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Abstract 

Recovery of an underlying scene geometry  from multi- 

view images stands as a long-time challenge in computer 

vision research. The  recent promise leverages neural  im-  

plicit surface learning  and differentiable volume  rendering,  

and achieves both the  recovery  of scene geometry and syn-  

thesis of novel views, where deep  priors of neural  models 

are used as an inductive  smoothness bias. While promising 

for object-level  surfaces,  these methods suffer  when  coping 

with complex  scene surfaces.  In the  meanwhile,  traditional 

multi-view stereo  can recover  the  geometry  of scenes with 

rich textures, by globally optimizing  the local, pixel-wise 

correspondences across  multiple  views.  We are thus moti-  

vated to make use  of the  complementary benefits  from the 

two strategies,  and propose a method termed  Helix-shaped 

neural implicit  Surface learning or HelixSurf;  HelixSurf  

uses the intermediate prediction from one strategy as the 

guidance to regularize  the  learning of the  other  one,  and  

conducts such intertwined  regularization iteratively during 

the learning process.  We also propose  an  efficient scheme 

for differentiable volume  rendering in HelixSurf. Experi- 

ments on surface reconstruction of indoor  scenes show that 

our method compares  favorably with existing methods and  

is orders of magnitude faster, even when  some of exist-  

ing methods are assisted  with auxiliary training data.  The  

source code is available at https://github.com/Gorilla-Lab- 

SCUT/HelixSurf. 

1. Introduction  

Surface reconstruction of a  scene from a  set  of  ob- 

served multi-view images stands  as a  long-term challenge 

in computer vision research. A  rich literature [4, 11, 15]  ex- 

ists to address the  challenge, including different  paradigms 

of methods from stereo  matching to volumetric  fusion.
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(a) Results of HelixSurf on an  example scene from ScanNet  at three training  check-  

points, where we use color  codes  to  visualize surface normals.
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(b) Training curves of different methods  on ScanNet. The  empirical training  time of 

each method is measured  on a machine with a  single NVIDIA RTX 3090 GPU.  

Figure  1.  Efficacy and efficiency  of our proposed  HelixSurf. 

Among them, the  representative  methods of multi-view 

stereo (MVS) [12,37,44,52] first recover  the  properties (e.g, 

depth and/or normal) of  discrete  surface points, by globally 

optimizing the local,  pixel-wise  correspondences across the 

multi-view images,  where photometric and geometric con- 

sistencies across views are used as  the  optimization cues, 

and a  continuous  fitting method (e.g., Poisson reconstruc- 

tion [17, 18]) is then  applied to recover  a complete surface. 

MVS methods usually make  a  reliable recovery only on  sur- 

face areas with rich textures. 

More recently,  differentiable volume rendering is  pro- 

posed that  connects the  observed multi-view  images with 

neural modeling of  the implicit surface and radiance field 

[28, 41, 48]. They show  a  surprisingly  good  promise for re- 

covery of object-level surfaces, especially when the object
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masks are available in the observed images [24,49]; indeed, 

these methods  favor a  continuous, closed surface given that  

a single deep network is used to model  the scene space,  

whose deep prior induces  a  smoothness  bias  for surface re- 

covery [41, 48]. For complex scene surfaces,  however, the 

induced smoothness bias is  less  capable to regularize the 

learning and recover  the scene surface with fine geometry 

details [34, 51]. 

To overcome the  limitation, we  observe that the strate- 

gies from the two paradigms  of  MVS and neural implicit 

learning are different but potentially  complementary to the 

task. We are thus motivated to make use  of  the  comple- 

mentary benefits with an integrated solution. In  this work, 

we achieve the goal technically by  using the intermediate 

prediction from one strategy as  the guidance to regularize 

the learning/optimization  of  the other one,  and conducting  

such intertwined  regularization iteratively  during  the pro- 

cess. Considering that the iterative  intertwined regulariza- 

tion makes the optimization curve as  a  shape  of  double he- 

lix, we term our  method as  Helix-shaped neural  implicit 

Surface learning or HelixSurf . Given  that MVS predictions  

are less reliable for textureless  surface areas, we regularize 

the learning on  such areas in HelixSurf by leveraging the 

homogeneity inside  individual  superpixels of observed im- 

ages. We also improve  the efficiency of differentiable vol- 

ume rendering in HelixSurf, by maintaining  dynamic occu- 

pancy grids that can adaptively guide  the  point sampling 

along rays; our scheme improves the learning  efficiency 

with orders of magnitude when compared  with existing neu- 

ral implicit surface  learning methods, even with the inclu- 

sion of MVS inference  time.  An  illustration of  the proposed  

HelixSurf is given in Fig. 2.  Experiments on the benchmark 

datasets of ScanNet [6] and Tanks and Temples [20]  show 

that our method compares  favorably with existing methods, 

and is orders of magnitude faster. We  note  that a few  recent  

methods [40, 50]  use geometric cues  provided by models 

pre-trained on  auxiliary  data to regularize the  neural im- 

plicit surface  learning;  compared  with them, our method  

achieves better results  as  well. Our technical contributions 

are summarized as  follows. 

• We present a novel method of HelixSurf for recon- 

struction  of indoor  scene surface from multi-view  

images. HelixSurf enjoys the complementary ben- 

efits of the  traditional MVS and the recent neural 

implicit surface learning, by regularizing  the  learn- 

ing/optimization of one strategy iteratively  using the 

intermediate prediction from the other; 

• MVS methods make  less reliable predictions  on tex- 

tureless surface areas. We further devise  a  scheme that 

regularizes the learning  on such  areas by leveraging the 

region-wise homogeneity organized by  superpixels  in 

each observed image. 

2. Related Works  

2.1. PatchMatch based Multi-view Stereo 

3D  reconstruction  from posed multi-view images is 

a fundamental  but challenging task  in computer  vision. 

Among all the  techniques in the  literature,  PatchMatch  

based Multi-view  Stereo (PM-MVS) is traditionally  the 

most explored  one [11,  15]. PM-MVS methods [12, 35– 

38, 44, 52]  represent the  geometric with depth  and/or nor- 

mal maps. They estimate depth and/or normal of  each pixel  

by exploiting inter-image  photometric and geometric con- 

sistency  and then  fuse all the depth maps  into a global point 

cloud with filtering operations,  which  can  be subsequently  

processed using meshing algorithms [17, 21],  e.g . Screened 

Poisson surface reconstruction  [18], to recover  complete  

surface. These traditional methods have achieved great suc-  

cess on various occasions and can produce plausible geom- 

etry of  textured surfaces, but there exist artifacts and miss- 

ing parts in the  areas without rich textures. Indeed,  their 

optimization highly relies on the photometric measure  to 

discriminate which random estimate is the best  guess. In  

the case of indoor scenes with textureless areas  [35,44], the 

inherent homogeneity  inactivates  the photometric  measure 

and consequently poses  difficulties to the  accurate depth es- 

timation. With the  development of  deep  learning, learning- 

based MVS methods [16, 39, 45–47] demonstrate promis- 

ing performance in recent years.  However, they  crucially 

rely on ground-truth  3D  data for supervision,  which hinders 

their practical application. 

2.2. Neural  Implicit Surface 

In  contrast  to classic explicit representation, recent 

works [5, 27, 32] implicitly represent surfaces via  learn- 

ing neural networks,  which models continuous  surface with 

Multi-Layer Perceptron  (MLP) and makes it  more feasible 

and efficient to represent complex geometries with arbitrary 

typologies. For the task  of  multi-view  reconstruction,  the 

3D geometry  is represented  by a  neural network that out-  

puts either a signed/unsigned  distance field or an  occupancy  

field. Some works [24, 30, 49] utilize surface rendering  to 

enable the  reconstruction  of 3D  shapes  from 2D images, but 

they always rely on extra object masks. Inspired  by  the  suc-  

cess of  NeRF  [28], recent  works  [31,41,48]  attach differen- 

tiable volume rendering techniques to reconstruction, which 

eliminates the  need  of  mask  and achieves impressive recon- 

struction. And follow-up works [8, 10, 42] further improve 

the geometry  quality with fine-grained  surface details. Al- 

though these methods  show better  accuracy  and complete- 

ness compared  with the  traditional MVS methods, they still 

suffer from the induced smoothness bias  of  deep network 

[34, 51], which discourages  them to regularize the  learning 

and recover  fine details in scene reconstruction. Most re- 

cent works [14, 40, 50] try to get rid of this  dilemma by in-
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corporating geometric cues provided by models pre-trained  

on auxiliary data.  Our HelixSurf  integrates  traditional PM- 

MVS and neural implicit  learning  surface  in complementary 

mechanisms and achieves better results  than these methods. 

3. Preliminary  

In this section, we  give technical backgrounds and math 

notations that  are necessary for presentation of  our  proposed  

method in subsequent  sections. 

Neural Implicit Surface  Representation Among the 

choices of neural implicit  surface representation [5, 27, 32], 

we adopt DeepSDF [32] that  learns to encode a  continuous 

surface as the zero-level set  of  a signed  distance field (SDF) 

f  :  R
3  → R  , which is  typically  parameterized  as  an MLP; 

for any point  x ∈  R
3  in the  3D space,  |  f  (  x  )  |  assigns  its 

distance to the surface S  =  

{
x ∈  R

3  |  f  (  x )  =  0
}

; by  con- 

vention, we have f  (  x )  <  0 for points  inside the surface and 

f  (  x )  >  0 for those  outside. 

SDF-induced Volume Rendering Differentiable  volume 

rendering is used in NeRF  [28] for synthesis  of novel views. 

Denote a ray emanating  from a  viewing camera as  r  (  t  )  =  

o  +  t  v  , t  ≥  0  ,  where o  ∈  R
3  is  the  camera center and 

v  ∈  R
3  ,  ‖ v  ‖ =  1 denotes the  unit vector of  viewing  direc- 

tion. NeRF models a  continuous scene space as a  neural ra- 

diance field F  :  R
3  ×  R

3  → R+  

×  R
3, which for any  space 

point x and direction v  ,  assigns  F  (  x ,  v  )  =  (  σ,  c  )  , where 

σ  ∈  R+ 

represents the volume density at the  location x , 

and c  ∈  R
3  is the  view-dependent  color from x along the 

ray −  r  towards o  .  Assume N  points are sampled along r  ; 

the color accumulated  along the  ray r  can be approximated, 

using the quadrature rule [26], as

 

C  (  r  )  =  

N∑  

i  =1  

Ti  

αi  

c  (  r  (  ti)  ,  v  )  ,  Ti  

=  

i  −  1∏  

j  =1  

(1 −  αj)  ,

 

(1) 

where αi  

=  1  −  exp(  −  

∫  ti  +1  

ti  

σ  (  r  (  t ))  dt  )  denotes the opac- 

ity of a segment. While the  volume density  σ  :  R
3  → R+  

is learned as a direct  output of  the  MLP based  radiance 

field function F  in [28], it  is  shown  in VolSDF [48] and 

NeuS [41] that σ  can be modeled as  a transformed function 

of the implicit SDF function f  , enabling better recovery of  

the underlying geometry.  In this  work, we follow  [41]  to 

model σ  as an SDF-induced  volume density.  With such an 

SDF-induced, differentiable volume rendering, the  geome- 

try f  and color c  can  be  learned by minimizing  the differ-  

ence between rendering results  and multiple views of input 

images. Note that  analogous to (1),  the  depth d  of  the sur- 

face from the  camera center o  can be approximated along 

the ray r  as well, giving  rise to

 

d  (  r  )  =  

N∑  

i  =1  

Ti  

αi  

ti  

,  n  (  r  )  =  ∇  f  (  o  +  d  (  r  )  v  )  ,

 

(2) 

where n  (  r  )  ∈  R
3  denotes the  surface normal at the inter- 

section point and ∇  f  (  x )  is the gradient of SDF  at  x . 

Multi-View  Stereo with PatchMatch  Assume that a  ref- 

erence image I ref and a  set  of  source images Isrc =  

{ I  

m  |  m =  1 .  .  .  M  } capture a common  scene; we write 

collectively as  I  =  {  I ref ,  Isrc } .  PatchMatch  based multi- 

view stereo  (PM-MVS) methods [12, 37, 44, 52] aim to re- 

cover the  scene geometry  by predicting the  depth dl  

∈  R
+  

and normal nl  

∈  R
3  ,  ‖ nl  

‖ =  1 for each pixel in I ref,  

which is indexed by l  with l  ∈  { 1 ,  .  .  .  ,  L  } .  Consider- 

ing that any  l  

th  pixel in I ref may not be visible in all im- 

ages in Isrc, the  methods  then predict an occlusion indi- 

cator Z  

sr  c  =  { Z  

m  

l  

|  l  =  1 ,  .  .  .  ,  L,  m =  1 ,  .  .  .  ,  M  } for 

I ref. Optimization of  { dl  

}L  

l  =1,  { nl  

}L  

l  =1, and Z  

sr  c  is based 

on enforcing photometric  and geometric consistencies  be- 

tween  corresponding  patches in I ref and Isrc; this is mathe- 

matically formulated as  a  probabilistic graphical model  and 

is solved  via generalized  expectation-maximization  (GEM) 

algorithm  [12, 37], where PatchMatch  [2, 3] is used to effi- 

ciently establish  pixel-wise  correspondences across multi-  

view images. More specifically,  let Asr  c  =  {  Am  

l  

|  l  =  

1 ,  .  .  .  ,  L,  m =  1 ,  .  .  .  ,  M  } denote the  set  of homography- 

warped  patches from source images [38], the PatchMatch 

based  methods optimize  dl  

and nl  

for a pixel  in the  refer-  

ence image as

 

{ d∗  

l  

,  n∗  

l  

} =  argmax  P (  dl  

,  nl  

|Asr  c  ,  Z  

sr  c)  

∝  argmax  P (  Asr  c  |  dl  

,  nl  

,  Z  

sr  c)  P (  dl  

,  nl)  

=  argmin  

M∑  

m  =1  

Pl(  m )  ξ  

m  

l  

(  dl  

,  nl)  

with ξ  

m  

l  

=  1  −  ρm  

l  

(  dl  

,  nl) +  η  min(  ϕm  

l  

(  dl  

,  nl)  ,  ϕmax)  ,

 

(3) 

where ρm  

l  

(  dl  

,  nl)  denotes the  color similarity between the 

reference patch  Aref 

l  

and source patch  Am  

l  

based on nor- 

malized cross-correlation,  which is a  function of  dl  

and  nl, 

and ϕm  

l  

(  dl  

,  nl)  is the forward-backward  reprojection  error 

to evaluate the  geometric consistency  incurred by the  pre- 

dicted dl  

and nl,  which is capped by  a pre-defined ϕmax;  the 

probability Pl(  m )  serves  for view selection  that assigns  dif- 

ferent weights  to the M  source images. Indeed, source im- 

ages with small values of Pl(  m  )  are less informative; hence  

Monte-Carlo view sampling  is used in [52]  to draw  samples 

according to Pl(  m )  . Assume that the selected views  form a  

subset S  ⊂  { 1  .  .  .  M  } ,  the  problem (3) can  be simplified as

 

{ d∗  

l  

,  n∗  

l  

} =  argmin  

1

 

|  S  |  

∑  

m  ∈  S  

ξ  

m  

l  

(  dl  

,  nl)  .

 

(4) 

4. HelixSurf for Intertwined  Regularization of 

Neural  Implicit Surface Learning 

Given a  set of calibrated  RGB images { Im  

}M  

m  =1  

of  an 

indoor scene captured from multiple  views, the task is  to
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Figure 2. Overview  of HelixSurf: Helix-shaped  neural  implicit Surface learning .  HelixSurf integrates the neural implicit surface  learn- 

ing ( cf . Section 4.1) and  PatchMatch  based MVS ( cf . Section 4.2) in a robust and efficient  manner.  We  optimize  HelixSurf with an  iterative 

intertwined regularization, which uses the intermediate prediction from one strategy  as  guidance  to regularize the learning/optimization  of 

the other one; given that MVS  predictions are less  reliable for textureless surface  areas, we additionally  devise  a  scheme that regularizes  the 

learning on such areas by leveraging the homogeneity per superpixel  in  observed  multi-view  images ( cf .  Section 4.1.1). We also propose 

a scheme  for point sampling along rays  ( cf .  Section 4.3), which significantly  improves  the efficiency.  At  the inference  stage  of HelixSurf,  

we conduct grid  sampling to  query the learned SDF values  at sampled  points  and run  Marching  Cubes to get the reconstruction results.  

reconstruct the scene geometry with fine details. Under 

the framework of  neural differentiable volume rendering, 

the task translates  as  learning an MLP based radiance field 

function F  that connects the  underlying scene  geometry 

with the image observations { Im  

}M  

m  =1; with the  use  of  an 

SDF-induced volume density σ  (  f  )  , the  scene surface can  be 

reconstructed by extracting the  zero-level set  of  the  learned  

SDF f  . As stated in Section 1, although  the  supervision 

from { Im  

}M  

m  =1  

is  conducted  in a pixel-wise, independent 

manner, the MLP based  function f  has deep  priors that in- 

duce the function learning  biased  towards encoding contin- 

uous and piece-wise, smooth surface [41,  48]; indeed, as- 

suming a successful  learning  of a  ReLU-based MLP f  ,  its  

zero-level set can  be exactly  recovered  as a continuous  poly-  

gon mesh [22]. In  the meanwhile, PatchMatch  based MVS 

methods couple the  predictions of  { dl  

,  nl  

} for individual 

pixels in a probabilistic framework, and conduct  the opti- 

mization globally such  that the predicted { dl  

,  nl  

} achieves  

an overall best consistencies of  photometry and geometry 

across { Im  

}M  

m  =1; after obtaining { dl  

,  nl  

} ,  a  continuous, 

watertight surface can be fitted using Poisson  reconstruc-  

tion [17, 18]. The above  two  strategies  reconstruct  the  sur- 

face using different but  potentially complementary mecha-  

nisms. We are thus motivated to propose an integrated solu- 

tion that can take both advantages  of  them. In  this work, we 

achieve the goal technically by  using the  intermediate pre- 

diction from one strategy as the  guidance to regularize the 

learning of the other one, and conducting  such intertwined  

regularization iteratively during the  learning  process. Con- 

sidering that the iterative intertwined regularization makes  

the optimization curve as  a shape of  double helix, we term 

our method as Helix-shaped  neural  implicit Surface  learn- 

ing or HelixSurf .  Details of HelixSurf are presented  as fol- 

lows. An  illustration is given in Fig. 2. 

4.1. Regularization  of Neural  Implicit Surface 

Learning  from MVS predictions 

Given the set  of multi-view images I  =  { I ref ,  Isrc } , 

neural implicit surface learning via  differentiable volume 

rendering samples rays in the  3D space; for any sampled 

ray r  (  t )  =  o  +  t  v  , t  ≥  0 , in a  viewing direction  v  ,  as- 

sume that it emanates from the  camera center o  and passes 

through a pixel  a  ∈  R
3  in an image I  in I  .  Let F  be the 

SDF-induced neural radiance field that  models the  scene 

geometry via  the SDF function f  ; we can  then  write as  

F  (  r  (  t  )  ,  v  ;  f  )  =  (  σ  (  f  (  r  (  t  )))  ,  c  (  r  (  t  )  ,  v  ))  for any  point t 

along r  (  t  )  . According to (1) of approximated volume ren- 

dering, the  color C  (  r  )  accumulated along the  ray r  can be 

computed, given { σ  (  f  (  r  (  ti)))  ,  c  (  r  (  ti)  ,  v  )  }N  

i  =1  

at N  sam- 

pled points;  the  following loss  defines the color based im- 

age supervision from ray  r  for learning F  (i.e.,  learning  the 

MLPs f  and c  ,  see Section  3 for the details):

LNeural(  r  ;  f  ,  c  )  =  SmoothL1  (  C  (  r  ;  f  ,  c  )  ,  a  (  r  ))  . (5) 

We can  also compute the  depth d  (  r  ;  f  )  and surface normal 

n(r; f) according to (2).
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Section 3 suggests that  given  I  , PatchMatch  based MVS 

methods can predict pairs of  depth and surface normal for 

pixels in the observed  reference image.  Such  methods  usu- 

ally produce a sparse set of predictions  on texture-rich sur- 

face areas [37, 43]. Without loss of generality, assume that  

{ dMVS

a  

,  nMVS

a  

} are the  MVS prediction for the pixel a  in the 

image I  . We  use  { dMVS

a  

,  nMVS

a  

} to regularize the  learning  of  

f  in the current iteration,  based  on the  following loss

LMVSRegu(  r  ;  f  )  =  w  (  r  )  

(∣∣d  (  r  ;  f  )  −  dMVS 

a  

∣∣+  

∣∣n  (  r  ;  f  )  −  nMVS 

a  

∣∣)  

,  

with w  (  r  )  =  1MVSRegu(  r  )  ·  (1 −  

∣∣C  (  r  )  −  a  (  r  )
∣∣)

(6) 

where 1MVSRegu(  r  )  is an  indicator to cope  with the case when 

{ dMVS

a  

,  nMVS

a  

} are not predicted by MVS for the  pixel a  .
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Figure 3. Illustration of  handling  textureless  surface  areas.  (a): 

the inference results  of PM-MVS, (b): watertight  surface mesh 

MMVS reconstructed  by  Poisson reconstruction from (a), (c): sur-  

face MMVS 

−  

obtained  by  pruning textureless triangle faces  from (b), 

(d): an input image, (e): superpixels extracted by the graph-based 

segmentation  algorithm [9], (f): textureless areas obtained  by  ray 

casting, (g): superpixels covered  by  textureless areas, (h): surface  

normal map predicted by HelixSurf,  (i): smooth  normal map ob-  

tained by aggregating the normals in textureless  superpixels.  

4.1.1 Handling  of  Textureless  Surface Areas  

PatchMatch based MVS methods make  reliable predictions  

only on texture-rich surface areas. We  resort to other 

sources to regularize the neural implicit learning for texture- 

less surface areas. Our motivation is  based  on the  obser- 

vation that textureless surface areas  tend  to be both homo- 

geneous in color and geometrically smooth;  indeed, when 

the surface areas are of  high curvature or  when they have  

different colors, 2D image projections  of  such areas  would  

have richer textures. The projected 2D  image counterparts 

of textureless surface areas in fact correspond  to those in im- 

ages that can be organized as  superpixels. We  thus propose 

to further regularize the neural implicit  surface learning by 

leveraging the homogeneity of  image superpixels. 

We technically encourage the predicted normals of  sur- 

face points, whose 2D  projections fall in a  same superpixel, 

to be close. For any  image I  in I  ,  we pre-compute its  region 

partitions of superpixels using methods  such as  [1,9]. Let  r̃  

be a ray passing through a pixel ã  that falls in a superpixel  

of I  ; denote  the  superpixel  as Ãã.  We know  that  the vol- 

ume rendering in HelixSurf predicts  surface normal n  (r̃  ;  f  )  

for the ray r̃  ,  and denote as { n′(r̃  

′;  f  )  |ã′  ∈  Ãã  

} the pre- 

dicted surface normals for all pixels in Ãã. We first com- 

pute  nSmooth 

ã  ,  I  

=  

∑|  Ãã  

|  

i  =1  

n′  

i  

/ |  Ãã  

|  ,  and then  apply the  above 

computation to all  those  images  in I  that capture the same 

surface point and have the  corresponding  pixels  of  ã  in I  . 

Assume we have a  total of M  

′  such image, we compute 

nSmooth 

ã  

=  

∑M  

′+1  

m  =1  

nSmooth 

ãm 

,  Im  

/ (  M  

′  +  1)  and enforce closeness  

of  surface normal predictions for pixels both inside a  super-  

pixel  and across multi-view  images with the  following loss

LSmooth(r̃  ;  f  )  =  1Smooth(r̃  )  ·  

∣∣n  (r̃  ;  f  )  −  nSmooth  

ã  

∣∣, (7) 

where 1Smooth(r̃  )  indicates  whether the  pixel ã  cast by the  ray 

r̃  belongs to a textureless  area. In practice, we identify  the 

textureless areas for a  surface S  =  

{
x ∈  R

3  |  f  (  x )  =  0
}  

as  

follows. We  first use MVS methods  to produce  a  sparse set 

of depth  and normal predictions, to which we apply  Pois- 

son reconstruction [17, 18] and obtain  a  watertight  surface 

mesh MMVS (Fig.  3(b)). We  prune  those  triangle faces in 

MMVS that contain no the  depths and normals predicted by 

the MVS methods, resulting  in MMVS 

−  

.  For an image I  ,  we 

conduct ray  casting and treat the  pixels  whose  associated 

rays do not hit  MMVS 

−  

as those belonging to textureless ar- 

eas (Fig. 3(e)). The overall scheme is  illustrated in Fig. 3. 

Please refer to the supplementary for more details.  

4.2. Regularization  of  Multi-View Stereo from Neu- 

ral Implicit Surface Learning  

Eq. (3) of MVS methods optimize  the  depth  and nor- 

mal predictions by maximizing  a  posterior  probability and 

a prior of  P  (  d,  n  )  (cf. line 2 in Eq. (3)). Without other 

constraints, P  (  d,  n  )  is usually  set as  a  uniformly random  

distribution. In  HelixSurf, it  is obviously feasible to use the 

depth and normal learned in the current iteration of  neural 

implicit learning  as  the  prior.  

More specifically,  given dl,  nl, Asr  c,  and Z  

sr  c  denoted 

as in Section 3,  let  dNeural 

l  

and nNeural 

l  

be the  depth and normal 

learned in the current  iteration of  neural implicit learning 

for the  corresponding  pixel  in an observed image.  We  can 

improve MVS predictions using

{  d∗  

l  

,  n∗  

l  

} =  argmax  P  (  dl  

,  nl  

|Asr  c  ,  Z  

sr  c  ,  dNeural 

l  

,  nNeural 

l  

)  

∝  argmax  P  (  Asr  c  |  dl  

,  nl  

,  Z  

sr  c)  P  (  dl  

,  nl  

|  dNeural 

l  

,  nNeural 

l  

)  .
(8) 

Qualitative  results  in Section  5.2 show that MVS methods  

with priors of a  uniformly random distribution tend to pro- 

duce noisy results  with outliers, which would impair  the  

iterative  learning  in HelixSurf. Instead, the proposed  (8) 

gives better results.
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4.3. Improving the Efficiency by  Establishing Dy- 

namic Space Occupancies  

Differentiable volume rendering suffers from the  heavy 

cost of point sampling  along rays for accumulating pixel  

colors [28, 41, 48]. While a  common  coarse-to-fine sam- 

pling strategy is  used in these methods,  it still counts  as  

the main computation. In  this work, we are inspired by 

Instant-NGP [23, 29] and adopt a  simple yet  effective sam- 

pling scheme,  which establishes  dynamic  occupancies  in 

the 3D scene space and adaptively guides the point sam- 

pling along rays.  Fig. 2 gives the illustration. More de- 

tails of our scheme are given in the supplementary material. 

Fig. 1(b) shows  that our scheme improves  the  training  effi- 

ciency at orders of  magnitude when compared  with existing 

neural implicit surface learning  methods. 

4.4. Training  and  Inference  

At each iteration  of  HelixSurf training,  we randomly 

sample pixels from the  images  in I  and define  the set  of  

camera rays passing through  these pixels  as  R  ∪  R̃  , where  

R  and R̃  contain rays passing  through texture-rich and tex- 

tureless areas respectively.  We optimize the following  prob- 

lem to learn the MLP based  functions f  and c

 

min  

f  ,  c  

(  

∑  

r  ∈R 

LNeural(  r  ;  f  ,  c  ) +  

∑  

r̃  ∈  R̃  

LNeural(r̃  ;  f  ,  c  )+  

λMVSRegu  

∑  

r  ∈R 

LMVSRegu(  r  ;  f  ) +  λSmooth 

∑  

r̃  ∈  R̃ 

LSmooth(r̃  ;  f  )  

λEik 

∑  

x  ∈  R3  

LEik(  x  ;  f  ))  ,

 

(9) 

where LEik(  x ;  f  )  is  the  Eikonal loss  [13] that  regularizes 

the learning of SDF f  ,  and λMVSRegu 

,  λSmooth 

,  λEik 

are hyperpa- 

rameters weighting  different loss terms. 

During inference, we apply marching  cubes [25]  algo- 

rithm to extract the underlying surface from the learned  

SDF f  . 

5. Experiments 

Datasets We  conduct experiments using the  benchmark 

dataset of ScanNet [6] and Tanks and Temples [20]. Scan-  

Net has 1613 indoor  scenes with precise camera calibration 

parameters and surface reconstructions  via  the state-of-the- 

art SLAM technique [7].  Tanks and Temples has  multiple 

large-scale indoor and outdoor scenes. For the  ScanNet,  

we follow ManhattanSDF [14]  and select 4 scenes  to con- 

duct our experiments. As for Tanks and Temples,  we follow 

MonoSDF [50]  to select  four large-scale  indoor  scenes to 

further investigate the  extensibility of HelixSurf. 

Implementation Details We implement  HelixSurf  in Py- 

Torch [33] framework  with CUDA extensions,  and cus-

 

Method

 

Acc ↓  Comp  ↓ Prec ↑ Recall ↑  F-score ↑

 

Time  ↓

 

COLMAP [37]

 

0.047

 

0.235 0.711 0.441 0.537

 

133

 

ACMP  [44]

 

0.118 0.081 0.531 0.581 0.555

 

10

 

NeRF  [28]

 

0.735 0.177 0.131 0.290 0.176

 

>  1  k

 

VolSDF [48]

 

0.414 0.120 0.321 0.394 0.346

 

825

 

NeuS [41]

 

0.179 0.208 0.313 0.275 0.291

 

531

 

Manhattan-SDF†  [14]

 

0.053 0.056 0.715

 

0.664 0.688

 

528

 

NeuRIS†  [40]

 

0.050 0.049

 

0.714 0.670

 

0.691

 

406

 

MonoSDF†  [50]

 

0.035

 

0.048

 

0.799

 

0.681

 

0.733

 

708

 

HelixSurf

 

0.038

 

0.044

 

0.786

 

0.727

 

0.755

 

33

 

Table 1. Reconstruction metrics  comparisons on ScanNet [6]  . 

We compare  our  method with the state-of-the-art neural implicit 

surface  learning  methods  [14,  28, 40, 41, 48, 50]  and PatchMatch  

based multi-view  stereo  methods (PM-MVS) [37, 44]. Methods 

marked  with †  are assisted with auxiliary training data, and vice  

versa. We  mark  the methods  performing  with least error  using 

gold

 

, silver

 

, and bronze

 

medals.  The last column shows  

time consumption (in  minutes)  for PM-MVS methods,  Nueral im- 

plicit surface  learning  methods,  and HelixSurf . Note that the time 

for HelixSurf  includes both MVS inference and neural implicit 

surface  learning. 

tomized a PM-MVS module  for HelixSurf  according  to 

COLMAP [37] and ACMP [44].  We  use the Adam opti- 

mizer [19] with a  learning rate  of 1e-3 for network training, 

and set  λMVSRegu 

,  λSmooth 

,  λEik 

to 0.5, 0.01, 0.03,  respectively.  

For each iteration,  we sample  5000 rays  to train the  model 

and use  customized CUDA kernels for calculating the α  - 

compositing colors of  the  sampled points along each  ray as  

Eq. (1). We  train the  model for a  total of  24 K  iterations. 

To maintain dynamic  occupancy grids, we update  the  grids 

after every  16 training iterations and cap the  mean density  

of grids  by 1e-2 as the  density  threshold τoccu.  

Evaluation Metrics For 3D  reconstruction, we assess  the 

reconstructed surfaces in terms of Accuracy,  Completeness,  

Precision, Recall,  and F-score. To evaluate the MVS predic- 

tions, we compute the  distance  differences for depth  maps  

and count  the  angle errors for normal maps. Please refer to 

the supplementary for more details  about these  evaluation 

metrics. 

5.1. Comparisons  

We evaluate the  3D  geometry metrics  and time  consump- 

tion of our  proposed  HelixSurf against existing methods on 

ScanNet [6], as shown  in Tab. 1. Each quantitative result 

is averaged over all  the  selected scenes. For the  geometry 

comparison, HelixSurf manifestly surpasses existing meth- 

ods in almost every metrics,  even some of  the comparison  

methods are assisted with auxiliary training data. And  the  

qualitative results  in Fig. 4 further support  the quantitative  

analyses. Without auxiliary training data, HelixSurf is  ca- 

pable of  handling  the textureless  surface areas where other 

methods fail to tackle,  as in Fig. 4(a). Moreover, Helix- 

Surf  produces  better details  of  objects than  those  methods  

using auxiliary training  data, as in Fig. 4(b).  As  for learning
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COLMAP ACMP NeRF NeuS VolSDF HelixSurf Ground Truth

(a) Comparisons with existing methods  when these methods do not use auxiliary training data.

Manhattan-SDF NeuRIS MonoSDF HelixSurf Ground Truth

(b) Comparisons with existing methods  when they invoke  the use of auxiliary training data. Note that  our HelixSurf  do not use  auxiliary training data.  

Figure 4. Qualitative  geometry comparisons on ScanNet.  Compared to existing methods,  our  method can better reconstruct the scene 

details ( e.g . the lamp,  the cabinet  and chair handles) and the smooth regions ( e.g . the floor and walls). Surface  normals are visualized as 

coded colors. 

time, the data in Tab. 1 indicates  that HelixSurf  improves  

the learning efficiency  with orders of  magnitude when  com- 

pared with existing  neural implicit surface learning meth- 

ods, even with  the  inclusion of  MVS inference time. 

5.2. Ablation Studies 

HelixSurf is  optimized with interactive  intertwined regu- 

larization as stated in Section 4.  We design  elaborate exper- 

iments to evaluate the efficacy  of  this  regularization.  Fur- 

thermore, the sampling  guided by dynamic  occupancy grids 

( cf . Section 4.3)  is  essential to realize  fast training con- 

vergence. We  thus compare  it with the  ordinary sampling  

alternative. These studies  are conducted on the  ScanNet 

dataset [6]. 

Analysis on the regularization  of  neural  implicit sur-  

face learning from  MVS predictions The MVS infer- 

ence results effectively regularize the neural implicit  sur- 

face learning ( cf . Section 4.1) and facilitate the  network to 

capture fine details.  The results  in Tab. 2 illustrate  that the 

MVS predictions  effectively  promote the surface learning 

and the regularized  MVS predictions can  further improve 

the quality of reconstruction. Nonetheless, the  MVS pre- 

dictions are less  reliable on the textureless  surface areas, 

we thus leverage  the homogeneity inside individual  super- 

pixels  and devise a scheme (  cf .  Section  4.1.1) to regularize 

the learning  on such areas. As shown  in Fig. 5, our pro- 

posed scheme handles the textureless surface areas  and re- 

constructs smoother surface on the  basis  of maintaining  the 

details of non-planar  regions. 

Analysis on  the regularization of  MVS from  neural  im- 

plicit surface learning During the  training process of  the  

neural surface,  the underlying  geometries are progressively  

recovered. We use the  learned  depths and normals as  pri- 

ors to regularize MVS, which clears up the artifacts pro- 

duced by  the ordinary MVS and enables the double helix 

to forward and rise. Fig. 6 qualitatively  shows  the infer- 

ence results  of  the ordinary MVS method  (Fig. 6(a)) and 

the regularized MVS (Fig.  6(b)). Tab. 3 shows the  quanti- 

tative  comparison between the ordinary MVS method and 

our regularized one. Both qualitative and quantitative com- 

parisons verify that this regularization  eliminates noise and 

outliers and improves the  quality of inference  results. 

Analysis on  the interval of learning iterations  for inter-  

twined regularization In the learning of HelixSurf, we set 

a hyperparameter  Ninter  

as  the interval of  iterations for 

interwined regularization; HelixSurf  performs MVS every
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N th 

inter  

interation.  Tab.  4 shows that Ninter  

less affects  the 

performance of HelixSurf  (and its convergence). 

Efficacy of Sampling Guided by  Dynamic Occupancy 

Grids To further alleviate the difficulties of  optimization, 

we maintain dynamic occupancy grids and propose  a  sam- 

pling strategy to skip the  sample points in empty space. 

The time consumption comparisons in Tab. 1  show  that our 

training convergence is  significantly faster than the  exist- 

ing neural implicit surface learning methods. The results  in 

Tab. 5 present the  timing consumptions of  each part in the 

entire training process with and without the sampling strat- 

egy, respectively.

 

Regularization

 

Acc ↓ Comp  ↓ Prec  ↑ Recall ↑ F-score ↑

 

oridinary 

MVS 

regularized 

MVS 

Textureless  

Areas Handling

 

0.179 0.208 0.313 0.275  0.291

 

�

 

0.059 0.076 0.661 0.605  0.632

 

�

 

0.051 0.066 0.711 0.649  0.679

 

�  �

 

0.047 0.053 0.768 0.706  0.735

 

�  �

 

0.038 0.044 0.786 0.727  0.755

Table 2. Analyses on  the regularization  of neural  implicit surface  

learning from MVS  predictions.

(a) W/O smoothness on textureless 

surface areas
(b) With smoothness  on  textureless 

surface areas  

Figure 5. Visualization  of example  reconstruction  without the use  

of smoothness  scheme for textureless areas (a) and with the use of 

smoothness  scheme  (b). The colors encode surface normals.

(a) ordinary  MVS. (b) regularized  MVS. 

Figure 6. Qualitative comparisons  of inference results  between  the 

ordinary MVS method (a) and our  regularized MVS (b). 

5.3. Real-world Large-scale Scene  Reconstruction  

To further examine  the  applicability and generalization 

of HelixSurf, we conduct  experiments on  an indoor  sub-  

set from the Tanks and Temples [20] dataset. Results in 

Fig. 7(a, b) show  that  HelixSurf achieves reasonable results 

on such large-scale  indoor  scenes. Furthermore, we evalu- 

ate HelixSurf on large-scale outdoor scenes from Tanks and

 

Method

 

Depth  map

 

Abs Diff ↓  Abs Rel ↓ Sq Rel ↓ RMSE ↓

 

ordinary

 

0.067  0.098 0.020 0.147

 

regularized

 

0.053  0.085 0.011 0.106

 

Method

 

Normal map

 

Mean ↓  Median ↓  RMSE ↓ Prop_ 30◦  ↑

 

ordinary

 

35.5◦  30.4◦  42.6◦  51.0%

 

regularized

 

27.8◦  20.2◦  35.3◦  67.4%

Table 3.  Quantitative  comparison between the ordinary MVS and 

our regularized MVS.

Ninter 4000 6000 8000 10000 12000

F-score ↑ 0.753 0.752 0.755 0.754 0.752

Table 4. Results with different intervals of learning  iterations for 

intertwined regularization.

 

Occ  

Grids

 

MVS

 

Texture- 

less

 

Grid

 

Training 

Forward

 

Training 

Backward

 

Total

 

w/

 

3.8

 

2.6

 

0.6

 

12.4

 

13.8

 

33.2

 

w/o

 

-

 

184

 

203

 

393.4

Table 5. Time  consumption (in minutes)  for each  part of our  

training process with or without guidance  of Dynamic Occupancy 

Grids.

(a) (b) (c) 

Figure 7.  Qualitative result of the reconstruction  on Tanks  and 

Temples [20].  (a) and (b)  are examples  of indoor  scenes. (c) is an 

outdoor scene.  

Temples [20]. Surprisingly, HelixSurf has potential to han- 

dle large-scale  outdoor scenes, as  shown  in Fig. 7(c).  Please 

refer to the supplementary for more results. 

5.4.  Conclusion  

In this  paper,  we introduce  an efficient and high-quality  

indoor scene reconstruction  method, named  HelixSurf. A  

novel  intertwined  regularization is  proposed  that benefits 

from both the traditional MVS and the neural implicit  sur- 

face  learning. We  also  propose a  superpixel-based, adap- 

tive scheme that regularizes the learning on  textureless  ar- 

eas. Our design again confirms that combining traditional 

pipelines with the  recent, differentiable rendering based  

neural learning can be helpful for surface reconstruction.

13172



 

References 

[1] Radhakrishna Achanta, Appu  Shaji, Kevin Smith, Aurelien 

Lucchi, Pascal Fua,  and  Sabine Süsstrunk.  Slic  superpix-  

els compared to state-of-the-art superpixel  methods.  IEEE 

transactions  on  pattern analysis  and  machine intelligence  , 

34(11):2274–2282, 2012. 5 

[2] Connelly  Barnes,  Eli Shechtman,  Adam Finkelstein, and 

Dan B Goldman. Patchmatch: A  randomized  correspon- 

dence algorithm for  structural image editing. ACM Trans.  

Graph. , 28(3):24, 2009.  3 

[3] Michael Bleyer,  Christoph Rhemann, and Carsten Rother.  

Patchmatch  stereo-stereo matching with slanted support  win- 

dows. In Bmvc ,  volume 11, pages 1–11, 2011. 3  

[4] Kang Chen, Yu-Kun Lai, and Shi-Min  Hu. 3d  indoor  scene 

modeling from rgb-d data: a  survey. Computational  Visual 

Media , 1(4):267–278, 2015.  1 

[5] Julian Chibane,  Gerard Pons-Moll,  et  al. Neural  unsigned  

distance fields  for implicit function  learning. Advances in  

Neural Information  Processing Systems , 33:21638–21652,  

2020. 2, 3  

[6] Angela Dai,  Angel X Chang,  Manolis Savva, Maciej Hal- 

ber, Thomas  Funkhouser, and Matthias Nießner. Scannet: 

Richly-annotated 3d  reconstructions  of indoor  scenes.  In 

Proceedings of the IEEE conference on  computer vision  and 

pattern recognition , pages 5828–5839, 2017. 2,  6, 7 

[7] Angela Dai, Matthias  Nießner,  Michael  Zollhöfer,  Shahram 

Izadi, and  Christian  Theobalt. Bundlefusion: Real-time 

globally consistent 3d reconstruction using on-the-fly sur-  

face reintegration. ACM Transactions  on Graphics  (ToG) , 

36(4):1, 2017. 6 

[8] François Darmon, Bénédicte  Bascle, Jean-Clément Devaux,  

Pascal Monasse,  and Mathieu Aubry.  Improving neural  im- 

plicit surfaces  geometry  with patch warping. In Proceedings 

of the IEEE/CVF Conference  on Computer  Vision  and  Pat-  

tern Recognition ,  pages 6260–6269,  2022.  2 

[9] Pedro F Felzenszwalb  and Daniel P Huttenlocher. Efficient  

graph-based image segmentation.  International  journal  of  

computer vision  , 59(2):167–181,  2004.  5 

[10] Qiancheng  Fu, Qingshan Xu, Yew-Soon  Ong,  and  Wenbing 

Tao. Geo-neus: Geometry-consistent neural  implicit  sur-  

faces learning for multi-view  reconstruction. arXiv  preprint 

arXiv:2205.15848 , 2022.  2 

[11] Yasutaka Furukawa, Carlos Hernández,  et al.  Multi-view 

stereo: A tutorial.  Foundations and Trends® in Computer  

Graphics and Vision , 9(1-2):1–148, 2015.  1, 2  

[12] Silvano Galliani, Katrin  Lasinger, and Konrad Schindler. 

Massively  parallel multiview  stereopsis  by  surface  normal 

diffusion.  In Proceedings  of the IEEE International  Confer- 

ence on Computer  Vision ,  pages 873–881, 2015.  1, 2, 3 

[13] Amos Gropp, Lior  Yariv, Niv  Haim, Matan  Atzmon,  and 

Yaron Lipman. Implicit  geometric  regularization for learning  

shapes.  In Proceedings of  the 37th International Conference 

on Machine Learning  , pages 3789–3799,  2020.  6 

[14] Haoyu Guo, Sida Peng,  Haotong  Lin, Qianqian  Wang,  

Guofeng Zhang, Hujun Bao,  and Xiaowei Zhou. Neural 3d 

scene reconstruction  with the manhattan-world  assumption. 

In Proceedings  of  the IEEE/CVF Conference on  Computer  

Vision and Pattern  Recognition ,  pages 5511–5520,  2022.  2,  

6 

[15] Richard Hartley and Andrew Zisserman. Multiple view ge- 

ometry  in computer vision  . Cambridge university  press, 

2003.  1,  2 

[16] Sunghoon  Im,  Hae-Gon Jeon,  Stephen  Lin, and In So 

Kweon. Dpsnet: End-to-end deep plane  sweep  stereo. In In- 

ternational  Conference on  Learning Representations  , 2018. 

2 

[17] Michael  Kazhdan,  Matthew Bolitho, and Hugues  Hoppe.  

Poisson surface  reconstruction.  In Proceedings  of the 

fourth  Eurographics  symposium  on  Geometry processing ,  

volume  7, 2006. 1,  2, 4, 5 

[18] Michael  Kazhdan and Hugues  Hoppe.  Screened poisson sur-  

face  reconstruction.  ACM Transactions  on Graphics  (ToG) ,  

32(3):1–13,  2013.  1, 2, 4,  5 

[19] Diederik P Kingma  and  Jimmy  Ba. Adam: A method for 

stochastic  optimization. arXiv preprint arXiv:1412.6980  ,  

2014.  6 

[20] Arno  Knapitsch, Jaesik Park, Qian-Yi Zhou,  and Vladlen 

Koltun.  Tanks  and temples: Benchmarking  large-scale 

scene  reconstruction.  ACM  Transactions  on Graphics  (ToG) ,  

36(4):1–13,  2017.  2, 6, 8 

[21] Patrick Labatut,  Jean-Philippe  Pons, and Renaud  Keriven.  

Efficient  multi-view  reconstruction of  large-scale scenes us- 

ing interest  points, delaunay triangulation  and graph cuts. In 

2007  IEEE 11th international  conference  on  computer vi- 

sion  , pages 1–8. IEEE,  2007. 2 

[22] Jiabao  Lei  and Kui  Jia. Analytic marching: An analytic 

meshing solution from deep implicit surface  networks. In In- 

ternational  Conference  on  Machine  Learning , pages 5789– 

5798.  PMLR,  2020.  4 

[23] Ruilong Li, Matthew Tancik, and Angjoo Kanazawa.  Ner- 

facc: A general nerf acceleration  toolbox. arXiv preprint 

arXiv:2210.04847 , 2022. 6 

[24] Shaohui  Liu, Yinda  Zhang, Songyou  Peng, Boxin  Shi, Marc 

Pollefeys, and Zhaopeng  Cui.  Dist: Rendering  deep implicit  

signed  distance function  with differentiable  sphere tracing. 

In Proceedings of the IEEE/CVF Conference  on Computer  

Vision  and Pattern  Recognition , pages 2019–2028,  2020.  2 

[25] William  E Lorensen  and  Harvey  E Cline. Marching  cubes: 

A  high resolution 3d  surface  construction  algorithm. ACM 

siggraph computer graphics , 21(4):163–169, 1987. 6 

[26] Nelson Max.  Optical models for direct volume rendering. 

IEEE Transactions on Visualization  and Computer  Graphics ,  

1(2):99–108, 1995.  3 

[27] Lars Mescheder, Michael  Oechsle,  Michael Niemeyer,  Se- 

bastian Nowozin, and  Andreas Geiger. Occupancy networks: 

Learning  3d  reconstruction  in  function space. In Proceedings 

of  the IEEE/CVF conference on computer  vision and pattern 

recognition  , pages  4460–4470, 2019.  2,  3 

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, 

Jonathan T  Barron, Ravi  Ramamoorthi, and Ren Ng. Nerf: 

Representing  scenes as neural  radiance  fields for  view syn- 

thesis. In Computer  Vision–ECCV 2020: 16th European 

Conference, Glasgow,  UK,  August 23–28,  2020, Proceed- 

ings,  Part  I , pages 405–421, 2020.  1, 2,  3,  6

13173



 

[29] Thomas Müller, Alex Evans, Christoph Schied, and Alexan- 

der Keller. Instant neural graphics primitives with a  multires- 

olution hash encoding.  ACM Trans. Graph. , 41(4):102:1– 

102:15, July 2022. 6 

[30] Michael Niemeyer, Lars  Mescheder, Michael Oechsle, and 

Andreas Geiger. Differentiable  volumetric rendering: Learn- 

ing implicit 3d  representations without 3d supervision. In 

Proceedings of  the IEEE/CVF Conference  on  Computer  Vi- 

sion and Pattern Recognition ,  pages 3504–3515,  2020.  2 

[31] Michael  Oechsle,  Songyou Peng,  and Andreas Geiger.  

Unisurf: Unifying neural implicit surfaces and radiance 

fields for multi-view  reconstruction.  In Proceedings of the 

IEEE/CVF International  Conference  on  Computer Vision ,  

pages 5589–5599, 2021. 2 

[32] Jeong Joon Park, Peter  Florence, Julian Straub, Richard 

Newcombe,  and  Steven Lovegrove. Deepsdf:  Learning  con- 

tinuous signed distance  functions for shape representation.  

In Proceedings of the IEEE/CVF conference  on  computer vi- 

sion and pattern recognition ,  pages 165–174,  2019.  2, 3 

[33] Adam Paszke, Sam Gross,  Francisco Massa,  Adam Lerer, 

James Bradbury,  Gregory Chanan,  Trevor Killeen, Zeming 

Lin, Natalia Gimelshein,  Luca  Antiga, et  al. Pytorch: An im- 

perative style,  high-performance  deep learning  library.  Ad- 

vances  in neural information processing  systems , 32, 2019. 

6 

[34] Songyou Peng,  Michael  Niemeyer, Lars Mescheder, Marc 

Pollefeys,  and Andreas Geiger. Convolutional  occupancy  

networks. In European Conference  on  Computer Vision ,  

pages 523–540. Springer, 2020.  2 

[35] Andrea Romanoni  and Matteo Matteucci. Tapa-mvs: 

Textureless-aware patchmatch  multi-view  stereo. In Pro- 

ceedings of the IEEE/CVF International  Conference  on 

Computer  Vision ,  pages 10413–10422,  2019. 2 

[36] Johannes L  Schonberger and Jan-Michael Frahm. Structure- 

from-motion  revisited. In Proceedings of  the IEEE  con- 

ference on computer  vision  and  pattern recognition ,  pages 

4104–4113,  2016.  2  

[37] Johannes L Schönberger,  Enliang Zheng, Jan-Michael 

Frahm, and  Marc Pollefeys. Pixelwise view selection for 

unstructured multi-view  stereo. In  European conference  on 

computer  vision , pages 501–518. Springer, 2016.  1, 2, 3, 5,  

6 

[38] Shuhan Shen. Accurate multiple  view 3d reconstruction us- 

ing patch-based stereo  for  large-scale scenes. IEEE  transac- 

tions on image  processing , 22(5):1901–1914, 2013. 2,  3 

[39] Fangjinhua  Wang, Silvano Galliani,  Christoph Vogel,  Pablo 

Speciale, and  Marc Pollefeys. Patchmatchnet: Learned 

multi-view  patchmatch stereo. In Proceedings  of  the 

IEEE/CVF Conference on  Computer  Vision and  Pattern  

Recognition ,  pages 14194–14203,  2021. 2 

[40] Jiepeng Wang,  Peng  Wang, Xiaoxiao Long, Christian  

Theobalt,  Taku Komura, Lingjie Liu, and  Wenping  Wang.  

Neuris: Neural reconstruction of  indoor  scenes using normal 

priors. arXiv preprint  arXiv:2206.13597 ,  2022.  2,  6 

[41] Peng Wang, Lingjie Liu, Yuan  Liu,  Christian  Theobalt,  Taku  

Komura, and Wenping  Wang.  Neus: Learning  neural  im- 

plicit surfaces by  volume  rendering for multi-view  recon- 

struction. Advances in Neural Information  Processing  Sys-  

tems  , 34:27171–27183, 2021.  1, 2, 3, 4,  6 

[42] Yiqun  Wang, Ivan  Skorokhodov, and Peter Wonka.  Hf-neus: 

Improved  surface  reconstruction  using high-frequency de- 

tails.  arXiv preprint arXiv:2206.07850 , 2022. 2 

[43] Qingshan  Xu and  Wenbing Tao. Multi-scale  geometric 

consistency  guided multi-view stereo. In Proceedings of  

the IEEE/CVF Conference  on  Computer Vision and Pattern  

Recognition (CVPR) ,  June 2019. 5 

[44] Qingshan  Xu and  Wenbing  Tao. Planar  prior assisted  patch- 

match multi-view stereo. In Proceedings of the AAAI  Con-  

ference on  Artificial  Intelligence , pages 12516–12523, 2020. 

1, 2, 3,  6 

[45] Qingshan  Xu and Wenbing  Tao. Pvsnet: Pixelwise 

visibility-aware multi-view  stereo network.  arXiv  preprint 

arXiv:2007.07714 , 2020.  2 

[46] Yao Yao, Zixin Luo,  Shiwei Li, Tian Fang, and Long Quan. 

Mvsnet:  Depth inference  for unstructured multi-view  stereo. 

In Proceedings of the European conference on  computer  vi- 

sion (ECCV) , pages 767–783, 2018.  2 

[47] Yao Yao, Zixin Luo,  Shiwei  Li,  Tianwei Shen, Tian Fang, 

and Long Quan. Recurrent  mvsnet for high-resolution 

multi-view  stereo  depth  inference. In Proceedings  of  

the IEEE/CVF conference on computer  vision and pattern 

recognition , pages 5525–5534, 2019. 2 

[48] Lior Yariv, Jiatao Gu, Yoni Kasten, and  Yaron  Lipman. Vol- 

ume rendering of neural implicit surfaces. Advances in Neu-  

ral  Information Processing  Systems ,  34:4805–4815, 2021.  1,  

2, 3, 4,  6 

[49] Lior Yariv, Yoni Kasten, Dror Moran,  Meirav Galun, Matan 

Atzmon,  Basri Ronen, and Yaron Lipman. Multiview neu- 

ral surface  reconstruction  by  disentangling  geometry  and  ap- 

pearance. Advances in  Neural  Information  Processing  Sys-  

tems  ,  33:2492–2502,  2020.  2 

[50] Zehao Yu,  Songyou  Peng, Michael  Niemeyer, Torsten Sat- 

tler, and Andreas Geiger. Monosdf:  Exploring  monocu- 

lar geometric  cues  for neural implicit  surface  reconstruc- 

tion. Advances in Neural Information  Processing  Systems 

(NeurIPS) , 2022.  2, 6 

[51] Kai Zhang, Gernot Riegler, Noah  Snavely,  and  Vladlen 

Koltun.  Nerf++: Analyzing  and improving  neural radiance 

fields.  arXiv  preprint  arXiv:2010.07492 , 2020.  2 

[52] Enliang  Zheng, Enrique Dunn, Vladimir  Jojic, and Jan-  

Michael  Frahm. Patchmatch  based joint view selection and 

depthmap estimation.  In Proceedings of the IEEE Confer- 

ence  on Computer  Vision and Pattern  Recognition ,  pages 

1510–1517,  2014.  1, 2, 3

13174


