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Abstract

Physical world adversarial attack is a highly practical
and threatening attack, which fools real world deep learn-
ing systems by generating conspicuous and maliciously
crafted real world artifacts. In physical world attacks, eval-
uating naturalness is highly emphasized since human can
easily detect and remove unnatural attacks. However, cur-
rent studies evaluate naturalness in a case-by-case fash-
ion, which suffers from errors, bias and inconsistencies.
In this paper, we take the first step to benchmark and as-
sess visual naturalness of physical world attacks, taking
autonomous driving scenario as the first attempt. First,
to benchmark attack naturalness, we contribute the first
Physical Attack Naturalness (PAN) dataset with human rat-
ing and gaze. PAN verifies several insights for the first
time: naturalness is (disparately) affected by contextual
features (i.e., environmental and semantic variations) and
correlates with behavioral feature (i.e., gaze signal). Sec-
ond, to automatically assess attack naturalness that aligns
with human ratings, we further introduce Dual Prior Align-
ment (DPA) network, which aims to embed human knowl-
edge into model reasoning process. Specifically, DPA imi-
tates human reasoning in naturalness assessment by rating
prior alignment and mimics human gaze behavior by atten-
tive prior alignment. We hope our work fosters researches
to improve and automatically assess naturalness of physi-
cal world attacks. Our code and dataset can be found at
https://github.com/zhangsn-19/PAN.

1. Introduction
Extensive evidences have revealed the vulnerability of

deep neural networks (DNNs) towards adversarial attacks
[5, 17, 27, 37, 53, 72–74] in digital and physical worlds.
Different from digital world attacks which make pixelwise
perturbations, physical world adversarial attacks are es-
pecially dangerous, which fail DNNs by crafting specif-
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Figure 1. Overview of our work. To solve the problem in physical
world attack naturalness evaluation, we provide PAN dataset to
support this research. Based on PAN, we provide insights and
naturalness assessment methods of visual naturalness.

ically designed daily artifacts with adversarial capability
[2,13,31,48,51,59,70]. However, physical world attacks are
often conspicuous, allowing human to easily identify and
remove such attacks in real-world scenarios. To sidestep
such defense, in 48 physical world attacks we surveyedÀ, 20
papers (42%) emphasize their attack is natural and stealthy
to human [9, 11, 22, 31, 49, 55].

Despite the extensive attention on visual naturalness,
studies on natural attacks follow an inconsistent and case-
by-case evaluation. In 20 surveyed papers claimed to be
natural or stealthyÁ, (1) 11 papers perform no experiment to
validate their claim. (2) 11 papers claim their attack closely
imitates natural image, but it was unclear if arbitrary natural
image indicates naturalness. (3) 5 papers validate natural-
ness by human experiments, yet follow very different eval-
uation schemes and oftentimes neglect the gap between ex-
isting attacks and natural images. These problems raise our
question: how natural indeed are physical world attacks?

ÀSee this survey in supplementary materials.
ÁA work can have multiple limitations.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this paper, we take the first attempt to evaluate vi-
sual naturalness of physical world attacks in autonomous
driving [24], a field of attack with increasing attention
[11, 22, 55, 58, 70]. Since the factors and methods stud-
ied in our work are common in physical world attacks and
not limited to autonomous driving, our methods and find-
ings also have the potential to be applied to other scenarios.
The overview of our work is summarized in Fig. 1. To
benchmark attack naturalness, we contribute Physical At-
tack Naturalness (PAN) dataset, the first dataset to study
this problem. Specifically, PAN contains 2,688 images in
autonomous driving, with 5 widely used attacks, 2 benign
patterns (i.e., no attacks) for comparison, 5 types of envi-
ronmental variations and 2 types of diversity enhancement
(semantic and model diversity). Data was collected from
126 participants, containing their subjective ratings as an
indicator of naturalness, and their gaze signal for all images
as an indicator of the selective attention area of human when
they make naturalness ratings [66].

PAN provides a plethora of insights for the first time.
First, we find contextual features have significant effect
on naturalness, including semantic variations (using natu-
ral image to constrain attack) and environmental variations
(illumination, pitch/yaw angles, etc). Properly selecting en-
vironmental and semantic factors can improve naturalness
up to 34.73% and 8.09%, respectively. Second, we find
contextual features have disparate impact on naturalness of
different attacks, some attacks might look more natural un-
der certain variations, which can lead to biased subjective
evaluation even under identical settings. Third, we find nat-
uralness is related to behavioral feature (i.e., human gaze).
Specifically, we find attacks are considered less natural if
human gaze are more centralized and focus more on vehi-
cle (with statistical significance at p < .001). This correla-
tion suggests modelling and guiding human gaze can be a
feasible direction to improve attack naturalness.

Finally, since manually collecting naturalness ratings re-
quires human participation and can be laborious as well as
costly, based on PAN dataset, we propose Dual Prior Align-
ment (DPA), an objective naturalness assessment algorithm
that gives a cheap and fast naturalness estimate of physical
world attacks. DPA aims to improve attack result by em-
bedding human knowledge into the model. Specifically, to
align with human reasoning process, rating prior alignment
mimics the uncertainty and hidden desiderata when human
rates naturalness. To align with human attention, attentive
prior alignment corrects spurious correlations in models by
aligning model attention with human gaze. Extensive ex-
periments on PAN dataset and DPA method shows training
DPA on PAN dataset outperforms the best method trained
on other dataset by 64.03%; based on PAN dataset, DPA
improves 3.42% in standard assessment and 11.02% in gen-
eralization compared with the best baseline. We also make

early attempts to improve naturalness by DPA.
Our contributions can be summarized as follows:

• We take the first step to evaluate naturalness of physi-
cal world attacks, taking autonomous driving as a first
attempt. Our methods and findings have the potential
to be applied to other scenarios.

• We contribute PAN dataset, the first dataset that sup-
ports studying the naturalness of physical world at-
tacks via human rating and human gaze. PAN encour-
age subsequent research on enhancing and assessing
naturalness of physical world attacks.

• Based on PAN, we unveil insights of how contextual
and behavioral features affect attack naturalness.

• To automatically assess image naturalness, we propose
DPA method that embeds human behavior into model
reasoning, resulting in better result and generalization.

2. Related Works
Adversarial Attacks and Naturalness. Adversarial at-

tacks are elaborately designed attacks to fool DNNs. Based
on attack domains, adversarial attacks could be categorized
as digital world attacks and physical world attacks. Digital
world attacks [5, 17, 37, 53] add oftentimes imperceptible
pixelwise adversarial perturbations on images, its natural-
ness are well characterized. Laidlaw et al. [28] find LPIPS
[65] well correlates with naturalness. E-LPIPS [25] im-
proves robustness over adversarial attacks by adding trans-
formations to input image. To generate naturalness ad-
versarial attack, approaches has been made based on color
space [71], LPIPS [7] or frequency analysis [36].

However, digital world attack fail in physical world,
where diverse environmental variations exists. This moti-
vates physical world attacks, which create adversarial arti-
facts robust to real world uncertainty. Volumes and scenar-
ios of physical world attacks are growing rapidly. Widely
known studies includes adversarial glass [48], 3D adver-
sarial objects [2], road sign classification [13, 31, 51], ve-
hicle camouflage [11, 22, 55, 58, 70] and adversarial t-shirt
[21, 54, 59]. While physical world attacks are practical and
robust, its visual appearance are usually unnatural. Main-
stream works in naturalness enhancement hide attack pat-
terns in a suitable image that well fits with attack scenario
[9, 22, 31, 49, 55] or hide attack with natural styles [11].

Image Quality Assessment and Gaze. The aim of Im-
age Quality Assessment (IQA) is to automatically evalu-
ate the visual quality of an image. Base on training pro-
cess, IQA can be categorized as full-reference (FR) IQA,
reduced reference (RR) IQA and no-reference (NR) IQA
[62]. Specifically, FR-IQA [8, 25, 43, 63, 65] compare im-
age naturalness based on reference image and distorted
image; RR-IQA [3, 45, 46, 56] evaluate naturalness ex-
tracts partial information from reference image; NR-IQA
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Datasets Distortion Image Source Property

LIVE [50] Artificial Kodak Test Set Quality
TID2008 [42] Artificial Kodak Test Set Quality

CSIQ [29] Authentic Kodak Test Set Quality
LIVE-itW [16] Authentic Daily Scenes Quality
TID2013 [41] Artificial Kodak Test Set Quality

KADID-10k [30] Artificial Social Media Quality
KonIQ-10k [20] Authentic MultiMedia Quality

PAN (Ours) Adversarial Autonomous Driving Naturalness

Table 1. Comparisons between existing IQA datasets and PAN
dataset. PAN differs from existing IQA database from type of dis-
tortion, image source and the property of assessed images.

[4, 35, 39, 52, 60, 61, 69, 76] directly evaluate visual natural-
ness without reference. In our work, we consider physical
world attack as a novel type of distortion, and assess its nat-
uralness in the pipeline of NR-IQA. We do not use FR-IQA
since with noise in environment, an exact reference required
by FR-IQA is hard to get.

As an indicator of human attention, gaze was studied for
gaining better IQA accuracy. There has been works that
collect gaze fixations for existing IQA datasets [1,12,33,38,
44], yet their datasets contain at most 160 images with gaze.
In contrast, PAN contains all 2,688 images with accompa-
nied gaze. To leverage collected gaze, one line of works
use the collected gaze as a weighting metric [32,34,38,68],
while other line of works use human gaze as an additional
quality indicator [64, 67]. In our work, we embed human
gaze directly into IQA reasoning process.

3. Physical Attack Naturalness (PAN) Dataset

We define the task of evaluating naturalness of physi-
cal world adversarial attacks as a particular instance of No-
Reference image quality assessment (NR-IQA) À. As illus-
trated in Table. 1, PAN differs from existing IQA database
from three aspects: type of distortion, image source and the
property of image assessed. As for distortion type, IQA
databases mainly consider artificial (e.g., Gaussian noise,
JPEG compression) or authentic (e.g., motion blur) distor-
tions, while physical world attacks are maliciously gener-
ated patterns, unexplored in these two distortion types.

Thus, we contribute physical attack naturalness (PAN)
dataset, the first dataset to understand naturalness of phys-
ical world attacks in autonomous driving. While other at-
tack scenarios exists (e.g., road sign [13, 31, 51], T-shirt
[21,54,59], etc), the factors we study are commonly used in
physical world attacks, making it possible for our methods
and findings to be extended to other attack scenarios.

ÀSee more details of IQA in related work section.
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Figure 2. Distribution of data variations. (a) number of images
contained by each factor in PAN dataset. (b) distribution of diver-
sity factors, including semantic and model diversity.

3.1. Construction Process

3.1.1 Image Generation

Evaluated baselines. We generate all test images using
CARLA [10], an open source 3D virtual simulator based on
Unreal Engine 4, which was widely used for autonomous
driving [24] as well as physical world adversarial attacks
[55]. As a first-step study, we use CARLA to first disentan-
gle the impact of each variate on naturalness by controlling
views, urban layouts, illuminations, etcin simulator. We dis-
cuss how PAN can be applied in real world in Section. 5.4.
We evaluate naturalness on 7 distinct baselines, including 2
clean baselines: (1) clean, no perturbations exists. (2) paint-
ing, vehicle has benign car paintings, a common motiva-
tion for many physical world attacks [11, 22, 55]. We select
5 widely compared physical world attacks on autonomous
driving with diverse naturalness enhancement methods and
naturalness evaluation protocols, including CAMOU [70],
MeshAdv [58], AdvCam [11], UPC [22] and DAS [55]. We
carefully reproduce attack results of these baselines [55],
with detailed results in supplementary materials.

Variations. We simulate images in PAN with possible
real world variations. For environmental variations, follow-
ing prior arts [55,70], we consider 2 backgrounds, 2 illumi-
nance, 8 pitch angles, 4 yaw angles and 3 distances for each
baselines, resulting in 7 (baselines)×2×2×8×4×3 = 2,688
images, with details of each enumerated factors in Fig. 2a.
For diversity variations, we improve semantic diversity by
constraining attack patterns to 10 natural images with dif-
ferent semantic meaning. Additionally, we improve model
diversity by generating attack patterns on 7 classification
models and 3 object detection models. Database distribu-
tions for semantic and model diversity are shown in Fig. 2b.
The distribution is not balanced since semantic or model di-
versity is not supported on certain evaluated methods. See
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Figure 4. Illustration of data contained in PAN dataset. We provide
raw image, corresponding human gaze and MOS score.

more details in supplementary materials. Examples of ap-
plying each variations to PAN are given in Fig. 3.

Data properties. For all images in PAN, we release
their subjective naturalness ratings by Mean Opinion Score
(MOS), calculated by averaging all human ratings [16],
with rating distribution of each images given correspond-
ingly. We also release the gaze saliency map S, calculated
by applying a Gaussian mask for all raw human fixations,
following [34]. Exemplar images, corresponding human
gaze and MOS score are illustrated in Fig. 4.
3.1.2 Human Assessment

Participants and apparatus. We recruit 126 partici-
pants (57 female, 69 male, age=22.2±3.3) from campus, all
with normal (corrected) eyesight. Each participant is com-
pensated $15. Images are displayed on a 16-inch screen
with a resolution of 2560*1600 and an approximate view-
ing distance about 70cm. A Tobii Eye Tracker 5 (equipped
in front of the screen) is adapted for eye gaze tracking. It
records eye gaze points at about 60 GP/sec. A gaze calibra-
tion process is done before the experimentÀ.

Experiment process. We adopt a single stimulus con-
tinuous procedure [40] and ask participants to evaluate the
naturalness of image. For each image, participants first view
it for 2.5 seconds, with eye tracker activated. The time is
determined by our pilot study to ensure eye gaze coverage
and prevent fatigue. Next, participants rate the image by a
5-point Absolute Category Rating (ACR) scale [20]. Each
participants are asked to evaluate 320 images which are di-
vided into 8 sessions. A warmup session is given at the
beginning, with a 20 seconds’ rest between two sessions.
Participants take no more than 35 minutes to finish all ex-
periments. We follow quality control process of [20], en-
abling each image to contain ratings and gaze of at least 10

ÀPAN does not contain Personally Identifiable Information (PII). Ad-
ditional ethical concerns are discussed in supplementary materials.

Clean Painting CAMOUMeshAdv UPC AdvCam DAS
Evaluated Attacks

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
O

S 
Sc

or
e

(a) Naturalness of existing attacks

bird smile dog pikachu cat
1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
O

S 
Sc

or
e

Semantic Variations

(b) Impact of semantic factors

Figure 5. Visualization of factors that affect naturalness. Violin
plot indicates MOS score distribution across all images.

subjects. Due to the space limit, we defer more details of
image generation, human assessment and quality control of
PAN dataset to supplementary materials.

3.2. Insights

We first provide an overview of PAN dataset, catego-
rized by evaluated baselines. As shown in Fig. 5a, even for
the most natural attack (MeshAdv), its MOS score is still
much lower than clean baseline (2.77 vs 3.93). This sug-
gests that, at least in autonomous driving scenario and using
CARLA simulation environment, while AdvCAM and DAS
claim their attacks to be more natural than others, they still
remain far less natural than clean images. But what affects
naturalness? How can we improve naturalness? Based on
PAN, we find naturalness are disparately affected by contex-
tual features, and are related to behavioral factors. We also
offer pragmatic advice on improving naturalness below. We
defer tradeoff between attack capability and naturalness;
the impact of environmental factors and diversity factors to
supplementary materials. Results and analysis below are
reported using proper statistical tests [57] (e.g., one-way
ANOVA) and post-hoc pairwise comparisons (e.g., Tukey’s
Honest Significant Difference (HSD) test.) to analyze our
PAN dataset. We report significant findings at p < .05.

Insight ¶: Naturalness is affected by contextual fea-
tures, including semantic diversity and environmental vari-
ations; Naturalness can be improved by selecting proper
contextual features.

For diversity, as shown in Fig. 5b, we find semantic fac-
tors, i.e., natural image used to constraining attacks (i.e.,
method used by UPC, AdvCAM and DAS) have signifi-
cant effect on naturalness (p < .001, One-way ANOVA)Á.
Based on this observation, we find replacing the natural
image used by UPC (bird), AdvCam (pikachu) and DAS
(smile)Â by the most natural image (cat) improves their nat-
uralness by 8.09%, 6.01% and 5.04%, respectively. We hy-
pothesis the semantic relations between vehicle and natural
image affects naturalness, which was verified by an addi-
tional user study (p < .001, Mann Whitney Test), details

ÁWe do not find significant effect of model diversity on naturalness
(p = .717, One-way ANOVA).

ÂOriginal images are not provided by UPC and AdvCam, so we re-
place images with similar appearance and semantics on internet.
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deferred in supplementary materials.
Besides, almost all environmental factors, (i.e., illumi-

nation, pitch/yaw angle, distance), except background, has
significant effect on naturalness (p < .001 for all factors
except p = .588 for background, One-way ANOVA). Post-
hoc analysis shows that nearly all levels are significantly
different (p < .001, post-hoc Tukey HSD test, variance uni-
formity satisfied with p = .17). Specifically, higher natural-
ness can be achieved at farther distance, pitch angle 0◦, yaw
angle 90◦ and higher luminance. By simply changing envi-
ronment condition, we find an improvement up to 34.73%
on naturalness. This reminds defenders physical world at-
tacks can be more stealthy in certain occasions.

Insight ·: Contextual features have disparate impact on
naturalness of different attacks, which can lead to biased
evaluation even under identical settings.

Additionally, we find contextual features do not affect
attacks equally (i.e., some attacks look more natural under
certain contextual features). This may lead to biased natu-
ralness evaluation, even under same contextual features. For
example, while UPC is overall more natural than AdvCam
in PAN dataset (p < .001, independent samples t-test), at
certain conditions (e.g., yaw angle 135◦, 180◦, or distance
of 10m), AdvCam can be more natural than UPC (p < .001,
independent samples t-test). This bias is not reported in any
previous work of physical world attack.

While this inconsistency can explained by the interaction
of perceptual characteristics of attacks and contextual fea-
tures, the bias nonetheless pose a threat to subjective natu-
ralness evaluation. To solve this problem, we suggest subse-
quent research to report their attack naturalness on multiple
contextual features. In supplementary materials, we also
suggest a naturalness evaluation setting which is consistent
with result in PAN and requires minimal number of testing.

Insight ¸: Naturalness is correlated with behavioral
feature (i.e., human gaze). Manipulation of human gaze can
be a feasible direction to improve naturalness.

Besides contextual features, we find behavioral feature
(i.e., human gaze) correlates with naturalness: attacks are
considered less natural if gaze are more centralized (p <
.05, one-way ANOVA), or focus more on vehicle (p < .001,
one-way ANOVA). Specifically, centralize measures how
much human concentrates, calculated as the standard devi-
ation of gaze saliency map, while focused measures how
much human pay attention to vehicle, calculated by sum of
dot product between gaze saliency map and vehicle area.

This correlation suggests a feasible direction to improve
naturalness: optimizing attack patterns that guides human
gaze to be less centralized, or focus less on vehicle. This
is possible via the prior work of Gatys et al. [15], which
tries to guide human gaze by optimized visual patterns. Ad-
ditionally, we note that our finding shares similar motiva-
tion with DAS, which aims to improve naturalness by evad-

ing human attention. However, we do not find DAS trig-
gers distinctive gaze behavior comparing with other attacks
(p = 0.967 on average, Post-hoc Tukey HSD test).

4. Assess Naturalness by Dual Prior Alignment
While the procedures in PAN offers a feasible way to as-

sess naturalness, collecting human ratings can be costly and
laborious. In this section, we propose Dual Prior Align-
ment (DPA), a quality assessment algorithm to automati-
cally evaluate the naturalness of physical world attacks.

4.1. Motivation

The goal of IQA is to design algorithms with objective
naturalness predictions well correlated with human subjec-
tive ratings [35, 52, 60, 61, 76]. Thus, it is reasonable to
assume that better modelling and imitating human behav-
ior leads to better IQA result. With rich human behaviors
offered in PAN dataset, we propose Dual Prior Alignment
(DPA) network that aligns human behavior with model de-
cisions. As shown in Fig. 6, DPA network consists of two
modules, i.e., rating prior alignment module and attentive
prior alignment module, which enables DPA to align with
human reasoning process and human attention process.

To align model behavior with human reasoning process,
participants reveal their decisions contain uncertainty and
are based on vague cognitive criterion. To reflect uncer-
tainty in human ratings, we remodel IQA as a classification
problem instead of regression, and align model output with
the distribution of human ratings. To capture hidden crite-
rion of human, we use a prototype vector which learns the
hidden knowledge of each level during training. To align
model attention with human attention, as shown in Fig. 7,
we find existing methods cheat by exploiting spurious corre-
lations between naturalness ratings and irrelevant areas. In-
tuitively, such biased model have weak generalization capa-
bility on unseen test images. To mitigate such bias, we de-
sign an IQA-specific visual grounding criterion that aligns
model attention with human gaze.

4.2. Rating Prior Alignment

To understand how human reasons naturalness, we give
an interview to participants after experiment. Participant
21 (P21) and P47 noted their ratings contains uncertainty
when they find both rating levels are appropriate. P6, P40
and P47 also noted that they developed a vague criterion, or
believes, of each rating levels. Based on such criterion, they
select ratings that fits best with current image.

Based on participants’ feedbacks, we explicitly mimic
the decision process of human. To represent the hidden
judgement rules of human, we initiate a prototype vector
z` for each rating levels ` ∈ {1, 2, 3, 4, 5}, with values up-
dated during training. For image x and backbone DNN fθ
parameterized by θ, we assume the representations fθ(x)
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captures the relevant information of x for naturalness as-
sessment. To represent decision uncertainty of human and
avoid overfitting to a continuous value, we model NR-IQA
as a classification problem instead of regression. Specifi-
cally, the likelihood p` that image x belongs to each levels is
calculated by the cosine similarity between image represen-
tations fθ(x) and the prototype of each levels z`, followed
by a softmax function:

p`(x, z) =
exp(fθ(x) · z`/||fθ(x)|| · ||z`||)∑L
j=1 exp(fθ(x) · zj/||fθ(x)|| · ||zj ||

, (1)

where L is level of ratings, set to 5 in our experiment.
With likelihood p` calculated, we propose rating prior

alignment (RPA) loss LR to address human rating uncer-
tainty by aligning p` with human rating distributions r`:

LR = KL(p(x, z)||r) =
L∑
`=1

p`(x, z) log

(
p`(x, z)

r`

)
,

(2)
where KL is the Kullback-Leibler divergence.

4.3. Attentive Prior Alignment

While training models to fit subjective MOS score y can
yield low error, as shown in Fig. 7, models can cheat by
exploiting spurious correlations between background minu-
tiae and predictions. To mitigate this bias, we leverage gaze
signal as a guidance to correct attention of IQA model such
that model align its intrinsic attention with human gaze.

To capture model attention, visual attention techniques
[6, 47, 75] explain and visualize the attention of DNNs by
back-propagating to neurons of the last convolutional layer:

A(x, ŷ) = 1

Z
ReLU

∑
i,j,k

∂ŷ

∂Akij
Akij

 , (3)

where A is the attention map, Z is a normalizing constant,
Akij denotes the value in position (i, j) of feature map k.

However, Eqn.3 is biased to emphasize higher ratings:

∂ŷ

∂Akij
=

L∑
`=1

∂ŷ

∂p`
· ∂p`
∂Akij

=
L∑
`=1

s` ·
∂p`
∂Akij

. (4)

As a result, naively applying Grad-CAM bias the backward
gradient ∂p`/∂Akij by s`, the score of current rating level.
To correct this bias, we modify the backpropagation step
of Grad-CAM as a weighted average of the gradients back-
propagated from rating likelihood ∂p`/∂Akij , using p`:

A(x, p) = 1

Z
ReLU

∑
i,j,k

∑
`

p` ·
∂p`
∂Akij

Akij

 . (5)

Finally, we propose attentive prior alignment loss LA to
align model attention A with human gaze S:

LA = ||A(x, p)− S||2F . (6)

4.4. Overall Training

We have discussed how to align human rating prior by
LR and human attentive prior by LA. To get the final
IQA result, the predicted MOS score ŷ was calculated by
the expectations over scores for each levels s`, i.e., ŷ =∑L
`=1 p`(x, z)s`. We also add a standard mean square error

loss LS = 1
N

∑N
n=1 ||ŷn − yn||22 between ŷn and ground

truth subjective MOS ratings yn, where n is the image in-
dex in a minibatch of size N. Overall, DPA learns to assess
image naturalness by jointly optimizing LR, LA and LS :

min
θ,z
LS + λLR + γLA, (7)

where λ and γ are hyperparameters to control the strength
of LR and LA, respectively. θ is the parameters of the back-
bone network, z = {z`} are the set of prototypes for each
rating levels. Overall training algorithm of DPA can be find
in supplementary materials.
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Category Method SROCC (↑) PLCC (↑) SC (↑)

FR-IQA

PSNR 0.3560 0.3685 -
SSIM 0.4573 0.3968 -
LPIPS 0.1056 0.1395 0.0583

E-LPIPS 0.3990 0.3694 0.0727

Others GIQA(KNN) 0.1382 0.1133 -
GIQA(GMM) 0.1537 0.1392 -

NR-IQA

BRISQUE 0.1029 0.0494 -
ResNet50 0.1149 0.1682 0.1692
WaDIQaM -0.0704 -0.1078 0.1821
RankIQA 0.1809 0.1992 0.0095
DBCNN 0.1409 0.1167 0.0876

HyperIQA 0.1639 0.1285 0.2188
Paq2Piq 0.0320 0.0504 0.2791

MANIQA 0.2741 0.2717 0.0810
NR-IQA DPA+PAN (Ours) 0.7501 0.7727 0.7178

Table 2. Validating necessity of PAN dataset. All baselines are
trained without using PAN, with DPA trained on PAN.

5. Experiments

In this section, we use experiments to verify: (1) do we
need PAN dataset? (2) can DPA better assess naturalness?
(3) can DPA generalize in real world scenarios?

5.1. Experimental Settings

5.1.1 Datasets and Baselines

We conduct experiments on our proposed PAN dataset. To
evaluate the effectiveness of image quality assessment, we
compare with 13 state-of-the-art methods, including four
widely used FR-IQA methods: PSNR, SSIM, LPIPS [65]
and E-LPIPS [25]; one IQA method for GAN: GIQA [18];
eight NR-IQA methods: including vanilla ResNet50 [19],
BRISQUE [39], WaDIQaM [4], RankIQA [35], DBCNN
[69], HyperIQA [52], Paq2Piq [61] and MANIQA [60].

5.1.2 Implementation Details and Evaluation Metrics

Two evaluation metrics are selected to compare the perfor-
mance of different IQA algorithms: Spearman Rank Or-
der Correlation Coefficient (SROCC) and Pearson’s Linear
correlation coefficient (PLCC). We also measure attention
alignment by cosine similarity SC between model attention
and human gaze. Results are averaged for all baselines (dis-
tortions). For implementations, we use a ResNet50 back-
bone for our DPA method, with hyperparameters λ and γ
empirically set to 8.0 and 3.0, respectively. For fair com-
parison, we train all methods for 20 epochs using an Adam
optimizer [26] with learning rate 3×10−5. See additional
experiment settings in supplementary materials.

5.2. Do We Need PAN Dataset?

In this section, we answer the following question: can
existing IQA database solve the problem of naturalness as-
sessment, so PAN is not needed? Specifically, we test the

Category Method SROCC (↑) PLCC (↑) SC (↑)

FR-IQA

PSNR 0.3560 0.3685 -
SSIM 0.4573 0.3968 -
LPIPS 0.0994 0.1114 0.0089

E-LPIPS 0.4082 0.4064 0.0136

Others GIQA(KNN) 0.1428 0.1132 -
GIQA(GMM) 0.0838 -0.0366 -

NR-IQA

BRISQUE 0.4753 0.3777 -
ResNet50 0.6916 0.7453 0.2066
WaDIQaM 0.6998 0.6841 0.2130
RankIQA 0.7227 0.7564 0.1134
DBCNN 0.6800 0.6621 0.3947

HyperIQA 0.7253 0.7265 0.1955
Paq2Piq 0.6044 0.6089 0.2003

MANIQA 0.7129 0.7331 0.0861
NR-IQA DPA (Ours) 0.7501 0.7727 0.7178

Table 3. Validating the effectiveness of DPA using PAN dataset.
DPA outperform other baselines by aligning with human rating
prior and human attention prior.

result of existing methods on PAN with its released mod-
els, compared with training our DPA directly on PAN. For
methods without released model, we train them on TID2013
dataset [41] using their default conditions. From results in
Table. 2, we can draw several conclusions as follows:

(1) Collecting our PAN dataset is vital for assessing natu-
ralness of physical world attacks. Our DPA+PAN achieves
0.2928 (+64.03%) higher SROCC and 0.3759 (+94.73%)
higher PLCC than SSIM, the best existing method. This
clearly shows existing methods and datasets are insufficient
to evaluate the naturalness of physical world attacks.

(2) Since existing methods are ineffective, we do not rec-
ommend using SSIM and LPIPS as naturalness indicators
in physical world, as opposed to digital world [7,28]. How-
ever, if our DPA is not applicable, SSIM provides a best
estimate (0.0583 higher in SROCC and 0.0274 higher in
PLCC than second best baseline E-LPIPS).

5.3. Can DPA Better Assess Naturalness?

Next, based on PAN dataset, we ask the question: with
human priors incorporated, can DPA better assess natural-
ness of physical world attacks? For non-learning methods
PSNR and SSIM, we evaluate them on all PAN dataset and
the result is thus identical to Table. 2. From results listed in
Table. 3, we can draw several conclusions as follows:

(1) Aligning the behavior of DNNs with human im-
proves naturalness assessment. Trained on PAN, our
DPA outperform the best baseline by 0.0248 (+3.42%) in
SROCC and 0.0163 (+2.15%) in PLCC.

(2) Using SC as a measure of alignment between model
and human attention, under attentive prior alignment loss,
DPA gains 81.86% higher alignment compared with the
best baselines, which provides significantly better align-
ment between model attention and human gaze. We also
illustrate model attentions and corresponding human gaze
in Fig. 7: while almost all baselines rely on spurious areas
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Figure 7. Grad-CAM visualization of DPA and baselines.

LPIPS E-LPIPS ResNet50 WaDIQaM RankIQA DBCNN HyperIQA Paq2Piq MANIQA DPA(ours) Gaze

Figure 8. Grad-CAM visualization of real world images.

for prediction, DPA base its decision on correct areas.
(3) The ineffectiveness of FR-IQA and GIQA methods

could be explained by adversarial feature [14,23]: adversar-
ial attacks are effective because they are not just noise, but
meaningful features from other domains for DNNs. While
FR-IQA and GIQA methods keep backbone parameters un-
changed, the extracted features might be polluted by adver-
sarial features, thus unable to give reliable results.

5.4. Can DPA Generalize?

Finally, we ask the question: can DPA generalize to un-
seen real world images? To verify this, we manually col-
lected 504 real world images, called PAN-phys with 8 pitch
angles, 3 yaw angles and 3 backgrounds. See details of
this dataset in supplementary materials. Next, we collect
human rating and gaze signal using the same approach as
PAN dataset. Finally, we fix the parameters of all methods
and evaluate their result on PAN-phys. From results listed
in Table. 4, we can draw several conclusions as follows:

(1) Through aligning model behaviors with human, DPA
also achieves stronger generalization capability when eval-
uating images drawn from unseen real world scenario,
outperforming the best baseline by 0.0332 (+8.40%) in
SROCC and 0.0236 (+5.34%) in PLCC.

(2) Our DPA is able to align its attention with human at-
tention even under unseen images, achieving 12.73% higher
SC than best performing baseline. As shown in Fig. 8, the
attention area of DPA keeps aligned with human gaze dur-
ing generalization, while most baselines yields predictions
on spurious correlations.

(3) The domain gap between real world and simula-
tion environment harms the naturalness assessment accu-
racy, calling an urgent need to further improve naturalness
assessment methods via domain generalization.

5.5. Ablation Studies

In this section, we conduct ablation studies to verify the
effect of different loss terms, namely rating prior alignment
loss LR and attentive prior alignment loss LA. We argue
that LR and LA jointly improves alignment with human rat-

Category Method SROCC (↑) PLCC (↑) SC (↑)

FR-IQA

PSNR 0.3163 0.3009 -
SSIM 0.3594 0.3558 -
LPIPS -0.2659 -0.3540 0.0163

E-LPIPS -0.3778 -0.3589 0.1658

Others GIQA(KNN) 0.0075 0.0275 -
GIQA(GMM) 0.0747 0.0809 -

NR-IQA

BRISQUE 0.0261 0.0245 -
ResNet50 0.2874 0.3282 0.1935
WaDIQaM -0.1362 -0.1375 0.0329
RankIQA -0.1313 -0.1368 0.2942
DBCNN 0.3907 0.4144 0.3028

HyperIQA 0.3951 0.4416 0.3645
Paq2Piq 0.3752 0.3905 0.2244

MANIQA 0.3673 0.3839 0.2502
NR-IQA DPA (Ours) 0.4283 0.4652 0.4109

Table 4. Generalization results of DPA and other baselines on real
world image dataset, PAN-phys.

Method SROCC (↑) PLCC (↑) SC (↑)
ResNet50 0.6916 0.7453 0.2066

LA 0.7121 0.7586 0.6107
LR 0.7154 0.7673 0.2380

LR + LA 0.7501 0.7727 0.7178

Table 5. Ablation study for different loss terms when evaluating
human ratings. All terms in DPA achieved their desired goal.

ings, while LA also improves alignment with human gaze.
Shown in Table. 5, LA and LR contributes to SROCC and
PLCC individually, while combining them shows further
improvement. For attention alignment SC , while LA signif-
icantly improves alignment with gaze, we surprisingly find
aligning human rating prior by LR also partly enhance SC .
Additionally, the effect of LR on SC is enhanced with the
presence of LA (+0.0314 w/o LA, +0.1071 w/ LA). We
hypothesize that aligning human behavior from one aspect
might have an synergy effect on another aspect. We left
detailed study of this phenomenon for future work.

6. Conclusion

In this paper, we study to evaluate naturalness of phys-
ical world adversarial attacks. Specifically, we contribute
PAN, the first dataset to benchmark and evaluate natural-
ness of physical world attacks. Besides, we propose DPA,
an automatic naturalness assessment algorithm which offers
higher alignment with human ratings and better generaliza-
tion. Our work fertilizes community by (1) contributing
PAN, which enables research on evaluating naturalness of
physical world attacks by human rating and high-quality,
large scale gaze signals; (2) encouraging new research on
natural physical world attacks via analysis of contextual and
behavioral features; (3) encouraging new research to design
better IQA algorithms for physical world attacks.
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