataset.
All baseline and our methods show similar visual quality.
However, our method shows the best FPS, outperforming
the best baseline method, PlenOctree. In the meantime, the
memory usage of our method is less than 2% of PlenOc-
tree. Instant-NGP, which has similar memory usage to ours,
can only render views at 5 FPS. NeRF and NSVF, both em-
ploying a large MLP, perform much slower in rendering
efficiency. With such a trade-off between memory usage
and rendering efficiency, our method satisfies 3D interac-
tion along smooth viewport trajectories at 1080P resolution
and 30FPS, as demonstrated by our qualitative results on
Tanks & Temples in Fig. 3.

On NeRF-Synthetic dataset in Tab. 1 (right), all methods
exhibit similar visual quality scores. PlenOctree achieves
the highest FPS, albeit with a memory usage one to two or-
ders of magnitude higher due to its network-free nature. In

20705



Instant-NGP∗ [24] DIVeR [49]

Ours GT
Figure 3. Qualitative comparison on Tanks & Temples.

Method Tanks & Temples NeRF-Synthetic Mem.(MB)↓PSNR(dB)↑ SSIM↑ LPIPS↓ FPS↑ PSNR(dB)↑ SSIM↑ LPIPS↓ FPS↑
NeRF [23] 28.32 0.890 0.198 0.005 31.01 0.947 0.081 0.02 5
NSVF [20] 28.40 0.900 0.153 0.06 31.74 0.953 0.047 0.23 -

KiloNeRF [35] 28.41 0.900 0.092 10.95 31.00 0.950 0.030 38.50 161
PlenOctree [56] 27.99 0.917 0.131 20.84 31.71 0.958 0.053 167.70 1930
DIVeR [49] 28.18 0.912 0.116 - 32.12 0.958 0.033 74.00 68
Instant-NGP∗ 28.77 0.918 0.136 5.00 32.79 0.957 0.055 35.41 25.2

Ours (FP16, L=0) 28.51 0.922 0.125 26.58 31.42 0.949 0.060 77.04 29.4
Ours (FP16) 28.65 0.924 0.121 27.24 31.60 0.954 0.058 75.19 29.4
Ours (INT8) 28.44 0.919 0.129 30.90 30.97 0.948 0.065 86.97 27.3

Table 1. Quantitative results on Tanks & Temples and NeRF-Synthetic show that our method could achieve high framerate rendering
while keeping the memory footprint not too large. (Best, Second Best). Instant-NGP∗ refers to the third-party python implementation,
which we also adopt to implement our neural feature fields. Our method has two versions (FP16, INT8), indicating two optimization
precision for 2D neural renderer with NVIDIA TensorRT. Ours (FP16, L=0) refers to our method without preceding frames.

contrast, our method outperforms the others in FPS while
maintaining similar memory usage. Notably, we observe
two differences in FPS compared to the previous dataset:
KiloNeRF is slower than Instant-NGP and the margin of
our method against the other methods is relatively smaller.
We explain both differences by the bandwidth of GPU,
which may not be fully maximized due to the lower im-
age resolution i.e. fewer times of ray marching or neural

network inference. In summary, we consider that the par-
allelism of our method is able to push the frontier of the
efficiency-memory trade-off, especially for high-resolution
rendering. We present corresponding qualitative results on
NeRF-Synthetic in Fig. 4.

We further compare our method to Instant-NGP with
DLSS in Tab. 2. Note that the two groups in the table fol-
low different codebases and thus are not directly compara-

20706



Instant-NGP∗ [24] DIVeR [49] Ours GT

Figure 4. Qualitative comparison on NeRF-Synthetic.

ble. The upsampling rate of DLSS is set to 2 in the ex-
periment. On Tanks & Temples, Instant-NGP with DLSS
boosts 2× frame rate with a negligible loss in quality pow-
ered by dedicated AI processors named Tensor Core. Our
method, based on a slower implementation of Instant-NGP,
achieves a 5× speedup with minimal quality degradation.
On NeRF-Synthetic, Instant-NGP with DLSS delivers 120+
FPS, but there is a decline in quality. Our method exhibits
a better quality score than Instant-NGP with DLSS, despite
not outperforming it in FPS. We leave qualitative compar-
isons to supplementary materials. Nonetheless, we believe
our method is valuable to the community since DLSS is a
closed box and our method significantly accelerates our im-
plementation baseline in a directly comparable context.

4.2. Runtime Breakdown

We report the average runtime of our method in Tab. 3
for Chair and Barn scenes, including the runtime of vol-

Tanks & Temples NeRF-Synthetic
PSNR↑ FPS↑ PSNR↑ FPS↑

Instant-NGP 28.91 18.82 32.60 69.07
+ DLSS 28.70 41.30 30.75 122.59

Instant-NGP∗ 28.77 5.00 32.79 35.41
Our (FP16) 28.65 27.24 31.60 75.19

Table 2. Comparsion with Instant-NGP w/ DLSS

ume rendering, neural rendering, and depth reprojection.
For volume rendering, {Dt′→t}t′=t−1 refers to the depth
reprojection to enable buffer-guided sampling range reduc-
tion. When this function is turned on, it reduces the volume
rendering time (fθ) to 85-90% of the original. As for the
neural rendering part, the reprojection {F̂t′→t}t′={t−2,t−1}
takes longer as two frames are reprojected to a higher reso-
lution. The reprojection can be further accelerated in future
work by using customised CUDA kernels.

20707



Module
Time(ms)

Barn Chair

{Dt′→t}t′=t−1 0 0.11 0 0.11
fθ 20.28 17.15 4.81 3.76

{F̂t′→t}t′={t−2,t−1} 3.21 2.40
gθ 12.00 3.71

Total 35.49 32.47 10.92 9.98

Table 3. Runtime breakdown for Chair and Barn scenes

L: # Previous frames 0 1 2 3

PSNR(dB) 32.94 33.05 33.14 33.10
SSIM 0.959 0.964 0.968 0.967
LPIPS 0.035 0.034 0.034 0.032
Runtime(ms) 8.46 9.80 11.14 12.48

Table 4. Comparison of number of preceding frames on Chair.

w/o Joint K=3 Ours GT

Figure 5. Ablation study. Impact of different training configura-
tions has been shown in the above visual examples.

4.3. Ablation Study

We conduct ablation studies on SteerNeRF using Chair
scene from NeRF-Synthetic dataset.

Number of Preceding Frames: We evaluate the im-
pact of the number of preceding frames L on visual qual-
ity and rendering time in Tab. 4. Increasing the number of
preceding frames improves reconstruction quality but also
leads to longer rendering times due to the additional warp-
ing operation. We observe that the quality gain per addi-
tional frame decreases as the number of preceding frames
increases. Therefore, we can adjust this parameter flexibly
to balance quality and rendering speed. Additionally, we
investigate the impact of the sampling distance among the
views during model training on reconstruction quality and
provide further analysis in the supplementary materials.

Number of Feature Channels: We also verify the effect
of the number of channels of feature images K. Experiments
show that as the number of channels increases, the gain of
visual quality decreases gradually in Tab. 5. Therefore, we
ended up choosing six channels in total for our implemen-
tation. Note that employing feature rendering almost causes
no rendering time overhead.

Joint Training: The necessity of joint training is validated
in Tab. 6. The method without joint training means the
parameters of neural feature fields are frozen when train-

K: # Feature channels 3 6 9

PSNR(dB) 32.53 33.14 33.21
SSIM 0.959 0.965 0.966
LPIPS 0.042 0.035 0.034

Table 5. Comparison of number of feature channels on Chair.

PSNR SSIM LPIPS

Ours w/ joint training 33.05 0.965 0.038
Ours w/o joint training 31.98 0.957 0.053

Table 6. Joint training on Chair.

T of hash table PSNR(dB) SSIM LPIPS Mem.(MB)

219 33.05 0.965 0.038 29.2
216 33.03 0.961 0.039 8.1
214 32.70 0.953 0.039 5.0

Table 7. Memory usage of neural feature fields on Chair.

ing the neural renderer. Joint training helps neural feature
fields generate more expressive features compatible with
the following neural renderer to synthesize higher-quality
textures. In Fig. 5, we show visual examples of different
training configurations.

Memory Usage of Neural Feature Fields: In Tab. 7, we
compare the visual quality and memory usage when neu-
ral feature fields are configured with different lengths of the
hash table T, i.e., learnable parameters. We find that un-
der our framework, even greatly reducing the length of the
hash table in Instant-NGP, which implements neural feature
fields, makes a slight impact on the final visual quality while
significantly reducing memory usage.

5. Conclusion

We propose a new perspective for NeRF rendering accel-
eration by considering the smooth viewpoint trajectory dur-
ing interactions. The main idea is to supersample the image
rendered at the current viewpoint by taking preceding low-
resolution features and depths. The experiments show that
our method achieves real-time even when rendering 1080P
images. As a limitation, training the 2D neural renderer is
time-consuming. Moreover, we need to train a specialized
neural renderer from scratch for each scene individually. In
the future, we plan to train a neural renderer that generalizes
well on different scenes only after short-time fine-tuning or
even without fine-tuning.

Acknowledgements: This work is supported by the Na-
tional Natural Science Foundation of China under Grant
No. U21B2004, No. 62071427, No. 62202418, Zhejiang
University Education Foundation Qizhen Scholar Founda-
tion, and the Fundamental Research Funds for the Central
Universities under Grant No. 226-2022-00145.

20708



References
[1] Benjamin Attal, Jia-Bin Huang, Michael Zollhöfer, Johannes

Kopf, and Changil Kim. Learning neural light fields with
ray-space embedding. In Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2022. 2

[2] Andrew Burnes. Nvidia dlss 2.0: A big leap in ai rendering.
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-
0-a-big-leap-in-ai-rendering/, 2020. 2, 5

[3] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J. Guibas, Jonathan Tremblay, Sameh Khamis,
Tero Karras, and Gordon Wetzstein. Efficient geometry-
aware 3d generative adversarial networks. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2022. 2

[4] Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. Pi-gan: Periodic implicit genera-
tive adversarial networks for 3d-aware image synthesis. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. 2

[5] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In Proc. of the
European Conf. on Computer Vision (ECCV), 2022. 2

[6] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In Proc. of the IEEE International Conf. on Computer Vision
(ICCV), 2021. 2

[7] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. arXiv.org, 2022. 2

[8] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised nerf: Fewer views and faster train-
ing for free. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022. 2

[9] Yu Deng, Jiaolong Yang, Jianfeng Xiang, and Xin Tong.
GRAM: generative radiance manifolds for 3d-aware image
generation. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022. 2

[10] Stefano Esposito, Daniele Baieri, Stefan Zellmann, André
Hinkenjann, and Emanuele Rodolà. Kiloneus: Implicit
neural representations with real-time global illumination.
arXiv.org, 2022. 2

[11] Stephan J. Garbin, Marek Kowalski, Matthew Johnson,
Jamie Shotton, and Julien P. C. Valentin. Fastnerf: High-
fidelity neural rendering at 200fps. In Proc. of the IEEE In-
ternational Conf. on Computer Vision (ICCV), 2021. 2, 3

[12] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.
Stylenerf: A style-based 3d-aware generator for high-
resolution image synthesis. Proc. of the International Conf.
on Learning Representations (ICLR), 2022. 2

[13] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul E. Debevec. Baking neural
radiance fields for real-time view synthesis. In Proc. of the
IEEE International Conf. on Computer Vision (ICCV), 2021.
1, 2, 3

[14] Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, and Jiaya Jia.
Efficientnerf efficient neural radiance fields. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2022. 2

[15] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale
scene reconstruction. ACM Transactions on Graphics (ToG),
36(4):1–13, 2017. 5

[16] Andreas Kurz, Thomas Neff, Zhaoyang Lv, Michael
Zollhöfer, and Markus Steinberger. Adanerf: Adaptive sam-
pling for real-time rendering of neural radiance fields. 2022.
1, 2, 3

[17] Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. Ner-
facc: A general nerf accleration toolbox. arXiv preprint
arXiv:2210.04847, 2022. 2

[18] Tianye Li, Mira Slavcheva, Michael Zollhöfer, Simon Green,
Christoph Lassner, Changil Kim, Tanner Schmidt, Steven
Lovegrove, Michael Goesele, Richard A. Newcombe, and
Zhaoyang Lv. Neural 3d video synthesis from multi-view
video. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2022. 2

[19] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021. 2

[20] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems (NeurIPS), 2020. 5,
6

[21] Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng
Wang, Theobalt Christian, Xiaowei Zhou, and Wenping
Wang. Neural rays for occlusion-aware image-based render-
ing. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2022. 2

[22] Nelson Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graphics,
1(2):99–108, 1995. 3

[23] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In Proc. of the European Conf. on Computer Vision
(ECCV), 2020. 1, 2, 6

[24] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. on Graphics, 2022. 5, 6,
7

[25] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, An-
ton Kaplanyan, and Markus Steinberger. Donerf: Towards
real-time rendering of compact neural radiance fields using
depth oracle networks. Comput. Graph. Forum, 40(4):45–59,
2021. 1, 2

[26] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall,
Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-
nerf: Regularizing neural radiance fields for view synthesis
from sparse inputs. arXiv.org, 2021. 2

20709



[27] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2021. 2

[28] Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2021. 2

[29] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
Proc. of the IEEE International Conf. on Computer Vision
(ICCV), 2021. 2

[30] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B. Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: a higher-
dimensional representation for topologically varying neural
radiance fields. ACM Trans. Graph., 40(6):238:1–238:12,
2021. 2

[31] Sida Peng, Junting Dong, Qianqian Wang, Shangzhan
Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. Ani-
matable neural radiance fields for modeling dynamic human
bodies. In Proc. of the IEEE International Conf. on Com-
puter Vision (ICCV), 2021. 2

[32] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2021. 2

[33] Martin Piala and Ronald Clark. Terminerf: Ray termination
prediction for efficient neural rendering. In Proc. of the In-
ternational Conf. on 3D Vision (3DV). IEEE, 2021. 2

[34] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural radiance fields
for dynamic scenes. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2021. 2

[35] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), 2021. 2, 6

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention. Springer, 2015.
5

[37] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. GRAF: generative radiance fields for 3d-aware im-
age synthesis. In Advances in Neural Information Processing
Systems (NeurIPS), 2020. 2

[38] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J. Davi-
son. imap: Implicit mapping and positioning in real-time.
In Proc. of the IEEE International Conf. on Computer Vision
(ICCV), 2021. 2

[39] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022. 2

[40] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,
and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2022. 1

[41] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modu-
lar framework for neural radiance field development. arXiv
preprint arXiv:2302.04264, 2023. 2

[42] Krishna Wadhwani and Tamaki Kojima. Squeezenerf: Fur-
ther factorized fastnerf for memory-efficient inference. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2022. 2, 3

[43] Chen Wang, Xian Wu, Yuanchen Guo, Song-Hai Zhang, Yu-
Wing Tai, and Shi-Min Hu. Nerf-sr: High quality neural
radiance fields using supersampling. In Communications of
the ACM, pages 6445–6454. ACM, 2022. 2

[44] Huan Wang, Jian Ren, Zeng Huang, Kyle Olszewski, Men-
glei Chai, Yun Fu, and Sergey Tulyakov. R2l: Distilling neu-
ral radiance field to neural light field for efficient novel view
synthesis. In Proc. of the European Conf. on Computer Vi-
sion (ECCV), 2022. 2

[45] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yan-
shun Zhang, Yingliang Zhang, Minye Wu, Jingyi Yu, and
Lan Xu. Fourier plenoctrees for dynamic radiance field ren-
dering in real-time. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022. 2

[46] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruc-
tion. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, ed-
itors, Advances in Neural Information Processing Systems
(NeurIPS), 2021. 2

[47] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2021. 2

[48] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Trans. on Image Processing
(TIP), 13(4):600–612, 2004. 5

[49] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yu-Xiong Wang,
and David A. Forsyth. Diver: Real-time and accurate neural
radiance fields with deterministic integration for volume ren-
dering. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2022. 2, 3, 6, 7

[50] Xiuchao Wu, Jiamin Xu, Zihan Zhu, Hujun Bao, Qixing
Huang, James Tompkin, and Weiwei Xu. Scalable neu-
ral indoor scene rendering. ACM Transactions on Graphics
(TOG), 41(4):1–16, 2022. 2

[51] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time neural irradiance fields for free-viewpoint

20710



video. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2021. 1

[52] Lei Xiao, Salah Nouri, Matthew Chapman, Alexander Fix,
Douglas Lanman, and Anton Kaplanyan. Neural super-
sampling for real-time rendering. ACM Trans. Graph.,
39(4):142, 2020. 2

[53] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. 2

[54] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. 2020. 2

[55] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2022.
2, 3

[56] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), 2021. 1, 2, 3, 6

[57] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. 2

[58] Jian Zhang, Jinchi Huang, Bowen Cai, Huan Fu, Ming-
ming Gong, Chaohui Wang, Jiaming Wang, Hongchen Luo,
Rongfei Jia, Binqiang Zhao, et al. Digging into radiance grid
for real-time view synthesis with detail preservation. In Proc.
of the European Conf. on Computer Vision (ECCV), 2022. 2

[59] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018. 5

[60] Yizhong Zhang, Jiaolong Yang, Zhen Liu, Ruicheng Wang,
Guojun Chen, Xin Tong, and Baining Guo. Virtualcube: An
immersive 3d video communication system. IEEE Transac-
tions on Visualization and Computer Graphics, 28(5):2146–
2156, 2022. 1

[61] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R. Oswald, and Marc Polle-
feys. Nice-slam: Neural implicit scalable encoding for slam.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), June 2022. 2

20711


