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Abstract

Understanding the motion behavior of dynamic environ-
ments is vital for autonomous driving, leading to increas-
ing attention in class-agnostic motion prediction in LiDAR
point clouds. Outdoor scenes can often be decomposed into
mobile foregrounds and static backgrounds, which enables
us to associate motion understanding with scene parsing.
Based on this observation, we study a novel weakly su-
pervised motion prediction paradigm, where fully or par-
tially (1%, 0.1%) annotated foreground/background binary
masks are used for supervision, rather than using expen-
sive motion annotations. To this end, we propose a two-
stage weakly supervised approach, where the segmentation
model trained with the incomplete binary masks in Stage1
will facilitate the self-supervised learning of the motion
prediction network in Stage2 by estimating possible mov-
ing foregrounds in advance. Furthermore, for robust self-
supervised motion learning, we design a Consistency-aware
Chamfer Distance loss by exploiting multi-frame informa-
tion and explicitly suppressing potential outliers. Compre-
hensive experiments show that, with fully or partially bi-
nary masks as supervision, our weakly supervised models
surpass the self-supervised models by a large margin and
perform on par with some supervised ones. This further
demonstrates that our approach achieves a good compro-
mise between annotation effort and performance.

1. Introduction
Understanding the dynamics of surrounding environ-

ments is vital for autonomous driving [27]. Particularly,
motion prediction, which generates the future positions of
objects from previous information, plays an important role
in path planning and navigation.

Classical approaches [7, 9, 47] achieve motion predic-
tion by object detection, tracking, and trajectory forecast-
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(a) Ground truth motion data, 
(moving points are colored by their motion,  static points are Gray) 

(b) Fully annotated Foreground/Background masks (Purple: FG; Cyan: BG)

(c) Partially annotated Foreground/ Background masks

Figure 1. Illustration of our weak supervision concept. Out-
door scenes can be decomposed into mobile foregrounds and static
backgrounds, which enables us to achieve motion learning with
fully or partially annotated FG/BG masks as weak supervision to
replace expensive ground truth motion data.

ing. These detection-based approaches may fail when en-
countering unknown categories not included in training
data [42]. To address this issue, many approaches [8,41,42]
propose to directly estimate class-agnostic motion from
bird’s eye view (BEV) map of point clouds and achieve a
good trade-off between accuracy and computational cost.
However, sensors can not capture motion information in
complex environments [27], which makes motion data
scarce and expensive. Therefore, most existing real-world
motion data are produced by semi-supervised learning
methods with auxiliary information, e.g., KITTI [10, 27],
or bootstrapped from human-annotated object detection and
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tracking data, e.g., Waymo [16]. To circumvent the de-
pendence on motion annotations, PillarMotion [26] utilizes
point clouds and camera images for self-supervised motion
learning. Although achieving promising results, there is
still a large performance gap between the self-supervised
method, PillarMotion, and fully supervised methods.

Outdoor scenes can often be decomposed into moving
objects and backgrounds [27], which enables us to asso-
ciate motion understanding with scene parsing. As shown
in Fig. 1 (a) and (b), with ego-motion compensation, motion
only exists in foreground points. Therefore, if we distin-
guish the mobile foregrounds from the static backgrounds,
we can focus on mining valuable dynamic motion super-
vision from these potentially moving foreground objects,
leading to more effective self-supervised motion learning.
Based on this intuition, we propose a novel weakly super-
vised paradigm, where expensive motion annotations are
replaced by fully or partially (1%, 0.1%) annotated fore-
ground/background (FG/BG) masks to achieve a good com-
promise between annotation effort and performance. To
this end, we design a two-stage weakly supervised motion
prediction approach, where we train a FG/BG segmenta-
tion network with partially annotated masks in Stage1 and
train a motion prediction network in Stage2. Specifically, in
Stage2, the segmentation network from Stage1 will gener-
ate foreground points for training samples, so that the mo-
tion prediction network can be trained on these foreground
points in a self-supervised manner.

In self-supervised 3D motion learning [18, 26, 44],
Chamfer distance (CD) is preferred. However, the CD
is sensitive to outliers [37]. Unfortunately, outliers are
common in our setting. This is partly due to the view-
changes, occlusions, and noise of point clouds and also
due to the possible errors in the FG points estimated by
the FG/BG segmentation network. To alleviate the impact
of outliers, we propose a novel Consistency-aware Cham-
fer Distance (CCD) loss. Different from the typical CD
loss, our CCD loss exploits supervision from multi-frame
point clouds and leverages multi-frame consistency to mea-
sure the confidence of points. By assigning uncertain points
lower weights, our CCD loss suppresses potential outliers.

Our main contributions can be summarized as follows:

• Without using expensive motion data, we propose a
weakly supervised motion prediction paradigm with
fully or partially annotated foreground/background
(FG/BG) masks as supervision to achieve a good com-
promise between annotation effort and performance.
To the best of our knowledge, this is the first work on
weakly supervised class-agnostic motion prediction.

• By associating motion understanding with scene pars-
ing, we present a two-stage weakly supervised mo-
tion prediction approach, where the FG/BG segmen-

tation generated from Stage1 will facilitate the self-
supervised motion learning in Stage2.

• We design a novel Consistency-aware Chamfer Dis-
tance loss, where multi-frame information is used to
suppresses potential outliers for robust self-supervised
motion learning.

• With FG/BG masks as weak supervision, our weakly
supervised models outperform the self-supervised
models by a large margin, and performs on par with
some supervised ones.

2. Related Work

Motion prediction. Classical approaches achieve motion
prediction by detecting potential traffic participants and es-
timating their future trajectories [2,6,7,9,12,24,30,46,47].
However, the object detectors used in these approaches may
impair the performance of trajectory prediction, especially,
when the detectors encounter unknown categories not con-
tained in training data. To predict class-agnostic motion in
open-set traffic scenarios, many recent works [8, 19, 26, 32,
41,42] attempt to represent the 3D environments with bird’s
eye view (BEV) map of point clouds. PillarFlow [19] ap-
plies a 2D flow structure, PWC-Net [35], to establish corre-
lations on BEV embeddings for motion estimation. Motion-
Net [42] and BE-STI [41] propose to jointly predict seman-
tic categories and future motion from BEV features. In this
work, we adopt the networks designed in MotionNet [42] as
our backbone modules.

To overcome the reliance on motion annotations, Pil-
larMotion [26] proposes a self-supervised method, where
Chamfer distance loss and 2D optical flow from camera im-
ages are used for training. However, there is still a large
performance gap to supervised approaches. Different from
PillarMotion, our work explores weakly supervised motion
prediction, where only foreground/background masks are
used as weak supervision to achieve a good compromise be-
tween annotation effort and performance. Additionally, we
propose a consistency-aware Chamfer loss, which is more
robust to outliers than the typical Chamfer loss used in [26].

Scene flow estimation. Scene flow estimation [38],
which aims to produce a 3D motion field, could be a rea-
sonable alternative to reason about the class-agnostic mo-
tion. However, the huge computational cost of the most
scene flow networks [3,5,11,20–22,25,40,44] hinders their
applicability in real-time autonomous driving scenario.

Weakly supervised scene flow estimation methods [5,11]
are related to our work. Compared with them, our work
is different in three aspects: (1) the purpose is different.
The goal of our work is to forecast future motion based
on past and current observations, but these methods focus
on estimating current motion; (2) our supervision is much
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weaker than theirs. Our work can achieve weakly super-
vised motion learning with partially (1%, 0.1%) annotated
FG/BG masks, however, these methods rely on fully an-
notated masks; (3) we design a novel Consistency-aware
Chamfer loss for motion learning by exploiting multi-frame
information and suppressing outliers, which exhibits better
robustness than the Chamfer loss used in [5, 11]. In par-
ticular, although the most self-supervised and weakly su-
pervised scene flow methods [5, 11, 21, 22, 44] alleviate the
dependence on ground truth data, the scene flow networks
adopted in those methods may fail to run in real-time.

3. Problem Formulation of Weakly Supervised
Motion Prediction

For a sequence of consecutive LiDAR sweeps, follow-
ing previous works [41, 42], we first synchronize all point
clouds to the current frame. Each synchronized point cloud
at frame τ is denoted as Pτ = {pτ (i) ∈ R3}Nτi=1, where Nτ
is the number of points. Then, we quantize Pτ into regular
3D voxels Vτ ∈ {0, 1}H×W×C , where 0 represents empty
voxel, 1 represents non-empty voxel, and H , W , C are the
numbers of voxels along X , Y , Z axis. By treating the bi-
nary vector along the Z axis as features, Vτ can be viewed
as a bird’s eye view (BEV) map of size H ×W .

Given the current BEV map at frame t and T past BEV
maps, {Vτ}t−Tτ=t , the task of motion prediction aims to pro-
duce a BEV future motion field Xmot,t ∈ RH×W×2 for the
frame t, where each element describes the motion of this
cell to its corresponding position at next timestamp. Fur-
thermore, by assigning the motion of each cell to all points
within this cell, we map Xmot,t to point level and get per-
point motion prediction Ft ∈ RNt×3, where the vertical
motion is set to zero. This process is formulated as:

Ft = Ut[Xmot,t;~0], (1)

where Ut ∈ {0, 1}Nt×HW is the assignment matrix derived
from the spatial relationship between Pt and Vt.

In our weakly supervised setting, without motion data,
we study how to use fully or partially (1%, 0.1%) annotated
foreground/background (FG/BG) masks for motion learn-
ing. Specifically, in our work, the partially annotated points
are randomly sampled from each point cloud.

4. Method
As shown in Fig. 2, our weakly supervised motion pre-

diction approach contains two stages. In Stage1, we train
a FG/BG segmentation network, PreSegNet, using partially
annotated FG/BG masks as supervision. In Stage2, we train
a motion prediction network, WeakMotionNet, with two
output heads: a motion prediction head and an auxiliary
FG/BG segmentation head. In the training of motion pre-
diction head, for each training sample {Vτ}t−Tτ=t , we first

select three consecutive point clouds from the past (-1), cur-
rent (0) and future (+1) timestamps. And then, we use the
trained PreSegNet to generate FG/BG points for the three
frames. Based on the generated FG/BG points, we em-
ploy a novel Consistency-aware Chamfer loss function for
self-supervised motion learning. In the training of auxiliary
FG/BG segmentation head, we also adopt partially anno-
tated FG/BG masks as supervision. The training of the two
heads in WeakMotionNet is performed simultaneously.

In this section, we first revisit the Chamfer loss in 3D
motion tasks (Sec. 4.1) and then discuss the details about
our proposed Consistency-aware Chamfer Distance loss
(Sec. 4.2). Finally, we will introduce the architecture of the
two networks and present their training strategies (Sec. 4.3).

4.1. Preliminaries: Chamfer Loss in 3D Motion

Chamfer Distance (CD) is widely used in various point
cloud tasks, such as completion [43], generation [45], re-
construction [4], and 3D motion perception [5,13,15,18,23,
26, 28, 31, 39, 44]. Given two consecutive point sets S1 and
S2, and the predicted per-point motion SF from models,
the Chamfer Distance loss for self-supervised 3D motion
learning can be defined as:

Ŝ1 =S1 + SF ,

LCD(Ŝ1,S2)=
1

|Ŝ1|

∑
x∈Ŝ1

min
y∈S2

||x−y||22+
1

|S2|
∑

y∈S2

min
x∈Ŝ1

||y−x||22,

(2)

where Ŝ1 is the warped first point set using the predicted
motion. By minimizing the CD between Ŝ1 and S2, the
models learn to predict the motion that moves the first point
set toward the second set.

4.2. Consistency-aware Chamfer Distance Loss

In motion prediction, point clouds are synchronized and
motion only exists in foreground points. Therefore, in
Stage2, we use the trained PreSegNet from Stage1 to gener-
ate possible foreground (FG) and background (BG) points
of training samples, and train the motion prediction head
of WeakMotionNet on the potentially moving foreground
points for more effective self-supervised motion learning.

In self-supervised motion learning, Chamfer Distance
(CD) loss could be a choice. However, the CD is sensitive
to outliers [37]. Unfortunately, outliers are quite common
in this task. To alleviate the impact of outliers, we propose
a novel Consistency-aware Chamfer Distance (CCD) loss
function. Compared with the original CD loss (Eq. (2)), Our
CCD loss is improved in three aspects. (1) Our CCD min-
imizes not only the distance between the forward warped
current data and the future data, but also the distance be-
tween the backward warped current data and the past data.
Therefore, our CCD can mine supervision from multi-frame
information. (2) Our CCD employs multi-frame consis-
tency to measure the confidence of points and assigns uncer-
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Binary Cross-
entropy Loss

Binary Cross-
entropy Loss

Stage1: Training of PreSegNet (weakly supervised training)

2D BEV maps

WeakMotionNet

PreSegNet
from Stage1

(Params frozen)

Single 2D BEV map

PreSegNet

Predicted foreground/background (FG/BG) mask Partially annotated FG/BG ground truth

Partially annotated FG/BG ground truth (Purple: FG; Cyan: BG) 

Generated 3D BG points, 𝑃!"#

Three single 2D BEV maps from 
consecutive timestamps: -1, 0, +1

Generated 3D FG points, 𝑷$𝟏𝑭𝑮, 𝑷𝟎𝑭𝑮, 𝑷)𝟏𝑭𝑮
(Colors indicate different timestamps)

Stage2: Training of WeakMotionNet
(Motion head: self-supervised training, FG/BG seg. head: weakly supervised training) 

tim
e

Predicted 2D BEV map, 𝑿𝐟𝐛, 𝑿𝐦𝐨𝐭
(Color: FG/BG; Arrow: motion)

Motion Loss
(Consistency-aware

Chamfer)

Figure 2. Overview of our two-stage weakly supervised motion prediction approach. In Stage1, we train a foreground/background (FG/BG)
segmentation network, PreSegNet, with partially annotated masks. In Stage2, we train a motion prediction network, WeakMotionNet,
which takes a sequence of synchronized BEV maps as input and predicts FG/BG category Xfb and future motion displacement Xmot of
each cell. Without motion data, we generate the FG/BG points by the trained PreSegNet from Stage1 and employ a Consistency-aware
Chamfer loss with the generated points to train the motion prediction head of WeakMotionNet in a self-supervised manner.

𝑷𝟎
𝑷"𝟏

𝑷$𝟏
𝑝! 𝑖

𝑦" 𝑖𝑦# 𝑖

(a) point with high confidence

𝑝! 𝑖

𝑦" 𝑖𝑦# 𝑖

Past frame Current frame Future frame

(b) point with low confidence

Figure 3. Illustration of confidence estimation. Confidence of
each point is measured by the consistency between its forward and
backward pseudo motion labels.

tain points fewer weights to suppress potential outliers. (3)
Our CCD adopt L1-norm to calculate the distance between
two point clouds, making CCD more robust to outliers.

For each training sample, we denote the generated fore-
ground points from the past (-1), current (0) and future (+1)
timestamps as P FG

−1 ,P
FG
0 ,P FG

+1 , respectively, and denote
the predicted motion of the generated foreground points in
the current timestamp as F FG

0 . And the per-point motion
F FG is obtained by mapping the predicted BEV motion
field Xmot into point level. Note that for simplicity, we
omit the FG in this subsection.
Warping the predicted foreground points. Supposing
that the motion of objects is consistent within a short tempo-
ral window, we obtain the forward warped FG points in cur-
rent frame P̂0,f by warping the predicted current FG points
P0 with their predicted motion F0, and obtain the backward

warped FG points P̂0,b by warping P0 with the inverse of
their predicted motion -F0:

P̂0,f = P0 + F0, P̂0,b = P0 − F0. (3)

Estimating the confidence of points. The CD loss min-
imizes the distance between the warped current data and
the future data. Specifically, for a point, the CD loss finds
its closest point in the other point cloud as correspondence,
and uses the coordinate difference as pseudo label to ap-
proximate motion ground truth of this point.

A reliable data point should have a consistent pseudo
motion label within a short time window. Based on this
intuition, given point clouds from three consecutive times-
tamps, our CCD generates forward and backward pseudo
labels and uses the consistency to measure the confidence
of this point. An example is shown in Fig. 3. By reweight-
ing our loss function with the confidence, data points with
consistent pseudo labels will dominate the training and the
outliers will be suppressed. Table 4 shows the effectiveness
of the confidence reweighting and Fig. 5 provides a visual-
ization example. The confidence generation for each point
in P0 can be formulated as follows:

yf (i) = arg min
s∈P+1

‖s− p̂0,f (i)‖2 − p0(i), (4)

yb(i) = arg min
s∈P–1

‖s− p̂0,b(i)‖2 − p0(i), (5)

w0(i) = exp(
−‖yf (i) + yb(i)‖22

2θ2
). (6)

In Eq. (4), for a point p0(i) in P0, we find the closest
point in P+1 to p̂0,f (i) as the correspondence of p0(i), and
take the coordinate difference as the forward pseudo label
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yf (i). Based on the same strategy, in Eq. (5), we also ob-
tain its backward pseudo label yb(i). After that, by taking
the consistency between yf (i) and yb(i) as a metric, we use
a Gaussian kernel to generate its confidence score w0(i) in
Eq. (6). In our experiments, we set θ2 to 0.5.

According to the confidence map w0 for P0, the con-
fidence map for P+1 and P–1 can be obtained by nearest
search. Here is an example of generating confidence score
for a point p+1(j) in P+1:

I+1(j) = arg min
i∈{1,...,N0}

‖p+1(j)− p̂0,f (i)‖2, (7)

w+1(j) = w0(I+1(j)). (8)

In Eq. (7), for a point p+1(j) in P+1, we find its closest
point in P̂0,f and get the index of this closest point, I+1(j).
Then, in Eq. (8), we take the confidence score of its closest
point as the confidence score w+1(j) for p+1(j).
Formulation. The Consistency-aware Chamfer Distance
(CCD) loss function can be written as:

LCCD(P–1,P0,P+1,F ) = LSCCD(P̂0,b,P–1,w0,w–1)

+LSCCD(P̂0,f ,P+1,w0,w+1),
(9)

where the first term minimizes the distance between the
backward warped current points and the past points, and the
second term minimizes the distance between the forward
warped current points and the future points. Taking the sec-
ond term as an example, the LSCCD can be formulated as:

LSCCD(P̂0,f ,P+1,w0,w+1)=
1

‖w0‖1

N0∑
i=1

w0(i) min
s∈P+1

‖p̂0,f (i)−s‖1

+
1

‖w+1‖1

N+1∑
j=1

w+1(j) min
s∈P̂0,f

‖p+1(j)− s‖1.

(10)
LSCCD can be viewed as a weighted Chamfer loss, with
confidence map as weight to suppress potential outliers and
L1-norm as metric to measure distance.

4.3. Network Implementation

4.3.1 Pre-segmentation Network (PreSegNet)

PreSegNet is a foreground/background (FG/BG) segmenta-
tion model with a backbone network and a FG/BG segmen-
tation head. For the backbone network, we adopt the back-
bone structure in Motionnet [42] and remove the temporal
convolution in each block to make it fit for single frame
segmentation. For the FG/BG segmentation head, we adopt
two-layer 2D convolutions.
Training. In each frame τ , the point cloud Pτ is quan-

tized into a single BEV map Vτ , and the PreSegNet takes
Vτ as input and predicts its FG/BG category map Xfb,τ .
In our weakly supervised setting, the ground truth labels
are only available in a tiny fraction of points in Pτ . To
train the PreSegNet with incomplete point-wise supervi-
sion, we first map Xfb,τ to point level and get per-point

category predictions Bfb,τ . This process is formulated as:
Bfb,τ = UτXfb,τ , where Uτ is a 0–1 assignment matrix
derived from the spatial relationship between Pτ and Vτ .
Then, the classification loss in Stage1 can be written as:

Lcls =
1

|Rτ |
∑
i∈Rτ

ατ (i) · CE(bfb,τ (i), bgtfb,τ (i)), (11)

whereRτ is the set of labeled points in Pτ , CE(·) is a cross-
entropy loss, bfb,τ (i) is the predicted FG/BG category of
point i, and bgtfb,τ (i) is its ground truth label. Specifically,
ατ (i) is the weight assigned to different categories. ατ (i)
is 0.005 if the ground truth label of point i is background
(BG); otherwise, 1.

4.3.2 Motion Prediction Network (WeakMotionNet)

WeakMotionNet is a motion prediction network containing
a backbone network, a motion prediction head, and an aux-
iliary FG/BG segmentation head. We implement the back-
bone network using the same structure as the one in Mo-
tionNet [42] and implement the two output heads with two-
layer 2D convolutions. More details about PreSegNet and
WeakMotionNet are in supplementary.
Training. In each frame t, the WeakMotionNet takes a

sequence of synchronized BEV maps {Vτ}t−Tτ=t as input and
predicts the future motion map Xmot,t and FG/BG category
map Xfb,t of frame t. Using the assignment matrix Ut, we
get the point-wise motion Ft and category Bfb,t, as pre-
sented in Eq. (1).

In the training of motion prediction head, we select three
consecutive point clouds from the past (t-1), current (t)
and future (t+1) timestamps, and use the trained PreSeg-
Net from Stage1 to generate their FG/BG points. Specially,
in our experiments, we set the time span between two times-
tamps to 0.5s. Since the point clouds are synchronized, we
treat the generated BG points as static and only apply the
CCD loss on the generated FG points, P FG

t-1 ,P
FG
t ,P FG

t+1 .
Therefore, the motion loss contains two parts:
Lmot = LCCD(PFG

t-1 ,PFG
t ,PFG

t+1 ,FFG
t ) + Lmot,BG(FBG

t ), (12)

where the first term is the CCD loss (Eq. (9)) for the pre-
dicted motion of the generated FG points, F FG

t , and the
second term is for the predicted motion of the generated BG
points, FBG

t . Regarding the generated BG points as static,
we train their predicted motion, FBG

t , to be zero:

Lmot,BG(FBG
t ) =

1

NBG
t

NBG
t∑
i=1

‖fBG(i)− ~0‖1, (13)

where NBG
t is the number of the generated BG points.

In the training of auxiliary FG/BG segmentation head,
we use the same classification loss (Eq. 11) and follow the
same strategy used in Sec. 4.3.1. The total loss for Stage2
is the combination of the two loss functions:

LStage2 = Lcls + Lmot. (14)
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Table 1. Evaluation results of motion prediction on nuScenes test set. Full., Self., Weak., refer to fully-supervised, self-supervised, and
weakly supervised training respectively. With fully (100%) or partially (1%, 0.1%) annotated FG/BG masks as weak supervision, our
models outperforms the self-supervised model by a large margin, and performs on par with some supervised ones, which demonstrates that
our approach achieves a good compromise between annotation effort and performance.

Method Supervision Modality Static Speed ≤ 5m/s Speed > 5m/s
Mean ↓ Median ↓ Mean ↓ Median ↓ Mean ↓ Median ↓

FlowNet3D [25] Full. LiDAR 0.0410 0 0.8183 0.1782 8.5261 8.0230
HPLFlowNet [14] Full. LiDAR 0.0041 0.0002 0.4458 0.0960 4.3206 2.4881
PointRCNN [34] Full. LiDAR 0.0204 0 0.5514 0.1627 3.9888 1.6252
LSTM-ED [33] Full. LiDAR 0.0358 0 0.3551 0.1044 1.5885 1.0003
PillarMotion [26] Full. LiDAR+Image 0.0245 0 0.2286 0.0930 0.7784 0.4685
MotionNet [42] Full. LiDAR 0.0201 0 0.2292 0.0952 0.9454 0.6180
BE-STI [41] Full. LiDAR 0.0220 0 0.2115 0.0929 0.7511 0.5413
PillarMotion [26] Self. LiDAR+Image 0.1620 0.0010 0.6972 0.1758 3.5504 2.0844
Ours (0.1%) Weak. (0.1% FG/BG masks) LiDAR 0.0426 0 0.4009 0.1195 2.1342 1.2061
Ours (1%) Weak. (1% FG/BG masks) LiDAR 0.0558 0 0.4337 0.1305 1.7823 1.0887
Ours (100%) Weak. (100% FG/BG masks) LiDAR 0.0243 0 0.3316 0.1201 1.6422 1.0319

Table 2. Results of FG/BG segmentation on nuScenes test set.
Method FG Acc. ↑ BG Acc. ↑ Overall Acc. ↑
Ours (0.1%) 83.5% 96.0% 95.2%
Ours (1.0%) 91.0% 95.7% 95.4%
Ours (100%) 93.8% 94.5% 94.4%

In inference, we will regularize the final motion predictions
by setting the motion of predicted background areas to zero.

5. Experiments

In this section, we first compare our models with SOTA
supervised and self-supervised motion prediction methods
in Sec. 5.1. And then, we conduct ablation studies to ana-
lyze the effectiveness of each component in Sec. 5.2.
Dataset. The main experiments are conducted on
nuScenes [1], a large-scale autonomous driving dataset.
Following previous works [26,41,42], we adopt 500 scenes
for training, 100 for validation, and 250 for testing. For
each scene, we utilize the LiDAR point clouds as input.
In the training stage, We use the officially annotated fore-
ground and background labels as weak supervision. In the
validation and testing stage, we generate motion data from
detection and tracking annotations provided by nuScenes as
ground truth for evaluation. Also, we apply our approach to
Waymo Open Dataset [36]. Specifically, we extract 14,351
samples from training set for training and 3,634 from vali-
dation set for testing. More details are in supplementary.
Implementation details. Following the same data pre-
processing settings in [41, 42], we crop each input point
cloud in the range of [−32, 32]× [−32, 32]× [−3, 2] meters
and set the voxel size to be (0.25, 0.25, 0.4)m for nuScenes.
For Waymo, we set range to [−32, 32]×[−32, 32]×[−1, 4].

In Stage1, we train the FG/BG segmentation network,
PreSegNet, with partially annotated FG/BG masks as su-
pervision for 40 epochs. We set the batchsize to 16 and use
Adam [17] with an initial learning rate of 0.0005, which is
decayed by 0.5 after every 10 epochs.

In Stage2, we train the motion prediction network,
WeakMotionNet, with a sequence of point clouds as in-
put. For fair comparisons with [26, 41, 42], we set the se-

Table 3. Motion prediction results on Waymo Dataset
Method Supervision Static Speed ≤ 5m/s Speed > 5m/s
MotionNet [42] Full. 0.0263 0.2620 0.9493
Ours (0.1%) Weak.(0.1% FG/BG masks) 0.0297 0.3581 1.6362
Ours (1.0%) Weak.(1.0% FG/BG masks) 0.0334 0.3458 1.5655
Ours (100%) Weak.(100% FG/BG masks) 0.0219 0.3385 1.6576

quence length to 5. Each input sequence contains 1 current
frame and 4 past frames, and the time span between each
two consecutive frames is 0.2s. Following [26], the Weak-
MotionNet is designed to output the displacement for the
next 0.5s as the predicted motion. Correspondingly, in self-
supervised motion learning, the past frame and the future
frame are point clouds in the past 0.5s and the next 0.5s,
respectively. And the trained PreSegNet from Stage1 will
generate FG and BG points for the past, current, and future
frames. Note that, when using fully annotated masks as su-
pervision, we omit the Stage1 and directly use the ground
truth FG and BG points for self-supervised motion learning.
We train the WeakMotionNet for 60 epochs with an initial
learning rate of 0.0005, and we decay it by 0.5 after every
10 epochs. We set the batchsize to 8 and use Adam as opti-
mizer. Our method is implemented in PyTorch [29]. More
experimental details are contained in supplementary.
Evaluation metrics. For the motion prediction, following
previous works [26, 41, 42], we divide non-empty cells into
three groups: static, slow (≤ 5m/s), fast (≥ 5m/s) and
evaluate the mean and median errors on each group. Er-
rors are measured by L2 distances between the predicted
displacements and the ground truth displacements for the
next 1s. The outputs of our WeakMotionNet are the dis-
placements for the next 0.5s. Therefore, we assume that the
speed is constant within a short time windows and linearly
interpolate the outputs to the next 1s for evaluation. For
the FG/BG segmentation, we measure the accuracy of each
category (Acc.) and overall classification accuracy (Overall
Acc.), i.e., the average accuracy over all non-empty cells.

5.1. Comparison with State-of-the-Art Methods

In Table 1, we compare our weakly supervised ap-
proach with various SOTA motion prediction methods on
nuScenes [1]. PillarMotion [26] is the best self-supervised
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Figure 4. Qualitative results of motion prediction and foreground/background segmentation on nuScenes. Top: ground-truth. Middle:
results of our method trained by 100% annotated FG/BG masks. Bottom: results of our method trained by 1% annotated masks. We show
motion with an arrow attached to each cell and represent different category with different color. Purple: Foreground; Cyan: Background.

Table 4. Ablation study for Consistency-aware Chamfer Distance (CCD) loss under the FG/BG annotation ratio of 1%.

Loss function in WeakMotionNet L2-norm L1-norm Future Past Confidence Auxiliary FG/BG Static Speed ≤ 5m/s Speed > 5m/s
Frame Frame Reweight Segmentation Mean Error ↓

Chamfer loss (Baseline) X X 0.4416 0.8087 2.3981
Chamfer-L1 X X 0.2579 (−42%) 0.5110 (−37%) 2.1229 (−11%)
Multi-frame Chamfer-L1 X X X 0.2677 (−39%) 0.5240 (−35%) 1.7436 (−27%)
Consistency-aware Chamfer X X X X 0.1469 (−67%) 0.4390 (−46%) 1.7729 (−26%)
Consistency-aware Chamfer + Seg. (Ours, 1%) X X X X X 0.0558 (−87%) 0.4337 (−46%) 1.7823 (−26%)

method, which utilizes an off-the-shelf optical flow estima-
tion network and additional 2D images for training. Without
using any knowledge from images or optical flow, our mod-
els trained by 1% or 0.1% annotated FG/BG masks outper-
form the self-supervised PillarMotion by about 35% on all
evaluation metrics. Comparing our weakly supervised mod-
els with fully supervised models, we observe that our mod-
els perform better than FlowNet3D [25], HPLFlowNet [14],
and PointRCNN [34] on both slow and fast speed groups.
Especially, our models outperform fully supervised scene
flow models, FlowNet3D and HPLFlowNet, by about 70%
and 50% on the fast speed group, respectively. The compar-
isons show that our weakly supervised approach achieves
a good compromise between annotation effort and perfor-
mance and reduces the gap to fully supervised approaches.

The performance of the FG/BG segmentation head of
WeakMotionNet is shown in Table 2. Despite being trained
with a tiny fraction of annotated masks (1% or 0.1%), our
models can distinguish foreground and background with
high overall accuracy (about 94%). Qualitative results are
shown in Fig. 4. More visualization results are in supple-
mentary. With a sequence of BEV maps as input, our Weak-
MotionNet takes 16ms for inference in a RTX A5000 GPU.

For further evaluation, we also apply our weakly super-
vised approach to Waymo [36]. As presented in Table 3,
the mean errors of our weakly supervised models with dif-

Table 5. Impact of different data format in CCD loss
Data format in CCD loss Static Speed ≤ 5m/s Speed > 5m/s
2D BEV 0.0587 0.5302 2.8176
3D Point (Ours, 1%) 0.0558 0.4337 1.7823

ferent annotation ratios are less than 0.04m, 0.4m and 1.7m
on static, slow, and fast groups, respectively. FG/BG seg-
mentation and visualization results are in supplementary.

5.2. Ablation Studies
In this subsection, we evaluate the effectiveness of our

approach on nuScenes.
Ablation study for Consistency-aware Chamfer Dis-
tance loss. For robust self-supervised motion learning, we
design a Consistency-aware Chamfer loss with L1-norm as
distance metric, multi-frame point clouds for supervision,
and multi-frame consistency for reweighting. As presented
in Table 4, compared with the Chamfer loss, the baseline
method, our Chamfer-L1 loss with L1-norm as distance
metric reduces the prediction error on the three groups by
42%, 37%, and 11%, respectively. When adding point
clouds from the past frame as part of the target data, our
multi-frame Chamfer-L1 loss further decreases the error on
the fast speed group from 2.12m to 1.74m. Moreover, on
the basis of the multi-frame loss, by using multi-frame con-
sistency for reweighting, our Consistency-aware Chamfer
loss drops the error by an additional 28% and 11% for the
static and slow groups, respectively. The results in Table 4

17605



A A A

B B B

(a) Ground truth foreground points (b) Predicted foreground points from PreSegNet (0.1%) (c) Reweighted foreground points by CCD loss

Figure 5. Visualization for PreSegNet and CCD loss. Outliers may be due to occlusions of points (e.g., region A), and inaccurate foreground
predictions from PreSegNet (e.g., region B). In our CCD loss, we use multi-frame consistency to measure the confidence of points and
assign uncertain points fewer weights, thereby suppressing potential outliers. For better visualization, we remove points with lower weights
in (c). Different color represents point cloud in different frames. Blue: past frame; Purple: current frame; Orange: future frame.

Table 6. Effectiveness of two-stage training framework
Method Static Speed ≤ 5m/s Speed > 5m/s
1% masks w/o Stage1 1.1976 3.1904 8.9025
1% masks with Stage1 (Ours) 0.0558 0.4337 1.7823

indicate that our Consistency-aware Chamfer loss achieves
substantial improvements compared to the Chamfer loss.

Furthermore, to regularize the predicted motion, we also
use an auxiliary FG/BG segmentation head for WeakMo-
tionNet and set the motion of predicted background areas to
zero. As shown in Table 4, by combining our Consistency-
aware Chamfer loss with a FG/BG segmentation loss, we
observe a significantly lower error on static group. In sup-
plementary, we further provide an ablation of the CCD loss
and the segmentation loss under different annotation ratios.

In the training of WeakMotionNet, we map the predicted
BEV motion field Xmot,t to point level, and apply our loss
to the point-wise motion predictions Ft and 3D point clouds
for self-supervised motion learning. In Table 5, we com-
pare our design with an alternative approach, where we di-
rectly apply the loss function to BEV motion field and BEV
maps. As presented in Table 5, mapping predictions to point
level and applying the loss to 3D points works best, which
demonstrates the effectiveness of our design.
Ablation study for two-stage training framework. To
enable weakly supervised learning with partially annotated
FG/BG masks, we design a two-stage framework, where
a FG/BG segmentation network, PreSegNet, in Stage1 is
trained with these incomplete masks and further generates
dense FG/BG masks to facilitate the self-supervised motion
learning of WeakMotionNet in Stage2. The ablation results
for two-stage framework are in Table 6. Without using Pre-
SegNet from Stage1, an alternative approach is to generate
dense FG/BG masks from the segmentation head of Weak-
MotionNet online during training. As shown in Table 6, this
alternative approach performs significantly worse than our
framework. This may be because, during training, the un-
dertrained segmentation head is more likely to generate in-
accurate FG/BG masks, thereby hindering self-supervised
motion learning. Table 7 presents the results of our PreSeg-
Net on nuScenes validation set. Despite being trained with
1% or 0.1% annotated masks, our PreSegNet still achieves
a good segmentation accuracy of foreground areas (about
93%). Qualitative results of PreSegNet are in supplemen-

Table 7. Results of foreground/background segmentation pro-
duced by PreSegNet in Stage1 on nuScenes validation set.

Method FG Acc. ↑ BG Acc. ↑ Overall Acc. ↑
PreSegNet (0.1% FG/BG masks) 93.1% 89.5% 89.7%
PreSegNet (1.0% FG/BG masks) 94.6% 92.0% 92.2%

tary. Accurate foreground segmentation from PreSegNet
makes our CCD loss able to be applied in most mobile ob-
jects, ensuring the performance of moving objects.
Visualization for PreSegNet and CCD loss. In Fig. 5, we
provide a visualization example of training data. In our
weakly supervised motion prediction, outliers may be due
to occlusion of points (e.g., region A), and inaccurate fore-
ground predictions from PreSegNet (e.g., region B), which
may further impair the training. To address this issue, in
our CCD loss, we use multi-frame consistency to measure
the confidence of points and assign uncertain points fewer
weights, thereby suppressing potential outliers. As shown
in Fig. 5(c), the number of outliers in region A and B is re-
duced. More visualization examples are in supplementary.

6. Conclusion
In this work, we study weakly supervised motion pre-

diction with FG/BG masks as supervision. Specifically,
we present a two-stage approach and a Consistency-aware
Chamfer Distance (CCD) loss. Experiments show that our
weakly supervised models surpass self-supervised ones and
perform on par with some supervised ones, yielding a good
compromise between annotation effort and performance.
Limitations. (1) The self-supervised motion learning in
Stage2 relies on the FG/BG segmentation from Stage1,
which makes inaccurate segmentation hinder motion
learning. (2) The CCD loss may fail to handle large
displacements. More discussions are in supplementary.
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