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Abstract

Spatio-temporal video grounding aims to localize the
aligned visual tube corresponding to a language query.
Existing techniques achieve such alignment by exploiting
dense boundary and bounding box annotations, which can
be prohibitively expensive. To bridge the gap, we inves-
tigate the weakly-supervised setting, where models learn
from easily accessible video-language data without anno-
tations. We identify that intra-sample spurious correlations
among video-language components can be alleviated if the
model captures the decomposed structures of video and lan-
guage data. In this light, we propose a novel framework,
namely WINNER, for hierarchical video-text understand-
ing. WINNER first builds the language decomposition tree
in a bottom-up manner, upon which the structural attention
mechanism and top-down feature backtracking jointly build
a multi-modal decomposition tree, permitting a hierarchi-
cal understanding of unstructured videos. The multi-modal
decomposition tree serves as the basis for multi-hierarchy
language-tube matching. A hierarchical contrastive learn-
ing objective is proposed to learn the multi-hierarchy cor-
respondence and distinguishment with intra-sample and
inter-sample video-text decomposition structures, achieving
video-language decomposition structure alignment. Exten-
sive experiments demonstrate the rationality of our design
and its effectiveness beyond state-of-the-art weakly super-
vised methods, even some supervised methods.

1. Introduction

Spatio-temporal video grounding (STVG) is a funda-
mental task for video-language understanding [34, 41]. It
aims to localize the spatio-temporal tube described by the

*Equal Contribution.
†Corresponding Authors.

language query from the untrimmed video. The essence of
grounding lies in the semantic alignment of video and lan-
guage components [34, 35, 41, 55]. To achieve such align-
ment, existing works fully exploit the fine-grained spatial-
temporal annotations (e.g., temporal boundaries, and spa-
tial bounding boxes). For example, the spatial and tempo-
ral GCN modules in STGRN [55] require region-by-region
frame-by-frame annotations for training convolutions.

Despite substantial research literature in this vein, the
dense annotations (i.e., video-by-video temporal boundary
and frame-by-frame spatial bounding boxes) necessary for
effective alignment require tremendous labor costs, which
are, however, not routinely available. In addition, mas-
sive video-language data without spatial-temporal annota-
tions are easily accessible but without exploitation. To re-
duce human labeling costs, we investigate the weakly su-
pervised setting, where models learn to localize spatial-
temporal tubes on easily accessible video-language data.

In the weakly-supervised setting, the absence of spatial-
temporal annotations (i.e., the exactly matched temporal
boundaries and spatial bounding boxes) drives the video-
language alignment problematic. Language semantics
might get spuriously correlated with unmatched visual com-
ponents in the untrimmed video. For example, when we
inspect the sample shown in Figure 1 at either the video-
sentence or the object-word hierarchy (i.e., single-hierarchy
understanding), the right-side woman can be hard to dis-
tinguish from the target woman to be localized. We iden-
tify that such spurious correlations could be alleviated if
the model captures that the second woman is being pointed
at when inspecting the sample at an intermediate video-
language hierarchy. In this regard, we present a novel per-
spective for grounding-oriented video disambiguation and
understanding under the weakly-supervised setting, i.e., de-
composing multiple aligned video-language hierarchies.

There are mainly two technical challenges to achieving
such hierarchical alignment. On the one hand, the highly
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Figure 1. An illustration of how hierarchical video-language un-
derstanding alleviates spurious correlations in STVG.

unstructured nature of video data hinders its hierarchical
understanding. Compared to syntactic parsing in language,
where the elements are discrete tokens from a limited vo-
cabulary, inferring the decomposed structure of continuous
spatial-temporal visual data can be relatively challenging.
On the other hand, hierarchical alignment requires simul-
taneously learning video-text correspondence and distin-
guishment at different hierarchies. However, in weakly su-
pervised video grounding, the multi-hierarchy supervision
signals (e.g., paired and unpaired video-text components at
different hierarchies) necessary for correspondence and dis-
tinguishment learning are rather lacking in raw data.

To address these challenges, we propose the Weakly-
supervised hIerarchical decompositioN and aligNment
framework for spatio-tEmporal video gRounding
(WINNER). WINNER addresses the first challenge
through language-structure guided video hierarchical
understanding. In particular, WINNER first builds the
language decomposition tree in a bottom-up manner.
At each hierarchy, component-relevant visual cues are
extracted and fused with the language decomposition
tree through the proposed structural attention mechanism,
resulting in a multi-modal decomposition structure. Such
attention mechanism technically differs from existing ones
by leveraging video-language information at adjacent hier-
archies as context information, permitting the hierarchical
understanding of unstructured video data. We introduce
top-down feature backtracking over the multi-modal de-
composition structure to ensure structural consistency and
a text reconstruction objective to ensure the intra-sample

correspondence between extracted visual cues and the
multi-hierarchy language components.

Thanks to the multi-modal decomposition structure,
the modality gap between video and text can be rela-
tively narrowed in estimating the matching score between
multi-hierarchy language components and potential spatial-
temporal tube proposals. Upon the matching, we could
build the language-grounded video decomposition tree,
containing specific tubes as nodes, as revealed in Figure
1. A hierarchical contrastive learning objective is devised
to recursively learn the desired correspondence and dis-
tinguishment over intra-sample and inter-sample video-text
decomposition trees, thus addressing the second challenge.

We conduct experiments on two widely used datasets for
the weakly-supervised video object grounding task. Exper-
imental results show that the WINNER model greatly out-
performs the state-of-the-arts, and could achieve compara-
ble performance with some supervised methods. Extended
experiments including the ablation study and the case study
further demonstrate the rationality of the model involved.

Our contributions are summarized as follows:

• We research the spatio-temporal video grounding task
under the challenging weakly supervised setting. We
present a novel perspective, i.e., hierarchical video-
language decomposition and alignment, for alleviating
spurious correlations brought by limited annotations.

• We propose a novel WINNER framework, which en-
capsulates the structural attention and top-down back-
tracking for multi-modal hierarchical understanding,
and the multi-hierarchy intra-sample correspondence
and inter-sample distinguishment learning.

• Experimental results demonstrate the rationality of our
analysis and the effectiveness of WINNER.

2. Related Work
2.1. Spatio-temporal Video Grounding

The cross-modal visual grounding tasks, including im-
age grounding [23, 36, 39, 48, 49, 57] and video grounding,
have attracted the attention of more and more researchers.
For the video grounding task, there are three fashions: tem-
poral grounding, spatial grounding, and spatio-temporal
grounding. The temporal video grounding [10, 15–17, 29,
37, 38, 46, 51] aims to detect the temporal clip described by
the natural language query from the input video. Similarly,
the spatial video grounding task [9, 20, 33] aims to localize
the target video object described by the language sentence.
Our focus is on the spatio-temporal video grounding task, a
direction in which there is relatively little prior research.

The spatio-temporal video grounding task [11, 21, 22,
34, 40, 41, 54] is designed to detect the temporal bound-
ary and the spatial object tube at the same time, according
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Figure 2. A schematic of the WINNER model. WINNER essentially encapsulates (1) the language structure decomposition; (2) structure-
guided hierarchical video understanding, which attends to component-relevant visual cues with hierarchy consistency constraints; and (3)
decomposition structure alignment, which decomposes the video into multi-hierarchy tubes through structure-tube matching, and learns
the multi-hierarchy correspondence and distinguishment through hierarchical contrastive learning.

to the sentence. With the development of the neural net-
work [6–8, 19, 28], it has become the mainstream for re-
trieval tasks [47], especially for the grounding task. [55]
builds a spatio-temporal graph network to capture the re-
lationships with temporal object dynamics and spatial tube
dynamics. Some researchers try to improve performance
through the attention mechanism [3,13,18,45,50]. [35] uti-
lizes the visual transformer to extract cross-modal represen-
tation for visual object matching and temporal localization.

2.2. Weakly-supervised learning

Recently, weakly supervised learning has made signifi-
cant progress in many areas [2, 4, 12, 42, 52], like the multi-
modal field [5, 14, 24, 56]. Different from supervised learn-
ing [25–27, 43, 44], it achieves decent accuracy with very
few annotations. [32] designs the deep learning model to
complete the action segmentation task for the instructional
videos with the semi-weakly supervised training way. [53]
detects the language-described video clip with weakly su-
pervised learning. [36] parses the video without annota-
tions. [1] tries to learn the video grounding model in a
weakly-supervised fashion without both the spatial bound-
ing boxes and the temporal boundaries during the training
process. However, previous works for the spatio-temporal
grounding task simply focus on the feature of each frame
and ignores the relation of adjacent frames. Different from
them, we incorporate the unstructured context-dependent
analysis into our model and use vision-language grammar
induction to boost the performance of the spatio-temporal

task in a weakly-supervised way.

3. Method
Spatio-temporal video grounding aims to localize the

visual tubes T of a target object from an untrimmed
video V , where the target object corresponds to the sub-
ject of the input sentence S. In the weakly supervised set-
ting, models should learn from the video-language pairs
(S,V), without ground-truth tube annotations T . Appar-
ently, this is a challenging setting where models might eas-
ily absorb spurious correlations among intra-sample video
and language components. To bridge the gap, we pro-
pose the Weakly-supervised hIerarchical decompositioN
and aligNment framework for spatio-tEmporal video
gRounding (WINNER).

3.1. Model Overview

Our WINNER model is shown in Figure 2. We extract
the region features from all video frames with pretrained
Faster R-CNN [31] and obtain the corresponding tube fea-
ture via object tracking according to the regional coinci-
dence degree, following existing techniques [54, 55]. With
the tube features and the word features extracted by the pre-
trained EMLo [30], the WINNER model mainly consists
of three key processes: (1) Cross-modal Hierarchical Un-
derstanding. We regard words as leaf nodes and recur-
sively build the language decomposition tree in a bottom-
up layer-by-layer manner. Then, we propose the structural
attention mechanism, which utilizes the language structure
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Algorithm 1: The training process of the WINNER
model.

Prepare: Initialize the language decomposition tree
construction moduleMLSD (language structure
decomposition), theMSA (structure attention), the
MTDB (top-down backtracking), and theMV SD

(video structure decomposition).
Input: The word features Fw of the language
sentence S; The tube features Ft of the input video
V .

Step 1: Build the language decomposition tree Tl,
Tl ←MLSD(Fw);

Step 2: (1) Fuse the tube features Ft to get a
multi-modal decomposition tree Tm,
Tm ←MSA(Tl,Ft);

(2) Update the tree Tm from top to down,
T ′
m ←MTDB(Tm);

(3) Reconstruct the input language sentence S with
the updated tree T ′

m via the self-supervised
learning;

Step 3: Realize the temporal localization based on
the tree T ′

m;
Step 4: Generate the video tube tree Tt,
Tt ←MV SD(T ′

m,Ft);
Step 5: Train the hierarchical alignment between

the tree T ′
m and the tree Tt with the contrastive

learning.

as guidance and conducts hierarchical video understanding,
resulting in a multi-modal decomposition structure. Finally,
through top-down backtracking, we can ensure the hierar-
chical consistency of the multi-modal decomposition struc-
ture. (2) Structure-guided Video Temporal Localization.
Under the guidance of temporal contrastive learning, the
model learns to calculate the association between the multi-
modal decomposition structure and different video clips,
and select the most relevant video clip as the temporal lo-
calization result. Due to the limited paper space, we put this
part in the appendix. (3) Decomposition Structure Align-
ment. We use the prediction of temporal localization in
the second step to crop all the video tubes. Then, we train
the model to find the most matching video tube for each
node in the multi-modal decomposition tree trained by the
hierarchical contrastive learning, thereby achieving cross-
modal decomposition structure alignment. The video tube
best matched with the decomposition tree node correspond-
ing to the sentence subject is the predicted result. We sum-
marize the whole training process in Alg 1.

3.2. Cross-modal Hierarchical Understanding

In order to achieve cross-modal hierarchical alignment,
the hierarchical understanding of the input sentence S and

the video V is a critical step. Technically, we first conduct
language structure decomposition, followed by structure-
guided video hierarchical understanding powered by struc-
tural attention and the top-down backtracking mechanisms.
The main schematic is shown in Figure 3.

Language Structure Decomposition. A node ni,j in
the language decomposition tree should contain the seman-
tics from the i-th word to the j-th word in the sentence S.
In the beginning, there are NS leaf nodes corresponding to
NS words in S , upon which we build the language decom-
position tree in a bottom-up manner by merging adjacent
nodes. During the process, we denote the feature of node
ni,j as rBi,j , and its compatibility score as cBi,j . The compat-
ibility score means how likely node ni,j will merge with
other nodes. The i-th node feature rBi,i of the first layer
is initialized with the i-th word embedding and cBi,i = 0.
Then, all nodes of subsequent layers are generated based on
their previous layer nodes. Specifically, for node ni,j , the
corresponding phrase (i, j) is divided into two parts with
different methods. With a division (the phrase (i, k) and the
phrase (k + 1, j)), we merge the features and the scores of
the corresponding nodes, ni,k and nk+1,j :

rBi,j,k = MLP ([rBi,k, rBk+1,j ]), (1)

cBi,j,k = (rBi,k)
Tw(rBk+1,j) + cBi,k + cBk+1,j , (2)

where MLP represents the MultiLayer Perceptron, [.] rep-
resents the feature concatenation, and w is a learnable pa-
rameter. All divisions are summarized into the feature rBi,j
and the score cBi,j of the tree node ni,j :

ĉBi,j,k = softmax
k

(cBi,j,k), (3)

rBi,j =
∑
k

ĉBi,j,k ∗ rBi,j,k, cBi,j,k =
∑
k

ĉBi,j,k ∗ cBi,j,k, (4)

Structure-guided Video Hierarchical Understanding.
The structure-guided video hierarchical understanding con-
tains two steps: (1) extracting multi-hierarchy visual cues
relevant to components in the language decomposition tree
and further transforming the language tree into a multi-
modal one by feature fusion, powered by the structural
attention mechanism; (2) recursively updating the multi-
modal node representations through top-down feature back-
tracking, ensuring the hierarchical semantic consistency of
the multi-modal decomposition tree. In the first step, as-
suming the node ni,j will be fused with the visual cues,
we find all its related nodes, including its parent nodes
{nt,k : t ∈ [1, i); k ∈ (j,NS ]} and its child nodes
{nt,k : t, k ∈ [i, j]; t ≤ k}. Then, we calculate the cor-
relation between the language node features and the video
tube features Fv = {fvm}

Nv
m=1, where Nv is the number of
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Figure 3. A schematic of the Cross-modal Hierarchical Understanding.

video tubes. Taking the video tube feature fvm and the node
feature rBt,k as an example, the correlation at,k,m is:

at,k,m = (fvm)T ∗ rBt,k. (5)

We get the average attention value âm for the video tube
feature fvm:

âm = AV G
(t,k)

(at,k,m), (6)

where AV G is the averaging function. Some tree nodes
contain less meaningful information, such as the node cor-
responding to the word ”the” or ”at”. The correlation be-
tween these nodes and the video information lacks refer-
ence value and might introduce interference. We judge
whether the node nt,k is an interfering node, accord-
ing to the similarity sct,k between its correlation values
at,k = {at,k,m}Nv

m=1 and the average correlation values
â = {âm}Nv

m=1. The similarity sct,k is evaluated:

sct,k =

∑Nv

m=1 at,k,m ∗ âm√∑Nv

m=1(at,k,m)2 ∗
√∑Nv

m=1(âm)2
. (7)

If the similarity sct′,k′ for node nt′,k′ is less than the hy-
perparameter δ, we select out its correlation value at′,k′ =

{at′,k′,m}Nv
m=1. With the correlation values of the node ni,j

and its parent (or child) nodes, we summarize them into the
attention value Atti,j,m of node ni,j for video tube fvm:

Atti,j,m = α ∗ ai,j,m + β ∗ ((
∑

(t,k)
at,k,m−∑

(t′,k′)
at′,k′,m) ∗ 1

||j + t− i− k||1
),

(8)

where α and β are learnable hyperparameters, ||.||1 is L1
normalization, and ai,j,m is the correlation value of the
node ni,j . at,k,m and at′,k′,m are the parent nodes or
child nodes of the node ni,j . Based on the attention val-
ues {Atti,j,m}Nv

m=1, we extract the visual cue fvi,j and inject
it into the node feature rBi,j to get a new node feature r̃Bi,j :

fvi,j =
∑

m
softmax

m
(Atti,j,m) ∗ fvm, (9)

r̃Bi,j = ||rBi,j + λ ∗ fvi,j ||2, (10)

where λ is a hyperparameter and ||.||2 is L2 normalization.
After that, we repeat the bottom-up building process to up-
date the next layer nodes with the new node feature r̃Bi,j . In
this way, we update the features of the decomposition tree
nodes layer by layer.

In the second step, we update the features of all multi-
modal decomposition tree nodes from top to down. For the
tree node ni,j , we represent the updated feature as rUi,j and
the updated score as cUi,j . To generate them, we fuse the
features and the scores of the nodes ni,k and nk+1,j for each
k ∈ [1, i) ∪ (j,NS ]:

rUi,j,k = MLP ([rUi,k, r̃Bj+1,k]), (11)

cUi,j,k = (rUi,k)
Tw(r̃Bj+1,k) + cUi,k + cBj+1,k, (12)

where w is a learnable parameter. We aggregate all features
and scores corresponding to different k to get the updated
feature rUi,j and the updated score cUi,j of the node ni,j :

ĉUi,j,k = softmax
k

(cUi,j,k), (13)

rUi,j =
∑
k

ĉUi,j,k ∗ rUi,j,k, cUi,j =
∑
k

ĉUi,j,k ∗ cUi,j,k. (14)

We use the updated node features {rUi,i}
NS
i=1 to reconstruct

the input sentence S via self-supervised learning.

3.3. Decomposition Structure Alignment

In order to eliminate the ambiguity of single-level cross-
modal matching, we adopt the method of multi-grained
alignment to realize the spatio-temporal video grounding.
Based on the multi-grained sentence features (detailed in
Section 3.2), we structure and align the video features
through cross-modal information retrieval.

Specifically, we crop the video clip out with the temporal
boundary prediction in Section 3.3 and reconnect the object
boxes of each frame extracted by Faster R-CNN as tubes.
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The video tube features are represented as F̂v = {̂f
v

m}
Nv
m=1,

where Nv is the number of the video tubes. For each multi-
modal decomposition tree node ni,j , we calculate the simi-
larity ssi,j,m between its features and the video tube feature
fvm. Then for all the video tube features, we find the most
similar one with the index mmax:

ssi,j,m = (fvm)T ∗ (r̃Bi,j + rUi,j), (15)

mmax = argmax
m

(ssi,j,m), (16)

where the argmax function is to find the index of the max-
imum value. After we find the best matching video tube for
all multi-modal decomposition tree nodes, the video tube
tree hierarchically aligned with the multi-modal decomposi-
tion tree is built up. With the aligned cross-modal informa-
tion, the video tube corresponding to the sentence subject
is viewed as the WINNER model prediction for the spatio-
temporal video grounding task during the inference process.

At the training step, we adopt the spatial contrastive
learning to train the hierarchical alignment. In detail, for
the multi-modal decomposition tree node ni,j , we get its
maximum feature similarity ss(V, ni,j) with the tubes of
the video V .

ss(V, ni,j) = max
m

(ssi,j,m). (17)

For the i-th word, we maximize its similarity value
ss(V, ni,i), if this word comes from the sentence S paired
with the video V . Conversely, for the unpaired one
((V ′, ni,i) or (V, n′

i,i)), we minimize the similarity value
(ss(V ′, ni,i) or ss(V, n′

i,i)):

lword(V, ni,i) = −log
es

s(V,ni,i)∑
V′ es

s(V′,ni,i)
. (18)

For the phrase (i, j), we need to consider how likely it
exists in the input sentence S:

ds(V, ni,j) = ss(V, ni,j) ∗
cBi,j ∗ cUi,j
cB1,NS

. (19)

Then, similar to the word level training, we maxi-
mize and minimize the similarity values of the paired data
((V, ni,j)) and unpaired data (ss(V ′, ni,j) or ss(V, n′

i,j)),
respectively, for the phrase (i, j):

lphrase(V, ni,j) = max(ds(V ′, ni,j)− ds(V, ni,j)

+ γ, 0) +max(ds(V, n′
i,j)− ds(V, ni,j) + γ, 0).

(20)

The full loss function used to train the cross-modal hier-
archical alignment is:

lfull = µ ∗
∑
i

lword(V, ni,i) +
∑
(i,j)

lphrase(V, ni,j), (21)

where µ is a hyperparameter.

4. Experiments
4.1. Experiment Settings

Datasets. To fully test our WINNER model, We adopt
two widely used benchmarks for the spatio-temporal video
grounding task, VidSTG [55] and HC-STVG [35]. (1) Vid-
STG. The VidSTG dataset is a large-scale dataset, which
consists of 99, 943 sentences annotated on 6, 770 video
clips. The natural language labels contain 55, 135 inter-
rogative sentences and 44, 808 declarative sentences de-
scribing 79 types of objects. We follow the official split.
(2) HC-STVG. The HC-STVG dataset is sampled from
the movies and annotated with human-centered. There are
5, 660 video-query pairs in the dataset, in which 57.2% of
video clips contain more than 3 people. We refer to the Vid-
STG dataset for preprocessing. The official dataset split is
followed during the model testing process.

Implement Detail. We experiment on a Linux server
to train our WINNER model. Our model is implemented
using the pytorch framework with many other tools, such
as numpy, torchvision, and so on. In the process of model
implementation, we set α = 1.0, β = 0.5, and γ = 0.5.
The λ and the µ are both set as 1.0. During the training
process, the learning rate is 1e− 5, and the batch size is 64.
We train the WINNER model with the maximum epoch set
as 20.

Evaluation Criteria. We follow the evaluation pro-
tocol [34, 35] and use vIoU@R and m vIoU as the eval-
uation criteria. Specifically, the SU and the SI are the
union and the intersection of the predicted and ground-truth
frames, respectively. The vIoU is calculated by vIoU =
1

|SU |
∑

t∈SI
IoU(rt, r̂t). In it, the rt and r̂t are the bound-

ing boxes of the model prediction and the ground truth, re-
spectively. The vIoU@R is the data proportion of vIoU >
R, and the m IoU is the average of all samples’ IoU values.

4.2. Performance Comparison

Comparison with the State-of-the-arts. We adopt sev-
eral weakly supervised video grounding state-of-the-arts as
the baselines for comparison: AWGU [1] and Vis-Ctx [33].
The performance comparison results are shown in Table 1.
From the table, we have the following findings: (1) We ob-
serve that the performance of all models on the VidSTG
declarative sentence grounding is better than their perfor-
mance on the VidSTG interrogative sentence grounding.
This is probably because, in the absence of the subjects in
interrogative language queries, the spurious correlation be-
tween the interference (another word in the sentence with
the same noun as the hidden subject) and the target ob-
ject could be potentially stronger. (2) The baselines, in-
cluding AWGU and Vis-Ctx, perform worse than our WIN-
NER model. These methods generally neglect the spu-
rious correlations among video and language components
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Table 1. Comparison results between WINNER and the state-of-the-arts on the VidSTG and the HC-STVG datasets. Larger scores indicate
better performance. We color each row as the best and second best . Acronym notations of each model can be found in Section 4.1.

Methods
VidSTG (Declarative Sentence ) VidSTG(Interrogative Sentence) HC-STVG

m vIoU vIoU@0.3 vIoU@0.5 m vIoU vIoU@0.3 vIoU@0.5 m vIoU vIoU@0.3 vIoU@0.5

AWGU 8.96 7.86 3.10 8.57 6.84 2.88 8.20 4.48 0.78
Vis-Ctx 9.34 7.32 3.34 8.69 7.18 2.91 9.76 6.81 1.03

WINNER (Ours) 11.61 14.12 7.40 10.23 11.96 5.46 14.20 17.24 6.12

Table 2. Comparison results between WINNER and fully super-
vised baselines. Notably, WINNER is trained under the weakly
supervised setting.

Methods m vIoU vIoU@0.3 vIoU@0.5

Declarative Sentence Grounding

GroundeR 9.78 11.04 4.09
STPR 10.40 12.38 4.27
WSSTG T 11.36 14.63 5.91
WSSTG L 14.45 18.00 7.89
STGRN 19.75 25.77 14.60

WINNER (Ours) 11.61 14.12 7.40

Interrogative Sentence Grounding

GroundeR 9.32 11.39 3.24
STPR 9.98 11.74 4.36
WSSTG T 10.65 13.90 5.32
WSSTG L 13.36 17.39 7.06
STGRN 18.32 21.10 12.83

WINNER (Ours) 10.23 11.96 5.46

under the weakly supervised setting by aligning the sen-
tence and the video as a whole. (3) WINNER consistently
outperforms baseline methods across different metrics and
datasets. We contribute these merits to the decomposition
of video-text structures, upon which the multi-hierarchy
intra-sample correspondence and inter-sample distinguish-
ment could be achieved, alleviating spurious associations
between multi-modal components.

Comparison with Fully Supervised Methods. We are
interested in how our weakly supervised WINNER model
performs compared to the supervised spatio-temporal video
grounding methods. In this light, we follow [55] to choose
several widely used baselines for comparison. The experi-
ment results on the VidSTG dataset are shown in Table 2.
From this table, we surprisingly find that our weakly su-
pervised WINNER model outperforms several supervised

Table 3. Ablation study of WINNER on the VidSTG dataset. DSA
is the Decomposition Structure Alignment, and SVHU represents
the Structure-guided Video Hierarchical Understanding.

DSA SVHU m vIoU vIoU@0.3 vIoU@0.5

Declarative Sentence Grounding

7.42 7.61 2.60
✓ 9.97 11.65 5.27

✓ 10.89 13.08 6.40

✓ ✓ 11.61 14.12 7.40

Interrogative Sentence Grounding

7.07 7.33 2.78
✓ 8.79 9.66 4.08

✓ 9.65 10.91 5.13

✓ ✓ 10.23 11.96 5.46

baselines (GroundeR and STPR) and achieves comparable
performance to some others (e.g., WSSTG T). These results
further demonstrate the effectiveness of WINNER.

4.3. In-depth Analysis

Ablation Study. We further evaluate the contribution
of the key modules in our WINNER model. In detail, we
surgically remove the Decomposition Structure Alignment
(DSA) and the Structure-guided Video Hierarchical
Understanding (SVHU) from the WINNER model and get
different architectures. Removing DSA would result in a to-
tal loss of sentence-guided video content detection, which
is necessary for grounding. As such, instead of removing
DSA, we replace it with contrastive learning at the word-
tube level without multiple hierarchies. Ablation study re-
sults on the VidSTG dataset are shown in Table 3. Accord-
ing to the results, we have several observations: (1) Re-
moving either SVHU or DSA would lead to a significant
performance drop, which demonstrates the effectiveness of
the two modules in achieving hierarchical video-text under-
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Figure 4. The correlation score between the subject or the infer-
ence (same noun as the subject) in the sentence and the target video
tube changes with the training epochs for our WINNER model and
the ablation base model.

standing and alignment, respectively. (2) When SVHU and
DSA are used in combination, the model performs better
than either alone. It reflects that the two modules can en-
hance each other, and both of them are indispensable.

Spurious Correlation Alleviation. We are interested in
whether the WINNER model successfully improves the al-
leviation of spurious correlations. In this light, we present
the averaged correct correlation scores between the sen-
tence subjects and the ground truth video tubes, as well
as the averaged spurious correlation scores between the in-
terference nouns (same word in the sentence as the subject
but with different context, such as A woman points at
another woman) and the ground truth video tubes. How
to calculate the correlation score is in the appendix. The
averaged correct/spurious correlation scores of the WIN-
NER model and the base model, as illustrated in the ab-
lation study part, across different training epochs are shown
in Figure 4. According to the results, we can find that WIN-
NER could successfully learn to alleviate spurious correla-
tions and improve correct correlations. In contrast, the base
model without hierarchical video-language understanding
still suffers from the spurious correlations between the inter-
ference noun and the ground truth video tube. These results
further demonstrate the rationality of our analysis of spu-
rious correlations and the effectiveness of multi-hierarchy
alignment in the weakly supervised setting.

Case Study. Figure 5 presents the spatial-temporal
grounding results of three cases predicted by the WIN-
NER model. We observe that WINNER precisely lo-
cates the video clips corresponding to the input language
query. In the weakly supervised setting, models would eas-
ily absorb intra-sample spurious correlations among lan-
guage and video components (e.g., another adult in
black and the target video tube in the first case.). WIN-
NER firstly analyzes the language structure, which figures
out the relationships (e.g., leans on) between language
components, upon which WINNER further decomposes
the video structure and conducts multi-hierarchy alignment.
Such a hierarchical understanding of video-language data

Figure 5. Case study of the spatio-temporal grounding results for
the WINNER model.

intuitively helps to alleviate potential spurious correlations
and contributes to the effectiveness under the weakly super-
vised setting.

5. Conclusion

In this paper, we introduce a novel perspective, hierar-
chical video language decomposition and alignment for the
spatio-temporal video grounding task to alleviate the spu-
rious correlation. Then, we propose the WINNER frame-
work, which consists of the cross-modal hierarchical under-
standing and the decomposition structure alignment. Exten-
sive experiments demonstrate the rationality of our analysis
and the effectiveness of WINNER.
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