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Abstract
Although deep neural networks (DNNs) have shown

great successes in computer vision tasks, they are vulner-
able to perturbations on inputs, and there exists a trade-off
between the natural accuracy and robustness to such per-
turbations, which is mainly caused by the existence of robust
non-predictive features and non-robust predictive features.
Recent empirical analyses find Vision Transformers (ViTs)
are inherently robust to various kinds of perturbations, but
the aforementioned trade-off still exists for them. In this
work, we propose Trade-off between Robustness and Accu-
racy of Vision Transformers (TORA-ViTs), which aims to
efficiently transfer ViT models pretrained on natural tasks
for both accuracy and robustness. TORA-ViTs consist of
two major components, including a pair of accuracy and
robustness adapters to extract predictive and robust fea-
tures, respectively, and a gated fusion module to adjust the
trade-off. The gated fusion module takes outputs of a pre-
trained ViT block as queries and outputs of our adapters
as keys and values, and tokens from different adapters at
different spatial locations are compared with each other to
generate attention scores for a balanced mixing of predic-
tive and robust features. Experiments on ImageNet with
various robust benchmarks show that our TORA-ViTs can
efficiently improve the robustness of naturally pretrained
ViTs while maintaining competitive natural accuracy. Our
most balanced setting (TORA-ViTs with λ = 0.5) can main-
tain 83.7% accuracy on clean ImageNet and reach 54.7%
and 38.0% accuracy under FGSM and PGD white-box at-
tacks, respectively. In terms of various ImageNet variants,
it can reach 39.2% and 56.3% accuracy on ImageNet-A and
ImageNet-R and reach 34.4% mCE on ImageNet-C.

1. Introduction

In the past few decades, deep neural networks (DNNs)
have been well developed to achieve or even surpass the per-
formance of humans on computer vision tasks [13,23,24,54,
55]. However, a fatal drawback of them is that they are vul-
nerable to perturbations on inputs [8, 14, 15, 17, 32], which
will cause dramatically drop in their accuracy. Furthermore,
recent studies demonstrate that there exists a trade-off be-

tween natural accuracy and adversarial robustness [48, 57],
which means improving the robustness of a network typi-
cally leads to a decrease in accuracy on natural samples.

A popular theory explains this trade-off by the existence
of two kinds of different features [22,48,53]. The first kind
of feature is moderately correlated to the task and robust
to attacks, while the second kind of feature is weakly cor-
related to the task and therefore non-robust. It is unfortu-
nate that those moderately correlated and robust features
only have limited contributions to accurate predictions (ro-
bust and non-predictive), and further improving the accu-
racy heavily relies on those weakly related and non-robust
features (predictive and non-robust) [48]. Therefore, this
trade-off is usually considered an inherent characteristic of
DNNs. Although there are many efforts that aim to control
or improve this trade-off [26,40,41,50,57], it is still hard to
efficiently and effectively improve it on large-scale datasets
such as ImageNet [3].

Recently, a new family of vision models, namely Vision
Transformers (ViTs) [6,44,47], has outperformed CNNs on
various kinds of tasks. There are many subsequent works
that discuss diverse variants of ViTs to improve their per-
formance. TNT [11] divides patches in ViTs into smaller
sub-patches and applies a transformer-in-transformer archi-
tecture with an additional inner transformer. T2T-ViT [56]
introduces local feature aggregation to boost local informa-
tion. Swin [29] performs local attention within various win-
dows, and a shifted window partitioning approach is intro-
duced for cross-window connections.

However, the aforementioned works mainly focus on the
natural accuracy on clean data. Although empirical anal-
yses have demonstrated that ViTs demonstrates robustness
against various kinds of perturbations [1, 33, 37], there are
only a limited number of works [9, 19, 34, 60] focus on im-
proving the robustness. Besides, how to boost a naturally
pretrained ViT for robustness has been ignored by exist-
ing methods. A pretrained ViT has high utility because it
can extract predictive features to ensure high accuracy on
downstream tasks. Despite the high utility, it also has low
reliability, because its non-robust features are vulnerable to
perturbations. Therefore, it is worth studying how to obtain
a useful and reliable ViT.
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Figure 1. The overall architecture of our TORA-ViTs. The TORA-
ViTs consists of two major components, including a pair of an
accuracy adapter ψA,l to extract predictive features and a robust
adapter ψR,l to extract robust features, and a gated fusion module
to combine those features as inputs for next ViT block. TORA-
ViTs is inserted after the MLP layer in each ViT block.

Furthermore, fine-tuning of ViTs is very computationally
intensive [6]. Considering the high overheads of adversarial
training [8, 32, 57], it is even more expensive to train both
accurate and robust ViT models on a large-scale dataset. To
reduce the intractable cost of training and fine-tuning large-
scale Transformer models on various tasks, adapter [20]
proposes to add and fine-tune only a few parameters per
task in the field of NLP. AdapterFusion [38] further sup-
ports multi-task transfer learning by using multiple adapters
in parallel and combining their outputs with an attention-
based gated fusion module.

In this work, we propose Trade-off between Robustness
and Accuracy of Vision Transformers (TORA-ViTs) for
utility and reliability at the same time. TORA-ViTs trans-
fer naturally pretrained models with low computational de-
mands to improve their adversarial robustness while main-
taining competitive natural accuracy. Based on the theory
of robust non-predictive and non-robust predictive features,
we add two kinds of adapter modules after the MLP layer of
an existing ViT block, including an accuracy one ψA,l and
a robust one ψR,l to extract predictive and robust features,
respectively. Then, a gated fusion module (ϕl) is intro-
duced to combine the extracted features in a trade-off-aware
manner utilizing the attention mechanism. In the gated fu-
sion module, features extracted by pretrained ViT blocks are
used as queries, and features extracted by the newly added
accuracy and robustness adapters are used as keys and val-
ues. Then, the softmax function is applied adapter-wise as
a gate to combine the two kinds of features. The overall
architecture of our TORA-ViTs is shown in Fig. 1.

The TORA-ViTs are optimized in a two-phase manner.

In the first phase, the accuracy and robustness adapters are
optimized alternately along with the gated fusion module.
When each of them reaches a proper performance, they
are frozen, and the gated fusion module is optimized with
a joint objective of accuracy and robustness with a trade-
off ratio λ. Experiments on ImageNet with various ro-
bust benchmarks, including white-box adversarial attacks
(FGSM and PGD), natural adversarial example (ImageNet-
A), out-of-distribution data (ImageNet-R), and common
corruptions (ImageNet-C), show that our TORA-ViTs can
efficiently improve the robustness of naturally pretrained
ViTs. Meanwhile, the natural accuracy is still competi-
tive with or even better than the models pursuing accu-
racy. Our most balanced setting (TORA-ViTs with λ =
0.5) can maintain 83.7% accuracy on clean ImageNet and
reach 54.7% and 38.0% accuracy under FGSM and PGD
white-box attacks, respectively. In terms of various Im-
ageNet variants, it can reach 39.2% and 56.3% accuracy
on ImageNet-A and ImageNet-R and reach 34.4% mCE on
ImageNet-C.

2. Related Works

2.1. ViTs and Adapter

Inspired by the success of multi-head self-attention [49]
(MSA) in natural language processing (NLP), there are
many attempts to apply this family of models to computer
vision tasks. Image Transformer [36] proposes to use Trans-
formers for image generation tasks in a sequence modeling
formulation. To modify Transformers for image classifica-
tion, Hu et al. [21] and Zhao et al. [59] design local multi-
head dot-product self-attention blocks. Ramachandran et
al. [42] further expands self-attention for both classifica-
tion and object detection. Vision Transformers (ViTs) [6]
propose a novel embedding method, which splits images
as sequences of non-overlapping patches. Although ViTs
reach state-of-the-art accuracy, they demand costly pretrain-
ing on large-scale datasets, such as ImageNet-21K [3] and
JFT-300M [45]. DeiT [47] proposes a method to efficiently
distill ViTs via an additional distillation token, which en-
sures that the student learns from the teacher through at-
tention. Naseer et al. [35] modify DeiT and introduce a
shape token to encode shape-information. MAE [12] pro-
poses a masked autoencoder (MAE) built with ViTs for self-
supervised learning, which masks random patches of input
images.

To reduce the training and fine-tuning cost of Trans-
formers, in the field of NLP, adapter [20] proposes to add
and fine-tune only a few trainable parameters to pretrained
BERT Transformers [4]. This enables efficient transfer
learning among a large number of diverse text classifica-
tion tasks. To support multi-task learning (MTL) in NLP,
AdapterFusion [38] uses multiple adapters in parallel in a

7559



two-stage manner, which consists of a knowledge extraction
stage and a knowledge composition stage. In the knowledge
composition stage, the attention mechanism is used to com-
bine the set of adapters.

2.2. Robust Vision Model

Several studies investigate the robustness of convolu-
tional neural networks (CNNs), with adversarial training
being a popular method to enhance resistance to adversar-
ial attacks. The Fast Gradient Sign Method (FGSM) [8]
generates adversarial perturbations using one-step gradient
ascent. Madry et al. [32] proposes a stronger multi-step
variant using projected gradient descent (PGD). However,
TRADES [48] reveals a trade-off between natural accuracy
and adversarial robustness. The authors analyze this trade-
off and propose a boundary error to guide defense design.
Kim et al. [22] propose to distill robust and non-robust fea-
tures in intermediate feature space by employing Informa-
tion Bottleneck. Yang et al. [53] propose a disentanglement
network for robust and non-robust following the framework
of the autoencoder.

More recently, perturbations beyond adversarial attacks
are gaining increasing interests. ImageNet-C [15] considers
common corruptions, which applies a series of 19 common
visual corruptions in 5 categories to images. ImageNet-
A [17] considers natural adversarial examples, which places
objects in unusual contexts or orientations. ImageNet-R
[14] considers out-of-distribution data, which contains ab-
stract or rendered versions of objects.

Researchers find that the robustness of neural networks
is also dependent on their architectures. There are several
efforts [5, 10, 26] to enhance the adversarial robustness of
neural networks by Neural Architecture Search [25,28,61].
Additionally, ConvNeXt [30] introduces a neural architec-
ture, which is fine-tuned manually and demonstrates robust-
ness [39]. Croce et al. [2] also find that small modifications
to traditional ResNet-50 architecture lead to substantial im-
provements in robustness against adversarial attacks.

As an emerging family of new architectures for vision
models, there are several empirical studies [1, 33, 37] find
that ViTs are robust against various kinds of perturbations.
To improve the robustness of ViTs, Robust Vision Trans-
former (RVT) [34] redesigned the building blocks of ViTs
and propose two plug-and-play techniques called position-
aware attention scaling and patch-wise augmentation. In
the contrast, pyramid adversarial training (PyramidAT) [19]
does not modify the network architecture but proposes pyra-
mid attacks to generate adversarial examples by perturbing
the input image at multiple scale. FAN [60] examines the
role of self-attention in learning robust representations in
ViTs and proposes a family of fully attentional networks
(FANs) that improve mid-level representations. Gu et al. [9]
explore the robustness of ViTs against patch-wise perturba-

tions. They find that ViTs are more robust to natural cor-
rupted patches than CNNs, but more vulnerable to adversar-
ial patches. Therefore, a temperature-scaling based method
is proposed to improve the robustness of ViTs against ad-
versarial patches.

3. Methodology
3.1. Preliminary

Given the input image x and its relevant label y in a train-
ing set D, a common supervised training objective of vision
transformers can be written as:

LACC(f ;D) = E(x,y)∼D[ℓCE (f(x), y)], (1)

where ℓCE is a cross-entropy function, and f stands for the
vision transformer.

To improve the adversarial robustness of model against
perturbations on inputs, adversarial training is a common
method, where perturbations are used to attack a target
model, and the target model is optimized under such at-
tacks. The perturbations are generated with gradient ascent
to maximize the classification objective. An adversarial ex-
ample x′ with perturbations is typically limited in a lp ball
Bp(x, ε) = {x′ : ∥x − x′∥p ≤ ε} around its correspond-
ing natural example x, where ε defines the scale of allowed
perturbations, and ∥ · ∥p is a lp normalization. Then, ad-
versarial training can be formed into a min-max problem,
whose objective function is defined as

LROB(f ;D) = E(x,y)∼D

[
max

x′∈Bp(x,ε)
ℓCE (f(x

′), y)

]
, (2)

where f is a deep model, D is the distribution of the natural
example x and the corresponding label y, and ℓCE is a cross-
entropy function.

3.2. Robustness and Accuracy Adapters

Off-the-shelf vision transformers [6, 11, 29, 56] are often
well trained to pursue the natural accuracy through Eq. 1.
To enhance the adversarial robustness of these well-trained
vision transformers, a standard fine-tuning process can be
executed by tuning the weights with the objective of Eq. 2.
However, the adversarial robustness as a new objective for
vision transformers may lead to a completely different set
of weights, which are far away from the initialization and
degrade the accuracy of vision transformers.

Taking both natural accuracy and adversarial robustness
into consideration, we insert two adapters into an existing
ViT block, including an accuracy adapterψA,l for predictive
features and a robustness adapter ψR,l for robust features.
Given the feature zl ∈ RN×dm output by the MLP layer in
the 1 ≤ l ≤ L block with N tokens of dm dimensions, we
have the accuracy adapter

al = ψA,l(zl), (3)
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gated fusion module.

and the robust adapter

rl = ψR,l(zl), (4)

where al, rl ∈ RN×dm are the predictive and robust fea-
tures, respectively.

For the architecture of adapters, we use two feed-forward
layers with a bottleneck and a residual connection following
Houlsby et al. [20]. We insert adapters right after the MLP
layer of an existing ViT block and do not insert adapters af-
ter the multi-head attention (MSA). The overall architecture
of a block in our TORA-ViTs is as shown in Fig. 1.

3.3. Attention-based Gated Fusion

To combine the predictive and robust features extracted
by the accuracy and robustness adapters in a trade-off-aware
manner, we propose an attention-based gated fusion mod-
ule. We first calculate the dot-product attention score matri-
ces between the features from the ViT blocks and adapters.
Then, a softmax function is applied adapter-wise to the
score matrices. The softmax results are used as a weighted
gate to fuse the predictive and robust features.

The feature zl output by the ViT block is used to gener-
ate the query, and the features al and rl output by adapters
are used to generate keys. The dot products between the
two Q-K pairs are calculated as

sA,l = (zl ·wQ,l) · (al ·wK,l)
⊤, (5)

sR,l = (zl ·wQ,l) · (rl ·wK,l)
⊤, (6)

where sA,l, sR,l ∈ RN×N are the attention score matrices
for the accuracy adapter and robustness adapter, and wQ,l,
wK,l ∈ Rdm×dq are projection parameters for query and

key matrices. The projection parameters are share among
adapters.

Then, the softmax function is applied to the attention
score matrices adapter-wise instead of token-wise by:

s′A,l,m,n =
exp(sA,l,m,n)∑

k∈{A,R} exp(sk,l,m,n)
(7)

s′R,l,m,n =
exp(sR,l,m,n)∑

k∈{A,R} exp(sk,l,m,n)
. (8)

In this manner, if a token in one adapter corresponds to a
larger attention score than the other, it will be assigned a
larger weight, and vice versa. It can act as a gate to select
which kind of features can be forwarded to the next block at
a larger scale. Similar to keys, the values are also generated
from the features from adapters. By applying the weights,
we can calculate the output of attention module for each
adapter as

oA,l = s′⊤A,l · (al ·wV,l) (9)

oR,l = s′⊤R,l · (rl ·wV,l), (10)

where oA,l, oR,l ∈ RN×dm , and wV,l ∈ Rdm×dv is the
projection parameter for value matrices. The comparison of
our method to other previous methods is as shown in Fig. 2.

Because oA,l and oR,l has already been multiplied with
weight matrices s′A,l and s′R,l from softmax function, we
can directly sum them adapter-wise for the final output:

ol =
∑

k∈{A,R}

ok,l, (11)

which ensures ol to have same dimensions as zl. Finally,
we add a residual connection from the output of the ViT
block and have the final layer output hl as

hl = zl + LN(ol), (12)

where LN(·) is a layer norm.

3.4. Two-Phase Trade-off Training

Dosovitskiy et al. [6] introduces an extra randomly ini-
tialized classification token [CLS] to the embedded patch
tokens in ViTs following BERT. This token is later used for
the classification task. Similarly, we add an accuracy to-
ken and a robustness token for our trade-off training. The
original class token is at the first dimension of the output
(i.e., [CLS] := zl,1,:). To add our new tokens, we replace
zl,1,: with the accuracy token [ACC]l−1 and the robust to-
ken [ROB]l−1 to form the adapters inputs. Then, Eqs. 3 and
4 become:

al = ψA,l (Concat([ACC]l−1, zl,2:,:)) (13)
rl = ψR,l (Concat([ROB]l−1, zl,2:,:)) . (14)
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After the adapter, we can have [ACC]l = al,1,: and
[ROB]l = rl,1,:. To make the final classification, an accu-
racy classification head fACC and a robustness classification
head fROB are added, and their predictions are averaged:

ŷ =
1

2
fACC([ACC]L) +

1

2
fROB([ROB]L). (15)

To optimize our TORA-ViTs, we use a two-phase train-
ing strategy. We first optimize each adapter independently
with their specific objective. In this phase, the fusion mod-
ule is also optimized. Then, the two adapters are frozen, and
the fusion module is optimized with the joint robustness and
accuracy objective. During the entire training process, the
pretrained ViT is always frozen. In the first phase, Eqs. 1
and 2 are used to optimize the corresponding adapter along
with the gated fusion:

min
ΨR,Φ

LROB(F ;D), (16)

min
ΨA,Φ

LACC(F ;D), (17)

where F = {f,ΨR,ΨA,Φ} with ΨR = {ψR,l|1 ≤ l ≤ L},
ΨA = {ψA,l|1 ≤ l ≤ L} and Φ = {ϕl|1 ≤ l ≤ L}
represents the TORA-ViT model with adapters and gated
fusion. In Eqs. 16 and 17, the trade-off ratio λ is temporatly
omitted, because each objective is optimized alternately. In
the second phase, we use a joint objective to optimize Φ
with λ:

min
Φ

λLROB(F ;D) + (1− λ)LACC(F ;D). (18)

Because the fusion module Φ can be easily biased to the
current object in the previous phase, this phase aims to ad-
just Φ with joint optimization and make the trade-off to be
better correlated with the demand ratio λ.

4. Experiments
4.1. Settings

Pretrained ViTs. We consider the vanilla ViT architec-
ture proposed by Dosovitskiy et al. [6] in our experiments.
The ViT-B/16 with 224×224 input size, 16×16 patch size,
768-dimension embedding, and 12 layers is used. We ini-
tialize the network with pretrained parameters provided by
Steiner et al. [44].

Training. The existing ViT blocks are frozen during train-
ing. The adapters are optimized with AdamW [31] opti-
mizer on ImageNet-1K [3] with a 0.0001 initial learning
rate and step decay with a rate of 0.97. For adversarial
training, we use the single-step FGSM [8] with ε = 1/255
to generate adversarial examples. The model is trained for
9 epochs in total. In the first 6 epochs, the alternate opti-
mization in Eqs. 16 and 17 is performed, which means each
objective is optimized for 3 epochs. In the last 3 epochs, the
joint optimization in Eq. 18 is performed.

Evaluation. For white-box attacks, we use single-step
FGSM [8] and multi-step PGD [32] on ImageNet-1K. We
follow Mao et al. [34] and use ε = 1/255, PGD with 5
steps, and step size 0.5/255. For natural adversarial ex-
amples, we use ImageNet-A [17], which places the Ima-
geNet objects in unusual contexts or orientations. For out-
of-distribution data, we use ImageNet-R [14], which con-
tains abstract or rendered versions of the object. For com-
mon corruption, we use ImageNet-C [15], which applies
19 common corruptions in 5 categories (e.g., motion blur,
Gaussian noise, fog, JPEG compression, etc.).

4.2. Comparison to SOTA Methods

In Table 1, we compare our TORA-ViT (categorized as
“robust adapters”) to 4 categories of state-of-the-art (SOTA)
methods, including naturally trained CNNs, robust CNNs,
naturally trained ViTs, and robust ViTs. We report three dif-
ferent trade-offs of TORA-ViT in Table 1, including a most
balanced setting, which outperforms all the baselines, a set-
ting for good natural accuracy, and a setting for extremely
high robustness against adversarial attacks. Other ratios are
reported and discussed with more details in Table 2.

Our method performs well on both clean and robust tasks
with λ = 0.5. It outperforms previous works on all metrics.
This is our most balanced setting. Comparing to previ-
ous best SOTA methods, it improves natural accuracy on
clean data by 0.3% than Swin-B; improves accuracy under
FGSM by 1.7%, accuracy under PGD by 8.1% and accuracy
on ImageNet-R by 7.6% than RVT-B*; improves accuracy
on ImageNet-A by 2.8% than PyramidAT-384; and reduce
mCE on ImageNet-C by 10.6% than PyramidAT.

The model mainly focuses on natural accuracy when
λ = 0.1. Comparing to naturally trained ViTs, it improves
the natural accuracy by 0.7% comparing to the previous best
model, i.e., Swin-B. Besides, in terms of robustness, it also
reaches better performance than Swin-B under PGD attack
(2% higher accuracy) and on all ImageNet variants (10.7%
and 11.0% higher accuracy on ImageNet-A and -R, respec-
tively, and 22.7% lower mCE on ImageNet-C). Is is only
slightly lower than Swin-B under FGSM by 0.8%. Com-
paring to robust ViTs, it is better than all of them in terms
of natural accuracy and accuracy on ImageNet variants. Al-
though the performance under adversarial attacks is lower
than robust ViTs, considering this is a model trading robust-
ness for accuracy, it is still remarkable to reach the best nat-
ural accuracy and the best robustness on ImageNet variants
among our settings, which also outperforms all the previ-
ous SOTA methods, by sacrificing some robustness against
adversarial attacks.

The adversarial robustness becomes the main target if we
set λ = 0.9. This setting improve accuracy under FGSM by
21.2% and accuracy under PGD by 27.6% comparing to the
previously best RVT-B*, which is a surprisingly large im-
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Categories Models Clean Attacks ImageNet Variants
FGSM PGD A R C(↓)

CNNs

ResNet-50 [13] 76.1 12.2 0.9 0.0 36.1 76.7
ResNeXt50-32x4d [52] 79.8 34.7 13.5 10.7 41.5 64.7
EfficientNet-B4 [46] 83.0 44.6 18.5 26.3 47.1 71.1
ConvNeXt-B [30] 83.8 - - 36.7 51.3 46.8

Robust
CNNs

ANT [43] 76.1 17.8 3.1 1.1 39.0 63.0
AugMix [16] 77.5 20.2 3.8 3.8 41.0 65.3
Debiased CNN [27] 76.9 20.4 5.5 3.5 40.8 67.5
DeepAugment [14] 75.8 27.1 9.5 3.9 46.7 53.6
Anti-Aliased CNN [58] 79.3 32.9 13.5 8.2 41.1 68.1

ViTs

ViT-B/16 [6] 72.8 - - 8.0 27.1 74.8
ViT-B/16 + CutMix [6] 75.5 - - 14.8 28.5 64.1
ViT-B/16 + MixUp [6] 77.8 - - 12.2 34.9 61.8
ViT-B/16 + AugReg [44] 79.9 - - 17.5 38.2 52.5
ViT-B/16-384 + AugReg [44] † 81.4 - - 26.2 38.2 58.2
PVT-Large [51] 81.7 33.1 7.3 26.6 42.7 59.8
ConViT-B [7] 82.4 45.4 20.8 29.0 48.4 46.9
DeiT-B/16 [47] 82.0 46.4 21.3 27.4 44.9 48.5
T2T-ViT t-24 [56] 82.6 46.7 17.5 28.9 47.9 48.0
Swin-B [29] 83.4 49.2 21.3 35.8 46.6 54.4
PiT-B [18] 82.4 49.3 23.7 33.9 43.7 48.2

Robust
ViTs

PyramidAT [19] 81.7 - - 23.0 47.7 45.0
PyramidAT-384 [19] † 83.3 - - 36.4 46.7 47.8
RVT-B [34] 82.5 52.3 27.4 27.7 48.2 47.3
RVT-B* [34] 82.7 53.0 29.9 28.5 48.7 46.8
MAE-ViT-B [12] 83.6 - - 35.9 48.3 51.7
FAN-L-ViT [60] 83.9 - - 34.2 53.1 43.3

Robust
Adapters

(ours)

TORA-ViT-B/16 (λ = 0.1) 84.1 48.4 23.3 46.5 57.6 31.7
TORA-ViT-B/16 (λ = 0.5) 83.7 54.7 38.0 39.2 56.3 34.4
TORA-ViT-B/16 (λ = 0.9) 80.3 74.2 57.5 22.2 53.7 41.6

Table 1. Performance on ImageNet-1K and variants. For performance on clean ImageNet-1K, under adversarial attacks, on ImageNet-A,
and on ImageNet-R, the top-1 accuracy is reported. For performance on ImageNet-C, the mean Corruption Error (mCE) is reported, which
is the smaller the better (marked by ↓).
†: “ViT-B/16-384 + AugReg” and “PyramidAT-384” use 384× 384 inputs, and other models use 224× 224 inputs.

provement on robustness against adversarial attacks. This
improvement sacrifices performance on clean data and Im-
ageNet variants. Comparing to the most balanced setting
with λ = 0.5, its natural accuracy drops 3.4%, and its ac-
curacy on ImageNet-A drops 17%. Although its robustness
on ImageNet-R and -C is also the worst among our settings,
it is still better than previous SOTA methods.

Another interesting observation about our method is that
robustness on the three ImageNet variants have positive
correlation with natural accuracy and negative correla-
tion with robustness under adversarial attacks. This phe-
nomenon also exists for other SOTA methods, although the
correlations are not as strong as those in our method. For
example, PiT reaches the best robustness against adversarial
attacks among ViTs, but its performance under other kinds
of perturbations is not the best; Anti-Aliased CNN reaches
the best robustness against adversarial attacks among robust
CNNs, but its robustness on ImageNet-R and -C is worse
than DeepAugment. This also demonstrates the importance
of controlling the trade-off when applying adversarial train-
ing, because robustness to adversarial attacks is only one
aspect of robustness, and the robustness to other kinds of
perturbations is not always improved together with it.

λ Head Clean Attacks ImageNet Variants
FGSM PGD A R C(↓)

0.1
Acc. 84.15 47.96 22.08 45.75 56.79 32.61
Rob. 83.89 48.54 24.89 46.33 57.38 31.89
Joint 84.10 48.44 23.26 46.73 57.64 31.69

0.3
Acc. 83.79 50.42 32.42 42.05 56.17 33.77
Rob. 83.36 53.73 35.62 42.32 56.49 33.19
Joint 84.03 51.85 33.84 42.45 56.72 32.91

0.5
Acc. 83.38 53.41 36.58 38.93 55.80 35.29
Rob. 83.01 56.19 39.78 38.85 56.12 34.73
Joint 83.66 54.75 37.99 39.23 56.27 34.44

0.7
Acc. 80.80 63.70 49.89 23.64 54.09 42.27
Rob. 80.37 67.37 52.23 23.59 54.04 42.13
Joint 81.11 65.75 50.99 23.68 54.29 41.55

0.9
Acc. 80.66 70.02 56.10 22.69 53.64 42.30
Rob. 80.04 74.24 58.34 22.37 53.39 42.11
Joint 80.34 74.19 57.50 22.21 53.67 41.56

Table 2. Performance of different heads and their joint prediction
with different λ.
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λ Tuning FLOPs
(G)

Params
(M)

GPU
Hours Clean Attacks ImageNet Variants

FGSM PGD A R C(↓)

0.1

Head only 17.6 88.1 15.55 80.2 41.1 15.5 22.1 42.0 56.9
Single adapter 17.8 88.3 15.55 82.5 40.9 15.1 36.9 48.3 46.2
AdapterFusion 24.9 111.2 19.63 82.2 46.2 22.6 36.4 52.2 35.5
TORA-ViT 26.0 111.2 19.82 84.1 48.4 23.3 46.5 57.6 31.7

0.9

Head only 17.6 88.1 15.55 79.0 42.0 16.3 12.9 40.2 62.5
Single adapter 17.8 88.3 15.55 72.3 53.1 30.1 3.1 21.4 78.7
AdapterFusion 24.9 111.2 19.69 79.5 66.2 55.3 20.4 51.7 42.9
TORA-ViT 26.0 111.2 19.83 80.3 74.2 57.5 22.2 53.7 41.6

Table 3. Comparison of different tuning methods.

4.3. Classification Heads and Trade-off Ratios

Our TORA-ViT uses two kinds of adapters and tokens to
extract different features, and each token corresponds to a
corresponding classification head. To decide the final pre-
dictions, we use the average outputs of them for joint pre-
diction. To better understand the behaviors of the two kinds
of heads, the performance of each head along with the joint
prediction with different λ are reported in Table 2.

Firstly, the natural accuracy and robustness against ad-
versarial attacks are well correlated to the trade-off ratio λ.
Furthermore, the accuracy head and robustness head also
performs consistently on this two kinds of metrics. To be
specific, the accuracy head always outperforms the robust-
ness head on clean data, and the robustness always outper-
forms the accuracy head under attacks.

However, the behaviors change under other perturba-
tions. As aforementioned in Section 4.2, the robustness
against other kinds of perturbations is not always posi-
tively correlated with robustness against adversarial attacks.
When λ < 0.5, the robust head can still consistently out-
performs the accuracy head on all 5 kinds of perturba-
tions. When λ = 0.5, the accuracy head outperforms ro-
bust head on ImageNet-A (natural adversarial examples).
When λ > 0.5, the accuracy head outperforms robust head
on ImageNet-A and ImageNet-R (out-of-distribution data).
The robustness head is consistently performs better than ac-
curacy head on ImageNet-C (common corruptions).

Overall, we can conclude that when the natural accuracy
is high, adversarial training indeed contributes more to the
robustness against perturbations other than adversarial at-
tacks. However, if the natural accuracy drops, the contri-
bution of adversarial training to those kinds of robustness
also reduces. Therefore, from this point of view, control-
ling the trade-off between robustness and accuracy is also
crucial for the overall robustness against various kinds of
perturbations.

4.4. Tuning Methods

As we design a new tuning methods for ViTs, which
considers the trade-off between robustness and accuracy
via leveraging the robust non-predictive and predictive non-

robust features, it is meaningful to compare our method
with existing methods that are agnostic to this character-
istic of features. In Table 3, we compare our TORA-ViT
with three other tuning methods, including tuning a new
classification head only, tuning a single new adapter for
robustness, and tuning two new adapters with AdapterFu-
sion. Our model have similar number of FLOPs and pa-
rameters with AdapterFusion, and our method only requires
0.16 more GPU hours to train, which is approximately 10
minutes. Although the heads only and single adapter tuning
are very lightweight, their performance are not as good as
our method and AdapterFusion.

In terms of performance, the weakest method is tuning a
new head only. Although it is easy for the new head to main-
tain competitive accuracy, it is hard to improve its robust-
ness. Because the entire model except the head are frozen,
the extracted features cannot be changed. It is hard to train
a robust classification head on top of non-robust features.
When using a single adapter, it’s hard to control the trade-
off. For exaple, when λ, the natural accuracy of the sin-
gle adapter drops dramatically to only 72.3%, which is the
lowest among all the four methods, but its performance un-
der adversarial attacks is only better than using a new head
only. Besides, its performance on the three ImageNet vari-
ants are also poor. AdapterFusion is the strongest among
the three baselines, but it only has attention at adapter level,
which is agnostic of the robust and predictive features. In
the contrast, our TORA-ViTs reaches the best performance
with the trade-off-aware patches-level attention, which can
distinguish robust and predictive features. We will further
demonstrate the ability of TORA-ViTs to distinguish the
two kinds of features via visualization in Section 4.5.

4.5. Visualization of Attention Maps

We visualize attentions for different adapters in Fig. 3.
We extract attention scores after the softmax in the gated
fusion. They are R2×N×N tensors, where the first dimen-
sion is 2 corresponding to 2 adapters, and the remaining di-
mensions are N corresponding to the number of tokens (in-
cluding accuracy/robustness tokens and patch tokens). We
average scores for each token to get a R2×N matrix. Aver-
age scores in all blocks are multiplied to get accumulated
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Image
𝜆 = 0.1 𝜆 = 0.5 𝜆 = 0.9

Acc. Rob. Acc. Rob. Acc. Rob.

High

Low

Figure 3. Visualization of the attentions for different adapters in the gated fusion module with various ratio λ. The blue-white-red color
map is used, where red represents high attention, and blue represents low attention. As can be seen, the features yielded by the accuracy
adapter focus more on context, and in the contrast, the features yielded by the robustness adapter focus more on the main object to be
classified. This is consistent with the theory of robust non-predictive and predictive non-robust features.

attention maps of the entire network.
We find the accuracy adapter focus more on context and

the accuracy adapter focus more on the object to be clas-
sified. When λ = 0.1 and the model focuses on accuracy,
the features yield by the accuracy adapter have higher atten-
tion, and the robustness adapter only have a few highlights
in attentions. However, we can still see those highlights
are mainly falls in the region of the main object. When
λ = 0.9 and the model focuses on robustness, the features
yield by the robustness adapter have higher attentions, and
those attentions overlaps the main object. In this case, the
accuracy adapter only has a few attentions on the context. If
we consider a more balanced trade-off ratio, i.e., λ = 0.5,
we can find this phenomenon is clearer. Attentions of the
robustness adapter and the accuracy adapter have a similar
amount, but distributed in different regions, and the accu-
racy adapter focuses more on the context and the robustness
adapter focus more on the object.

If we also take into account Table 2, we can find the
high attentions on context of the accuracy adapter won’t
reduce its accuracy. The accuracy on clean data of the
accuracy adapter consistently outperforms the robustness
adapter, even when λ = 0.9 and it only have a few attentions
on the context. In the contrast, we can find such focuses on
context makes it non-robust under adversarial attacks.

5. Conclusion

In this work, we propose Trade-off between Robust-
ness and Accuracy of Vision Transformers (TORA-ViTs).
TORA-ViTs is inspired by the theory of predictive non-
robust and robust non-predictive features. By introducing
two different adapters, including an accuracy adapter and
a robustness adapter, TORA-ViTs is able to extract both
predictive and robust features. To combine the two kinds
of features in a trade-off-aware manner, an attention-based
gated fusion module is further proposed. It takes the outputs
of ViT blocks as queries and utilizes attention mechanism to
combine features. Experiments on ImageNet with various
robust benchmarks demonstrate that our TORA-ViTs can
efficiently improve the robustness of naturally pretrained
ViTs while maintaining competitive natural accuracy. Vi-
sualization of the attention map in the gated fusion module
empirically proves the theory of robust non-predictive fea-
tures and predictive non-robust features.
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