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Abstract

Recent years have witnessed significant developments in
point cloud processing, including classification and seg-
mentation. However, supervised learning approaches need
a lot of well-labeled data for training, and annotation is
labor- and time-intensive. Self-supervised learning, on the
other hand, uses unlabeled data, and pre-trains a back-
bone with a pretext task to extract latent representations to
be used with the downstream tasks. Compared to 2D im-
ages, self-supervised learning of 3D point clouds is under-
explored. Existing models, for self-supervised learning of
3D point clouds, rely on a large number of data sam-
ples, and require significant amount of computational re-
sources and training time. To address this issue, we pro-
pose a novel contrastive learning approach, referred to as
ToThePoint. Different from traditional contrastive learning
methods, which maximize agreement between features ob-
tained from a pair of point clouds formed only with dif-
ferent types of augmentation, ToThePoint also maximizes
the agreement between the permutation invariant features
and features discarded after max pooling. We first per-
form self-supervised learning on the ShapeNet dataset, and
then evaluate the performance of the network on different
downstream tasks. In the downstream task experiments,
performed on the ModelNet40, ModelNet40C, Scanob-
jectNN and ShapeNet-Part datasets, our proposed ToThe-
Point achieves competitive, if not better results compared to
the state-of-the-art baselines, and does so with significantly
less training time (200 times faster than baselines).

1. Introduction
In recent years, self-supervised methods, which pretrain

a backbone with pretext tasks to extract useful latent rep-
resentations, have become increasingly effective [16]. For
example, self-supervised tasks can be set to distinguish pos-
itive and negative samples or restore damaged images, and
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Figure 1. A running example of ToThePoint. Raw 3D point
cloud data is streamed through two branches; in each branch, nor-
malization and data augmentation are performed followed by tra-
ditional max-pooling operations. In our recycling mechanism, the
N × M dimensional features are sorted and a row of features is
randomly selected (from the remaining rows after max-pooling)
as the recycled aligned features to assist the representation of per-
mutation invariant features. The four features extracted from the
two branches are next subjected to two stages of contrastive learn-
ing. Then the learning result would be mapped on the hypersphere.

these self-supervised pre-training tasks have been proven to
provide rich latent feature representations for downstream
tasks to improve their performance [5, 8, 10]. For the
tasks, for which dataset labeling is difficult, such as detec-
tion [33], segmentation [12] or video tracking tasks [27],
unsupervised pre-training can be especially helpful by alle-
viating the issue of insufficient labelled data. Moreover, it
has been shown that self-supervised pre-training combined
with supervised training provides better performance than
traditional fully supervised learning by itself [11, 34, 36].
With the ever increasing availability of LiDAR sensors and
stereo cameras, more and more point cloud data can be and
have been captured. However, annotating this data is dif-
ficult, providing additional incentive for self-supervised al-
gorithms developed for 3D point clouds.
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There have been some works exploring self-supervised
representation learning from point clouds, mainly based on
generative models [29], reconstruction [20, 26] and other
pretext tasks [34]. However, existing methods require large
amounts, even millions of data samples, for self-supervised
pre-training [9], making them computationally more expen-
sive and time-consuming. Among traditional point cloud
networks, PointNet [18] is a pioneering, end-to-end 3D
point cloud analysis work. It obtains permutation-invariant
features by adopting the max-pooling operation. There have
been many subsequent works adopting this structure [14,
19]. Yet, the max-pooling operation discards a large num-
ber of points and their features. Chen et al. [4] have shown
that these discarded features are still useful and, when recy-
cled, can boost performance; and proposed recycling to im-
prove the performance of fully-supervised 3D point cloud
processing tasks, including classification and segmentation.

In this work, different from [4], we perform recycling
differently, and also use the discarded point cloud features
as a feature augmentation method for contrastive learning.
This augmentation approach can allow having less train-
ing samples for self-supervised training, i.e. it can enable
the self-supervised pre-training of a point cloud network
without requiring large amounts of point cloud data. We
achieve this by making good use of the point cloud features
discarded by the max-pooling module of the point cloud
network. Performing self-supervised learning with a small
amount of point cloud data can also allow downstream tasks
to get a competitive result.

We propose ToThePoint to accelerate self-supervised
pretraining of 3D point cloud features, as shown by the ex-
ample in Fig. 1. Compared to previous baselines, which re-
quire a large number of training samples and longer training
time, our proposed work achieves its accuracy levels with
only a fraction of samples during pre-training. The goal of
our work is to introduce the distribution of the maximum
aggregated features and the recycled point cloud features
into the hypersphere space through a contrastive learning
method. The maximum aggregated feature and the recycled
point cloud feature from the same sample are regarded as a
cluster. Contrastive learning is used to make the maximum
aggregated feature become the centroid of the cluster, so
that the maximum aggregated feature can better represent
the sample.

Contributions. The main contributions of this work in-
clude the following:

• We first demonstrate that the point cloud features, dis-
carded by the max-pooling module of a point cloud net-
work, can be recycled and used as a feature augmentation
method for contrastive learning.

• We propose a two-branch contrastive learning framework,
which incorporates a cross-branch contrastive learning
loss and an intra-branch contrastive learning loss.

• We perform extensive experiments to evaluate our pro-
posed method on three downstream tasks, namely object
classification, few-shot learning, and part segmentation
on synthetic and real datasets of varying scales. The re-
sults show that our method achieves competitive if not
better results compared to the state-of-the-art baselines,
and does so with significantly less training time and fewer
training samples.

• We perform ablation studies analyzing the effects of in-
dividual loss terms and their combinations on the perfor-
mance.

2. Related Work
2.1. Representation Learning in 3D Point Clouds

Deep neural networks have been proven to be effective
models to learn the representations of structured data, such
as 2D images. However, the unordered structure of 3D data,
and the requirement for permutation invariance introduce
additional challenges for representation learning. To ad-
dress these problems, many works on 3D point clouds has
been presented in recent years [14,29,31]. According to the
input data type of a neural network, point cloud represen-
tation methods can be divided into three categories: multi-
view-based, volumetric-based and point-based methods [9].

Multi-view-based methods project a 3D shape onto
multiple views and extract view-wise features by 2D image
models. Hang et al. [22] proposed MVCNN, which uses
view-based descriptors to represent 3D shapes. To learn lo-
cal multi-view descriptors of point clouds, Li et al. [15] pre-
sented an end-to-end framework that performs in-network
multi-view rendering with optimizable view points.

Volumetric-based methods voxelize 3D point clouds
into grids, which are suitable for 3D CNN models. Mat-
urana et al. [17] introduced VoxNet, which is one of the pi-
oneering works utilizing 3D CNN to predict the occupancy
grids generated by voxelized point clouds. Zhou et al. [38]
presented PVD, which combines denoising diffusion mod-
els with the hybrid, point-voxel representation of 3D shapes.

Point-based methods, different from the above two cat-
egories, directly work on raw point clouds without any vox-
elization or projection. A classic backbone network in this
area is PointNet [18], which uses a max pooling layer as a
symmetric function, which enables permutation invariance.
Another popular baseline work is DGCNN [28], which se-
mantically groups points by dynamically updating a graph
of relationships from layer to layer. This approach captures
local geometric features of point clouds while still main-
taining permutation invariance.

2.2. Contrastive Learning

Different approaches have been investigated to devise a
pre-training architecture to enhance the learning of repre-
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Model Mean of no. of max pnts std of no. of max pnts Mean of no. of recycled pnts std of no. of recycled pnts Mean of utilized pnts std of utilized pnts
PointNet 219.98 36.48 189.93 36.01 283.99 50.43
DGCNN 337.29 78.47 474.36 247.21 693.93 269.10

Table 1. Point utilization analysis. This table shows how many points out of 2048 input points are utilized after max pooling, and recycled
with our proposed method. std represents the standard deviation. The first two columns show the statistic of points by max pooling. The
next two columns show the statistics of recycled points by our proposed ToThePoint. The last two columns show the statistics of total
utilized points in our proposed method.

sentation [7]. Sauder et al. [20] presented a self-supervised
learning method operating on raw point clouds, wherein a
neural network is trained to reconstruct a point cloud whose
parts have been randomly displaced. Wang et al. [26] pro-
posed OcCo, an unsupervised pre-training method, which
consists of a mechanism to generate masked point clouds
via view-point occlusions, and a completion task to recon-
struct the occluded point clouds.

Contrastive learning has been one of the most popular
self-supervised representation learning methods for 2D im-
age data in recent years. It encourages augmentations of the
same input to have more similar representations compared
to augmentations of different inputs [10]. Chen et al. [5]
proposed SimCLR, which learns representations by maxi-
mizing agreement between differently augmented views of
the same data example via a contrastive loss in the latent
space. Unlike SimCLR, BYOL, proposed by Grill et al. [8],
learns the representation by predicting previous versions of
its outputs, without using negative pairs.

Motivated by the success of contrastive learning with
2D images, research on applying contrastive learning to 3D
point clouds has emerged in the past few years [34, 36].
Based on BYOL, Huang et al. [11] devised STRL, which
excludes negative pairs in contrastive learning on 3D point
clouds and constructs a stable and invariant representation
through a moving average target network. Referring to
cross-model work in 2D vision, Afham et al. [2] proposed
CrossPoint, which utilizes joint contrastive learning of im-
posing intra-modal and cross-modal correspondences to ob-
tain more generic and transferable point cloud features.

3. Proposed Method
We propose a novel contrastive learning approach, re-

ferred to as ToThePoint, which achieves comparable, if not
better, performance than the state-of-the-art (SOTA) base-
lines, with a much faster run-time and by using signifi-
cantly fewer numbers of training data. Different from tradi-
tional contrastive learning methods, which maximize agree-
ment between features obtained from a pair of point clouds
formed only with different types of augmentation, ToTheP-
oint recycles the features discarded in the max pooling oper-
ation of the point cloud network and relabels them as posi-
tive samples. An overview of our method is shown in Fig. 1,
and the details will be provided in the following sections af-
ter providing the motivation first.

3.1. Motivation

SOTA methods on self-supervised learning of 3D point
clouds [2, 11] require tens of thousands or even millions of
samples (as shown in Tab. 2) and incur long training times.
Chen et al. [4] showed that a significant amount of point fea-
tures are discarded after max-pooling. As depicted in Fig. 1,
max-pooling operation simply retains the maximum latent
features and completely discards the rest, wasting some
valuable latent features in the process. The percentage of
discarded points and its effect on the model’s performance
have been analyzed by Chen et al. [4], which demonstrates
the benefit of increasing the number of points used for the
model training process. Inspired by this, instead of perform-
ing self-supervised training on a large of amount data and
discarding point features, our proposed method only needs
a small amount of data and recycles the discarded features
for self-supervised training and achieves competitive if not
better results compared to SOTA baselines.

We design an experiment to investigate how many points
are utilized in the max pooling, and how many points are
recycled in each point cloud sample, during the whole pre-
training process. If a point has feature value participating
the downstream task, we say the point is utilized, other-
wise the point is referred to as discarded. We use PointNet
and DGCNN as backbones and ShapeNet as the dataset.
The number of training epochs is 800. For each point
cloud sample in each training epoch, we record the num-
ber of utilized points, the number of recycled points by our
method described in Sec. 3, and obtain the mean and stan-
dard deviation. The results are shown in Tab. 1. For in-
stance, for the DGCNN backbone, in the original DGCNN,
on average about 337.29 out of 2048 points are utilized by
max pooling for a point cloud sample. However, applying
our method, 474.36 more points are recycled on average,
which increases the number of utilized points from 337.29
to 693.93. By utilizing more points, the feature embedding
output of the backbone network can have a better descrip-
tion of the object’s shape.

3.2. Data Augmentation on Point Clouds

The overall structure of our proposed ToThePoint is
shown in Fig. 2. ToThePoint is composed of two branches.
The input to both branches is a normalized set P of N -many
3D points. As commonly done in contrastive learning, we
apply multiple types of transformations, more specifically,
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Figure 2. The overall structure of the ToThePoint framework. After the two-branch data augmentation, the data would be fed into the
point cloud feature extractor. In the Max-pooling & Recycling Module, each branch gets a maximum aggregated feature and a recycled
point feature. The Point Cloud Feature Extractor and the projection head g are trained to maximize the agreement between the maximum
aggregated features and the recycled point cloud features of the same branch and the agreement between the maximum aggregated features
of the two branches. After training is completed, we throw away projection head g and use Point Cloud Feature Extractor and maximum
aggregated feature for downstream tasks.

rotation, scaling, translation, jitter and elastic deformation,
on the normalized point cloud to augment the data. Data
augmentation is done at both branches by using different
parameters, e.g. different angles for rotation etc. These two
branches allow having more augmented data from the same
point cloud input. The augmented point cloud data is de-
noted by Pa1 ∈ RN×3 and Pa2 ∈ RN×3 for branches 1
and 2, respectively. The two augmented samples are then
fed into the same point feature extraction backbone in both
branches.

3.3. Recycling Features for Feature Augmentation

The backbone used for point feature extraction learns a
function f(·) producing powerful representations of Pa1

and Pa2, i.e. f(Pa1) and f(Pa2) in M -dimensional
space. After M -dimensional latent features are extracted
for N points, traditional max-pooling is applied to obtain
permutation-invariant features. In other words, the N ×M
matrix is sorted in descending order along the dimension
N , as depicted in Fig. 1. Then, features in the first row are
kept, which are called ‘maximum features’ and denoted as
Fmax1 and Fmax2 in Fig. 2 for first and second branches,
respectively. Fmax1 and Fmax2 ∈ RM×1.

After this step, instead of discarding all the remaining
features, we randomly pick one of the remaining N − 1
rows, and use its features for data augmentation in feature
space. Since selecting a fixed row does not provide bet-

ter performance, we select it randomly. These features are
called ‘recycled point features’ and denoted as Fr1 and Fr2

in Fig. 2 for the first and second branches, respectively. Sub-
sequently, these feature vectors are passed through g, which
is composed of two fully connected layers. The projec-
tion vectors of Fmaxj and Frj are denoted by zmaxj and
zrj , respectively, where zmaxj=g(Fmaxj) and zrj=g(Frj)
and j ∈ {1, 2}. Then, contrastive learning is applied be-
tween zmax1 and zr1 , between zmax2 and zr2 , and between
zmax1 and zmax2 .

The aforementioned steps are done for each point cloud
sample Ps to obtain z

maxj
s and z

rj
s . For clarity, we dropped

the subscript s in the above description.

3.4. Contrastive Learning Incorporating Recycled
Features

The goal of contrastive learning is to maximize the sim-
ilarity between z

maxj

i and z
rj
i while minimizing the simi-

larity to the projection vectors of all the other point cloud
samples (zmaxj

k , zrjk ), where k ̸= i, in the same batch. We
use NT-Xent loss without memory bank for contrastive rep-
resentation. The loss function L(i,m, r) for a positive pair
of examples zmaxj

i and z
rj
i is defined as:

L(i,m, r) = −log
exp(s(z

maxj

i , z
rj
i )/τ)∑B

k=1
k ̸=i

exp(s(z
maxj

i , z
maxj

k )/τ) +
∑B

k=1 exp(s(z
maxj

i , z
rj
k )/τ)

(1)
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where B is the mini-batch size, τ is a temperature parameter
and s(·) denotes the cosine similarity function. Our intra-
branch contrastive loss function Lib−cl

j for branch j and for
a mini-batch is expressed as:

Lib−cl
j =

1

2B

B∑
i=1

[L(i,m, r) + L(i, r,m)]. (2)

As mentioned above, in addition to performing con-
trastive learning and feature alignment between the ‘max-
imum features’ and ‘recycled features’ of point cloud data,
we also introduce feature alignment between ‘maximum
features’ obtained from the two branches of our network.
This enhances the representation and learning capabilities
of the network, which is supported by the experimental re-
sults provided in Sec. 4.2. As mentioned above, the projec-
tion vectors of Fmax1 and Fmax2 are denoted by zmax1

and zmax2 , respectively, where 1 and 2 refer to first and
second branches. The loss function L(i,max1,max2), for
positive examples zmax1

i and zmax2

i , is written as:

L(i,max1,max2) =

− log
exp(s(zmax1

i , zmax2

i ))/τ∑B
k=1
k ̸=i

exp(s(zmax1

i , zmax1

k )/τ) +
∑B

k=1 exp(s(zmax1

i , zmax2

k )/τ)

(3)
where B, τ and s(·) are the same as those in Eq. (1). Our
inter-branch contrastive loss function Lcb−cl for a mini-
batch is expressed as:

Lcb−cl =
1

2B

B∑
i=1

[L(i,max1,max2) + L(i,max2,max1)].

(4)
In summary, this intra-branch contrastive learning pro-

cess maximizes the agreement between the permutation-
invariant features (coming from the max-pooling operation)
and the recycled features that are randomly picked from
the discarded ones. The inter-branch or cross-branch con-
trastive learning, using the ‘maximum features’ from two
branches allows sharing of further semantic information.

Finally, the total loss function is obtained by combin-
ing Lib−cl

1 , Lib−cl
2 and Lcb−cl, as in Eq. (5), during train-

ing, where Lib−cl
1 and Lib−cl

2 enforce similarity between
the maximum aggregated features and recycled point cloud
features, while Lcb−cl enforces similarity between different
point cloud transformations.

L = Lib−cl
1 + Lib−cl

2 + Lcb−cl. (5)

4. Experimental Results
We compare our ToThePoint with SOTA baselines and

present its efficiency and effectiveness through extensive
performance evaluations. Note that some experimental re-
sults are marked with / due to the fact that either the base-
line is not self-supervised or does not report results on that
dataset.

Figure 3. Visualization of learned features. The extracted fea-
tures for each sample in the ModelNet10 test set are visualized
using t-SNE. Both models are pre-trained on ShapeNet.

4.1. Pre-training

Dataset. We use the ShapeNet [3] dataset for self-
supervised training of the proposed ToThePoint and the
baselines. ShapeNet contains more than 50,000 CAD mod-
els from 55 categories. As for the downstream tasks, we
perform fully supervised and few-shot point cloud classi-
fication on the ScanObjectNN [24], ModelNet40 [32] and
ModelNet40-C [23] datasets, and parts segmentation on the
ShapeNet-Part [35]. The details about the datasets used for
the downstream tasks are provided in Sec. 4.2.

Implementation Details. We use PointNet [18] and
DGCNN [28] as the backbones for point cloud feature
extraction. PointNet is an MLP-based framework and
DGCNN is built on graph convolutional networks. As
shown in Fig. 2, feature extraction is followed by max-
pooling and recycling, and the features are then sent to a 2-
layer MLP. M is 1024 in our experiments, and the z vectors
are 256-dimensional. For fair comparison, the same back-
bone is pre-trained first by different self-supervised learning
methods, and then used with different downstream tasks.
We use Adam [13] as the optimizer, with weight decay of
1× 10−4 and initial learning rate of 1× 10−3.

Visualization of Learned Features. We first obtain the
point cloud embeddings, from PointNet and DGCNN back-
bones, by using the proposed ToThePoint self-supervised
learning method. We use the ModelNet10 dataset, which
contains points from 10 categories. We use t-SNE [25] to
visualize these embeddings and show them in Fig. 3. We
observe that both pre-trained models can successfully dif-
ferentiate the majority of samples in most categories, with
the exception of dressers and nightstands. This is expected,
since objects in these two categories usually look similar.

4.2. Evaluation of Downstream Tasks

(i) 3D object classification. We perform the clas-
sification experiments on the ModelNet40 [32], Model-
Net40C [23] and ScanObjectNN [24] datasets to demon-
strate the generalizability of ToThePoint in learning 3D
shape representations. The samples in ModelNet40 are ob-
tained from 3D CAD models. It contains 12,331 objects
(9,843 for training and 2,468 for testing) from 40 categories.
ModelNet40-C is a comprehensive dataset for benchmark-
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Self-supervised Learning Downstream Task

Method Num of
Samples

Running Time (s.) ModelNet40C ScanObjectNN
DGCNN PointNet DGCNN PointNet DGCNN PointNet

Rand / / / 81.82±0.07 79.63±0.25 85.66±0.45 78.16±0.54
Jigsaw [20] 9.8K 161.27 17.97 83.19±0.26 80.14±0.35 86.33±0.06 79.46±0.17
OcCo [26] 9.8K 2762.7 1307.73 82.47±0.15 79.89±0.52 86.19±0.39 79.63±0.16
STRL [11] 57.4 k 238.65 175.4 82.66±0.38 80.43±0.19 86.17±0.32 80.32±0.21

CrossPoint [2]
43.7 k pnts &

1.05M img 1115.86 344.95 83.69±0.29 81.12±0.44 86.32±025 79.90±0.03

ToThePoint 260 5.38 1.3 83.80±0.32 80.97±0.27 86.46±0.21 80.64±0.31

Table 2. 3D object classification comparison.. We report mean
and standard deviation over 3 runs ToThePoint outperforms all the
other methods on the ScanObject dataset with both backbones.
On the ModelNet40C dataset, ToThePoint provides the best and
second-best performance when DGCNN and PointNet are used
as backbones, respectively. ToThePoint achieves these accuracies
with only a fraction of training samples needed by other methods.

ing corruption robustness of 3D point cloud classification
approaches. It contains 2,468 point clouds from 40 classes,
15 corruption types, and 5 severity levels. It also provides a
detailed taxonomy of the constructed corruption types. To
be able to evaluate on close to real-life examples, we choose
LiDAR corruption and the severity 1. ScanObjectNN is a
more realistic and challenging 3D point cloud classification
dataset, which includes occluded objects taken from actual
indoor scans of real world scenes. It has 2,880 objects (2304
for training and 576 for testing) from 15 categories.

We first evaluate the performance of different approaches
on the downstream tasks by using DGCNN and PointNet as
the backbones. The results are presented in Tab. 2, where
the left side shows the average run-time of 30 epochs dur-
ing pre-training process of self-supervised learning as well
as the number of samples needed to well-train the back-
bone. The right side in Tab. 2 presents the 3D object classi-
fication accuracy on the ModelNet40C and ScanObjectNN
datasets. As can be seen, ToThePoint outperforms all the
other methods on the ScanObject dataset with both back-
bones. On the ModelNet40C dataset, ToThePoint provides
the best and second best performance when DGCNN and
PointNet are used as backbones, respectively. It should be
noted that ToThePoint achieves these accuracy levels with
only a fraction of training samples needed by other meth-
ods. For instance, CrossPoint, which provides slightly bet-
ter performance on the ModelNet40C dataset (with Point-
Net as the backbone) has average epoch run-time of 344.95
s and needs 43,700 point cloud samples. It also uses over 1
million 2D images to enrich representation ability. In con-
trast, our method needs only 260 point cloud samples with
an average epoch run-time of 1.3 s. It should be noted that
for ModelNet40C, we use the part with LiDAR corruption,
providing a more realistic test scenario. The high perfor-
mance of ToThePoint on this dataset demonstrates its abil-
ity to generalize well. In summary, our ToThePoint needs
fewer training samples for the pre-training stage compared
to CrossPoint, and this, in turn, significantly reduces the
pre-training time for our approach. At the same time, our
method (with fewer training samples and not requiring any

Method
Accuracy

ModeNet40 ScanObjectNN
3D-GAN [29] 81.85 37.01
Latent-GAN [1] 87.64 71.94
3D-PointCapsNet [37] 76.62 53.70
SO-Net [14] 87.03 /
PointNet + Jigsaw [20] 51.90 35.11
PointNet + OcCo [26] 86.67 68.84
PointNet + STRL [11] 88.05 73.67
PointNet + CrossPoint [2] 88.82 72.29
PointNet + ToThePoint (Ours) 85.62 74.70
DGCNN + Jigsaw [20] 55.71 36.31
DGCNN + OcCo [26] 88.61 78.14
DGCNN + STRL [11] 90.60 78.14
DGCNN + CrossPoint [2] 90.03 81.43
DGCNN + ToThePoint (Ours) 89.22 81.93

Table 3. SVM classification results on ModelNet40 and
ScanObjectNN. We perform the SVM evaluation method [1], to
compare ToThePoint and baselines with PointNet and DGCNN
used as backbones. On the more challenging ScanObjectNN
dataset, proposed ToThePoint achieves the best performance with
both backbones. On ModelNet40 dataset, ToThePoint provides the
3rd best performance after CrossPoint and STRL, which require a
lot more training samples.

other input with different modality) achieves comparable if
not better accuracy than CrossPoint.

In the next set of 3D object classification experiments,
we follow the same procedure as in [1, 11, 26, 30]. We
train a model in a self-supervised manner on the ShapeNet
dataset [3] and freeze it. Let’s denote this model by Msst.
Then, we train a linear Support Vector Machine (SVM) [6]
by using the training data of the ModelNet40 dataset.
1024 points are randomly sampled from each object in the
dataset. We use the samples in the training set of Model-
Net40 as input, feed them into Msst and use the embeddings
provided by Msst to train the SVM. Then, we evaluate the
SVM on the test data of ModelNet40. We do this with the
ScanObjectNN dataset as well. This SVM classifier is used
to evaluate the models’ representation ability of 3D point
cloud data. For the self-supervised methods we use Point-
Net [18] and DGCNN [28] as the backbone models. The re-
sults are summarized in Tab. 3. From the table, for ScanOb-
jectNN, which is obtained from LiDAR scanning of real-
world scenes, and thus, is more challenging, ToThePoint
provides the best performance with both backbone models.
For ModelNet40, ToThePoint provides the third best per-
formance after CrossPoint and STRL when PointNet and
DGCNN are used as the backbone respectively. However,
as shown in Tab. 2, compared to both CrossPoint and STRL,
ToThePoint requires significantly less number of training
samples, and training time.

(ii) Few-shot 3D object classification. Few-shot learn-
ing (FSL) aims to perform prediction on objects belonging
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Self-supervised Learning Downstream Task (Few-shot point cloud classification)

Method Num of
Samples

Running Time (s.) 5-way 10-way
DGCNN PointNet 10 shot 20 shot 10 shot 20 shot

3D-GAN [29] / / / 87.72 ± 5.44 91.98 ± 3.91 81.31 ± 4.75 84.87 ± 5.10
DGCNN

Rand / / / 81.13 ± 8.68 85.96 ± 6.60 72.86 ± 7.33 81.03 ± 5.12

DGCNN
cTree [21] 200 2.53 2.53 86.37 ± 6.29 89.60 ± 5.62 81.03 ± 4.14 83.98 ± 4.75

DGCNN
Jiasaw 9.8K 161.27 17.97 87.06 ± 5.93 88.60 ± 6.07 79.20 ± 4.41 83.21 ± 4.40

DGCNN
OcCo [26] 9.8K 2762.7 1307.73 88.46 ± 8.15 94.13 ± 3.73 85.21 ± 3.91 87.11 ± 3.93

DGCNN
CrossPoint [2]

43.7 k pnts &
1.05 M images 1115.86 344.95 91.12 ± 4.93 94.56 ± 3.23 86.29 ± 4.77 88.96 ± 4.39

DGCNN
ToThePoint 260 5.38 1.3 92.73 ± 4.79 95.10 ± 2.95 87.91 ± 4.29 91.06 ± 3.58

(a) Experiment results on ModelNet40

Self-supervised Learning Downstream Task (Few-shot point cloud classification)

Method Num of
Samples

Running Time (s.) 5-way 10-way
DGCNN PointNet 10 shot 20 shot 10 shot 20 shot

3D-GAN [29] / / / 68.20 ± 7.84 72.68 ± 9.76 53.93 ± 4.73 59.62 ± 4.66
DGCNN

Rand / / / 61.80 ± 7.60 64.10 ± 8.67 42.13 ± 3.96 49.11 ± 6.08

DGCNN
cTree [21] 200 2.53 2.53 50.76 ± 7.11 72.68 ± 9.76 37.46 ± 4.03 41.76 ± 4.72

DGCNN
Jiasaw 9.8K 161.27 17.97 67.16 ± 8.32 72.76 ± 9.39 50.75 ± 5.40 58.75 ± 5.33

DGCNN
OcCo [26] 9.8K 2762.7 1307.73 75.80 ± 5.48 82.06 ± 5.90 63.43 ± 4.60 71.48 ± 4.28

DGCNN
CrossPoint [2]

43.7 k pnts &
1.05 M images 1115.86 344.95 77.24 ±7.13 83.68 ±5.51 66.61 ±3.96 73.57±4.72

DGCNN
ToThePoint 260 5.38 1.3 78.13 ± 7.29 83.80 ± 6.07 66.71 ± 5.40 74.21 ± 4.95

(b) Experiment Results on ScanObjectNN

Table 4. Few-shot object classification results. We report mean
and standard deviation over 30 runs. The top results for each back-
bone are shown in bold. Our proposed ToThePoint needs only a
few samples in the few-shot learning task and improves the few-
shot accuracy in all the reported settings.

to classes, which were not seen during training, with only
a few labeled samples. We conduct N-way K-shot experi-
ments, wherein the model is tested on N classes and each
class contains K samples. In the FSL experiments, we use
ModelNet40 and ScanObjectNN for evaluation. Since there
is no standard split for FSL in either of these datases, for
a fair comparison with earlier approaches cTree [21] and
OcCo [26], we run K-way N-shot experiments 30 times, and
report the mean and standard deviation in Tab. 4. Similar to
above, the left side of the table shows the average run-time
of 30 epochs during pre-training process of self-supervised
learning as well as the number of samples needed to well-
train the backbone. As can be seen, our ToThePoint out-
performs all the prior methods in all the FSL settings, us-
ing DGCNN as backbones, on both datasets. It should be
noted that, in the few-shot object classification task, ToThe-
Point outperforms CrossPoint while CrossPoint has slightly
higher accuracy in the linear SVM evaluation presented in
Tab. 3. These results support that ToThePoint has better rep-
resentation and generalization ability considering that there
are fewer samples in the few-shot learning task. We at-
tribute this to the fact that the two-branch framework, incor-
porating recycling of discarded features, significantly en-
hances the ability of representing 3D point clouds, which
allows the pre-trained model to perform well in the few-shot
classification task.

(iii) 3D object part segmentation. We perform object
part segmentation evaluation on the widely used ShapeNet-

Self-supervised Learning Downstream Task (Part segmentation)

Method Num of
Samples

Running Time (s.) DGCNN PointNet
DGCNN PointNet Mean IoU OA Mean IoU OA

Rand / / / 85.16 94.43 84.48 93.82
Jigsaw [20] 9.8K 161.27 17.97 85.34 94.42 84.27 93.67
OcCo [26] 9.8K 2762.7 1307.73 85.32 94.5 84.56 93.77

CrossPoint [2]
43.7 k pnts &

1.05 M images 1115.86 344.95 85.38 94.44 84.77 93.97

ToThePoint 260 5.38 1.3 85.5 94.44 84.91 94.05

Table 5. Part segmentation results on ShapeNet-Part dataset.
Mean IoU and overall accuracy (OA) are reported. All self-
supervised models are initialized with pre-trained feature extrac-
tors.

Part dataset [35]. It contains 16,881 3D objects from 16
classes, with a total of 50 parts annotated. We first pre-train
the DGCNN and PointNet backbones, perform part seg-
mentation using our method on the ShapeNet-Part dataset,
and fine-tune the sequence segmentation in the ShapeNet-
Part dataset in an end-to-end manner. We present the
mean Intersection-over-Union (IoU) and the overall accu-
racy (OA) in Tab. 5. Mean IoU is obtained by averaging
the IoU for each part of an object before averaging the
values for each object class. Part segmentation utilizing
ToThePoint with pre-trained DGCNN backbone performs
0.34% better than the randomly initialized DGCNN back-
bone. This demonstrates that ToThePoint gives the feature
extractors a better weight initialization. Gains in overall
accuracy over the previous self-supervised learning frame-
works show that ToThePoint tends to capture fine-grained
part-level properties that are important for part segmenta-
tion by incorporating cross-branch and intra-branch losses
together.

4.3. Ablation Studies

In this section, we present the results of our ablation
studies investigating the effects of the individual loss terms
in Eq. (4) and their combinations on the performance.

Effect of the two-branch construction. Our approach
aims to pre-train a model effectively while requiring much
fewer 3D cloud point samples, as detailed in Sect. 3. We
hypothesize that two-branch construction and the interac-
tion between branches, via our cross-branch contrastive loss
Lcb−cl, allow to capture a better representation than using a
single branch. Moreover, with two-branch construction data
and feature variation increases both through different ways
of data augmentation and also through feature augmentation
via recycling. To verify this, we performed experiments to
compare the performances of two-branch and one-branch
networks by training the models on the ModelNet40 and
ScanObjectiveNN datasets. We used PointNet and DGCNN
as backbones, and performed linear SVM classifier-based
evaluation during training. The results in Fig. 4 show that
the whole approach with the two-branch construction per-
forms better than the one-branch construction. The im-
provement margin is much higher (8.27% with DGCNN
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(a) Accuracy on ModelNet40 (b) Accuracy on ScanObjectNN

Figure 4. The ablation study results on effects of individual
loss terms. Blue bar represents the whole approach using all 3
loss terms, light orange corresponds to using two branches but no
recycling and dark orange corresponds to using one branch with
recycling. Classification accuracies are presented on ModelNet40
and ScanObjectNN datasets.

and 7.06% with PointNet backbones) on the ScanObjectNN
dataset (obtained from actual indoor scans of real-world
scenes, containing occluded objects and points are more
unevenly distributed) compared to ModelNet40 (sampled
from CAD models and evenly distributed). These find-
ings support the benefit of two-branch construction and the
cross-branch contrastive loss Lcb−cl.

Effect of recycling. In this experiment, we compare the
performances with and without doing recycling (i.e. with
and without feature aggregation) on the ModelNet40 and
ScanObjectiveNN datasets. We used PointNet and DGCNN
as backbones, and performed linear SVM classifier-based
evaluation during training. Fig. 4 clearly demonstrates the
increased accuracy when recycling is employed, especially
on the ScanObjectNN dataset, and when PointNet is used as
the backbone. More specifically, on the ScanObject dataset,
the accuracy values with recycling are 74.70% and 81.93%
compared to 61.45% and 80.38% with no recycling when
PointNet and DGCNN are used as backbones, respectively.
These results show that recycled features contain additional
semantics that cannot be captured by the ‘maximum fea-
tures’, kept after max-pooling, alone. This could be utilized
to adjust the classified position on the hypersphere by mini-
mizing the difference between the ‘maximum features’ and
‘recycled features’.

Effect of loss. The results in Fig. 4 show that Lib−cl
1

and Lib−cl
2 have a greater impact on the feature extraction

capabilities of a simpler backbone (PointNet), and Lcb−cl

has more impact on a more complex backbone (DGCNN).
Analysis of Results. To see the effects of different con-

structions and loss terms, i.e. the results of the ablation
studies, side-by-side, we present the accuracy reductions
for each configuration in Tab. 6. As can be seen with only
1 branch, the accuracy would decline by 7.06% and 8.27%
on the ScanObjectNN dataset, when PointNet and DGCNN

Component 2-Branch, no recycling 1-branch with recycling
Backbone PointNet DGCNN PointNet DGCNN

ModelNet40 6.89% 0.37% 2.76% 0.41%
ScanObjectNN 13.25% 1.56% 7.06% 8.27%

Table 6. The accuracy reduction caused by different configu-
rations.

are used as backbones, respectively. The decline would be
2.76% and 0.41% on the ModelNet40 dataset, with Point-
Net and DGCNN backbones, respectively.

With two branches and no recycling, the accuracy
would decline by 13.25% and 1.56% on the ScanObjectNN
dataset, when PointNet and DGCNN are used as backbones,
respectively. The decline would be 6.89% and 0.37% on
the ModelNet40 dataset, with PointNet and DGCNN back-
bones, respectively.

It can be observed that, the two-branch construction
with recycling provides more performance increase on the
ScanObjectNN dataset than ModelNet40. Since ScanOb-
jectNN dataset includes point clouds with unevenly dis-
tributed points, feature extraction is more challenging, and
we can argue that recycling features could be more helpful.

As for the backbones, the improvement obtained is much
higher when PointNet (a simpler model with less feature
extraction ability) is used as the backbone, compared to
DGCNN (a more complicated model with better feature
extraction ability). In addition, with PointNet, recycling
approach is more beneficial than using two-branches with
no recycling. This two-branches with no recycling pro-
vide better performance than one-branch with recycling in
DGCNN. These findings show that the combination of the
two-branch construction and recycling mechanism has the
ability to enhance the performance of models with varying
complexity and feature extraction ability.

5. Conclusion
We have proposed ToThePoint as a novel and very effi-

cient contrastive learning framework. In addition to using
traditional data augmentation, ToThePoint performs fea-
ture augmentation by recycling point cloud features, which
would otherwise be discarded after max-pooling opera-
tion of a point cloud feature extraction network. ToThe-
Point is a fast, self-supervised pre-training architecture to
learn 3D point cloud representations. It has been eval-
uated on several benchmark datasets for various down-
stream tasks, such as 3D object classification, few-shot
classification and parts segmentation. Ablation studies have
been conducted based on different backbones. Results have
shown that ToThePoint achieves comparable if not better
performance than baselines while requiring significantly
fewer training samples and less training time. In future
work, we will investigate whether using more branches
or recycling more features can provide additional bene-
fit.
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