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Abstract

Open-vocabulary semantic segmentation aims to seg-
ment an image into semantic regions according to text de-
scriptions, which may not have been seen during train-
ing. Recent two-stage methods first generate class-agnostic
mask proposals and then leverage pre-trained vision-
language models, e.g., CLIP, to classify masked regions. We
identify the performance bottleneck of this paradigm to be
the pre-trained CLIP model, since it does not perform well
on masked images. To address this, we propose to finetune
CLIP on a collection of masked image regions and their
corresponding text descriptions. We collect training data by
mining an existing image-caption dataset (e.g., COCO Cap-
tions), using CLIP to match masked image regions to nouns
in the image captions. Compared with the more precise and
manually annotated segmentation labels with fixed classes
(e.g., COCO-Stuff), we find our noisy but diverse dataset
can better retain CLIP’s generalization ability. Along with
finetuning the entire model, we utilize the “blank” areas in
masked images using a method we dub mask prompt tuning.
Experiments demonstrate mask prompt tuning brings signif-
icant improvement without modifying any weights of CLIP,
and it can further improve a fully finetuned model. In par-
ticular, when trained on COCO and evaluated on ADE20K-
150, our best model achieves 29.6% mIoU, which is +8.5%
higher than the previous state-of-the-art. For the first time,
open-vocabulary generalist models match the performance
of supervised specialist models in 2017 without dataset spe-
cific adaptations.

1. Introduction
Semantic segmentation aims to group pixels into mean-

ingful regions with corresponding semantic categories. Al-
though remarkable progress has been made [6, 7, 9, 29, 41],
modern semantic segmentation models are mainly trained
with pre-defined categories, failing to generalize to unseen
classes. On the contrary, humans understand scenes in an
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open-vocabulary manner, typically with thousands of cate-
gories [2]. To approach human-level perception, this paper
studies open-vocabulary semantic segmentation where the
model segments an image by arbitrary categories described
by texts.

Vision-language models, e.g., CLIP [35], learn rich
multi-modal features from billion-scale image-text pairs.
Witnessing its superior open-vocabulary classification abil-
ity, prior works propose to use pre-trained vision-language
models for open-vocabulary segmentation [11, 16, 23, 40].
Among them, two-stage approaches have shown great po-
tential: they first generate class-agnostic mask propos-
als and then leverage pre-trained CLIP to perform open-
vocabulary classification (see Figure 1(b)). Their success
relies on two assumptions: (1) the model can generate class-
agnostic mask proposals (2) pre-trained CLIP can transfer
its classification performance to masked image proposals.

To examine these two assumptions, we conduct the fol-
lowing analysis. First, we assume an “oracle” mask gener-
ator and an ordinary CLIP classifier. We use ground-truth
masks as region proposals, and feed masked images to a
pre-trained CLIP for classification. This model only reaches
an mIoU of 20.1% on the ADE20K-150 dataset. Next, we
assume an “oracle” classifier but an ordinary mask proposal
generator – a MaskFormer ( [9]) pre-trained on the COCO
dataset. We first extract masked region proposals, then com-
pare each region with ground-truth object masks, find the
object with the highest overlap, and assign the object la-
bel to this extracted region. This model, despite imper-
fect region proposals, reaches a significantly higher mIoU
of 66.5%.

This analysis clearly shows that pre-trained CLIP can
not perform satisfactory classification over masked images,
and it is the performance bottleneck of two-stage open-
vocabulary segmentation models. We hypothesize that this
is caused by the significant domain gap between masked
images and CLIP’s training images. CLIP is pre-trained on
natural images with minimal data augmentation [35]. On
the other hand, mask proposals are cropped and re-sized
from original images, and are further corrupted by noisy
segmentation masks, see examples in Figure 1 (b).
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Figure 1. (a) CLIP is pre-trained with natural images with little data augmentation. (b) Two-stage open-vocabulary semantic segmentation
approaches first generate class-agnostic mask proposals and then leverage pre-trained CLIP to do open-vocabulary classification. The
input of the CLIP model is cropped masked images, which have huge domain gap from the natural images. (c) Our analysis reveals that
pre-trained CLIP does not work well on masked images.

To address this, we propose to adapt CLIP by finetun-
ing it on masked images and corresponding text labels. One
direct solution is to use segmentation labels, e.g., from the
COCO-stuff dataset. However, this leads to bad general-
ization to unseen classes (Section 4.3.1). Such manually
annotated masks are accurate but classes are limited to a
closed set (e.g., 171 classes for COCO-stuff). We hypothe-
size that the lack of text diversity causes the finetuned CLIP
to lose the generalization ability to open vocabulary con-
cepts. Instead, we collect training data by mining an ex-
isting image-caption dataset (e.g., COCO Captions). Given
an image-caption pair, we first extract nouns in the caption,
and generate class-agnostic masked region proposals using
a pre-trained segmentation model. Then, with a pre-trained
CLIP model, we assign the best-matching proposal to each
extracted noun. By learning from this weakly-supervised
alignments between masked images and novel categories,
the adapted CLIP better retains its generalization ability for
open vocabulary classification.

The next question is how to effectively finetune CLIP?
The most notable difference between a masked image and
a natural image is that background pixels in a masked im-
age are masked out, leading to many blank areas, which
will be converted to “zero tokens” when feeding to CLIP
transformers. Such tokens not only contain no useful in-
formation, but also bring domain distribution shift to the
model (since such tokens don’t exist in natural images) and
cause performance degradation. To mitigate this, we pro-
pose mask prompt tuning, á la visual prompt tuning [20].
When tokenizing a masked image, we replace the “zero to-
kens” with learnable prompt tokens. During finetuning, we
either train prompts only and freeze CLIP’s weights, or train
both of them. We find that mask prompt tuning alone sig-
nificantly improves CLIP’s performance on masked images.
This is a crucial property for multi-task scenarios where we
cannot change CLIP’s weight since it is shared with other
tasks. When combined with full model finetuning, mask

prompt tuning can further improve the performance by a
non-trivial margin (see Section 4.3.2).

In our experiments, we measure the open-vocabulary
segmentation performances on holdout segmentation
datasets in a “zero-shot” manner – we do not adapt the
model for each evaluation dataset. We train our model us-
ing COCO-stuff [5] dataset with captions from [8], and test
on challenging ADE20K (A-150, A-847 for 150/846 cate-
gories) [43], Pascal Context (PC-59, PC-459 for 59/459 cat-
egories) [33] and PASCAL VOC (PAS-20) [15]. Our best
model achieves 29.6% mIoU on A-150, which is +8.5%
than the state-of-the-art OpenSeg [16] under the same set-
ting. On more challenging A-847 and PC-459, our model
sets up a new state-of-the-art of 9.0%, 12.4% mIoU, sur-
passing the previous best solution by +2.7% and 3.4%.
Moreover, for the first time, we show open-vocabulary gen-
eralist models can match the performance of supervised
specialist models [6,29,45] in 2017 without dataset specific
adaptations.

In summary our contributions include: (1) Our anal-
ysis reveals the pre-trained CLIP does not perform well
on mask proposals, making it the performance bottleneck
of two-stage approaches. (2) We collect diverse mask-
category pairs from captions to adapt CLIP for masked im-
ages and retain its generalization ability. (3) We propose
mask prompt tuning specifically for masked image adap-
tation. This method does not change CLIP’s weight, en-
abling multi-task weight sharing. (4) For the first time, we
show open-vocabulary generalist models can match the per-
formance of supervised specialist models in 2017 without
dataset specific adaptations.

2. Related Work

Pre-trained vision-language models [19, 25, 35, 36]
connect the visual concepts with textual description. Pre-
trained CLIP [35] has strong open-vocabulary classifica-
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Figure 2. Two-stage approaches consist of one segmentation model, e.g., MaskFormer, and one CLIP model. Firstly, the modified
MaskFormer is trained with CLIP’s text embeddings so as to perform open-vocabulary segmentation. (Section 3.1). We then use the
pre-trained segmentation model to generate class-agnostic proposals and align proposals with extracted nouns from corresponding captions
(Section 3.2). After collecting diverse mask-category pairs, we finetune CLIP with the proposed mask prompt tuning (Section 3.3).

tion ability, i.e., classifying an image with arbitrary cate-
gories described by language. Pre-trained CLIP has em-
powered many computer vision tasks with the language
ability, such as image manipulation [34], image genera-
tion [10], object detection [17, 42] and image segmenta-
tion [11, 12, 16, 21, 23, 31, 39, 40]. Our work is similar to
RegionCLIP [42], which adapts CLIP for object detection
by finetuning on region proposals. Our method differs from
RegionCLIP since (1) we adapt CLIP to process masked im-
ages while RegionCLIP processes complete region crops;
(2) We leverage blank areas in masked images and propose
mask prompt tuning, which adapts CLIP without changing
its weights. This enables sharing CLIP’s weight with other
tasks in multi-task scenarios. This is not supported by Re-
gionCLIP.

Open-vocabulary segmentation aims to understand an
image with arbitrary categories described by texts. Pio-
neering work ZS3Net [4] uses generative models to syn-
thesize pixel-level features by word embeddings of un-
seen class. SPNet [37] utilizes the word embeddings, e.g.,
word2vec [32], to align the semantic meaning with visual
features. GroupViT [38] groups segmentation masks di-
rectly from text supervision. More recently, researchers
propose to leverage the pre-trained CLIP [35] for open-
vocabulary semantic segmentation. LSeg [23] aligns pixel
embeddings to the text embedding of the corresponding se-
mantic class, which is generated by CLIP’s text encoder.
Unlike pixel-level LSeg, OpenSeg [16] proposes to align
the segment-level visual features with text embedding via
region-word grounding. Our approach falls into the cate-
gory of two-stage approaches, such as ZSSeg [40] and Zeg-
Former [11]: they first generate class-agnostic mask pro-
posals and then utilize pre-trained CLIP to perform open-
vocabulary classification. Unlike ZSSeg and ZegFormer

which directly use the original CLIP for masked image clas-
sification, we adapt CLIP to improve performance.

Prompt tuning is a strategy to adapt large-scale pre-
trained models to new tasks. The idea originated from nat-
ural language processing [22, 24, 27], and recent work ex-
tends prompt tuning to computer vision. CoOp [44] pre-
appends the category words with learnable vectors to adapt
CLIP for many recognition tasks. The textual prompt tuning
is also widely used in open-vocabulary object detection [14]
and semantic segmentation [40]. Our mask prompt tuning is
more relevant to prompt tuning in the visual domain [1, 20]
where learnable vectors are applied to the image domain.
Unlike visual prompt tuning [20] that inserts additional to-
kens before the actual image tokens, we replace masked to-
kens with learnable prompts. Furthermore, mask prompt
tuning brings additional improvement over a fully finetuned
model (Section 4.3.2). Such additional improvements have
not been reported by prior work.

3. Method
In this section, we first revisit the two-stage open-

vocabulary segmentation methods [11,40]. Then we discuss
how to obtain a dataset of mask-category pairs to finetune
CLIP. Last, we discuss the proposed mask prompt tuning
technique to adapt CLIP for masked images.

3.1. Two-stage models for open-vocabulary seman-
tic segmentation

Our two-stage open-vocabulary semantic segmentation
model is shown in Figure 2. It consists of a segmentation
model that generates mask proposals, and an open vocabu-
lary classification model.

Following [11, 40], we choose MaskFormer [9] as the
segmentation model. Unlike per-pixel segmentation mod-
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els [6, 29], MaskFormer predicts a set of N mask pro-
posals and corresponding class predictions. Each pro-
posal is represented by an H × W binary mask, indicat-
ing the location of the target object. The class prediction
is a C-dimensional distribution, where C is the number
of classes in the training set. Following [40], we modify
MaskFormer such that for each mask, it generates a C-
dimensional proposal embedding, where C is the embed-
ding dimension of a CLIP model (512 for ViT-B/16 and
768 for ViT-L/14). This change allows MaskFormer to per-
form open-vocabulary segmentation. Specifically, suppose
we would like to classify the mask to K categories, we
can first use a CLIP model’s text encoder to generate K
text embeddings for each class as {tk|tk ∈ RC}k=1,··· ,K .
Next, we compare each mask embedding vi with the text
embedding, and predict the class-k probability as pi,k =
exp(σ(vi, tk)/τ)/

∑
k(exp(σ(vi, tk)/τ)). Here σ(·, ·) de-

notes the cosine similarity between two embedding vec-
tors, and τ is the temperature coefficient [35]. We train
the modified MaskFormer on the COCO-Stuff dataset [5]
with 171 classes. We use CLIP’s text encoder to process
class names to generate text embeddings. We also append
a learnable embedding ∅ to represent the category of “no
object”. For other training settings, we follow the original
MaskFormer [9].

Note that the mask proposal generator trained this way
is not strictly “class-agnostic”, as the definition of an ob-
ject is determined by the class definitions in the training set.
For example, if the training set only contains ”person” as a
class, it is not likely the model will automatically segment
a person into “face”, “hand”, “body”, or finer body parts.
How to train a general and class agnostic model to gener-
ate mask proposals is an important topic but is beyond the
scope of this paper.

In addition to MaskFormer’s prediction, following
[11, 40], we add a parallel prediction branch using
CLIP. MaskFormer generates mask proposals {Mi|Mi ∈
{0, 1}H×W }i=1,··· ,N where 1 and 0 denotes foreground and
background. For each mask, we select a tight bounding box
that includes all foreground pixels, crop the image, mask
out backgrounds, and re-size to CLIP’s resolution. We feed
mask proposal-i to CLIP and compute class-k probability as
p̂i,k. We ensemble both predictions to compute final predic-
tion as p(1−λ)

i,k ∗ p̂λi,k where λ ∈ [0, 1]. We fuse mask-wise
predictions to semantic segmentation using MaskFormer’s
fusion module.

As discussed in Section 1 and Figure 1 (c), our analysis
show that CLIP does not work well on such masked images.
Specifically, CLIP is trained on natural images with little
data augmentation [35]. However, masked images as shown
in Figure 1 (b) contain a lot of “blank regions”. Such a sig-
nificant domain gap makes it difficult for CLIP to transfer
its classification performance. We also tried cropping the
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proposals without masking out background pixels. How-
ever, we observe worse performance (see Appendix). We
conjecture that keeping background pixels makes it more
confusing for CLIP to correctly classify the foreground.

3.2. Collecting diverse mask-category pairs from
captions

To adapt CLIP to better process masked images, we pro-
pose to finetune CLIP on a dataset consisting of masked im-
age and text pairs. One direct solution is to leverage manu-
ally annotated segmentation labels, e.g., from COCO-Stuff.
Such labels are accurate but have a closed set of categories.
We try this solution and collect 965K mask-category pairs
spanning 171 classes (e.g., banana, orange) from COCO-
Stuff. Then we finetune the CLIP’s image encoder, while
freezing the text encoder, following [42]. However, we
observe that this naive approach limits the generalization
ability of CLIP, as the performance drops if there are more
unseen classes (see Section 4.3.1). We hypothesize that due
to the limited text vocabulary, the finetuned CLIP over-fits
to the 171 classes, losing the ability to generalize to unseen
categories.

Compared with segmentation labels, image captions
contain much richer information about images and involve
a much larger vocabulary. For example, in Figure 3, the
image caption is "There are apple and orange
and teapot.". Though "apple" and "orange" are
valid classes in COCO-Stuff, other concepts are not valid
classes and are ignored.

Based on this observation, we designed a self-labeling
strategy [16, 42] to extract mask-category pairs. As in Fig-
ure 3, given an image, we first use a pre-trained Mask-
Former to extract masked proposals. Meanwhile, from the
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corresponding image caption, we extract all nouns using an
off-the-shelf language parser [3], and treat them as potential
classes. Then, we use CLIP to pair the most matching mask
proposal to each class. From COCO-Captions [8], we col-
lect 1.3M mask-category pairs with 27K unique nouns using
5 captions per image, or 440K pairs with 12K nouns using 1
caption per image. Experiments show this noisy but diverse
mask-category dataset leads to significantly better perfor-
mance than manual segmentation labels (see Section 4.3.1).

3.3. Mask prompt tuning

After collecting the dataset, a natural question is how
to finetune CLIP effectively? The most notable difference
between a masked image and a natural image is that back-
ground pixels in a masked images are set to zeros, leading
to many “blank areas”. When feeding masked images to
CLIP, images will be divided into non-overlapping patches
and subsequently tokenized. Those blank areas will then
become zero tokens. Such tokens not only contain no use-
ful information but also bring domain distribution shift to
the model (since such tokens don’t exist in natural images)
and cause performance degradation. To mitigate this, we
propose a technique called mask prompt tuning, à la visual
prompt tuning [20]. Specifically, when feeding into CLIP,
a masked image will be tokenized to a tensor T ∈ RNp×E ,
where Np is the number of patches, and E is the token di-
mension. The masked image also comes with a condensed
binary mask Mp ∈ {0, 1}Np , where each element indicates
whether a given patch is kept or masked out. Only when all
the pixels within the patch are entirely masked, is the patch
treated as a masked token. The intuition is that the bound-
ary pixels, which usually exist in partially masked patches,
are crucial for region classification. We allocate a learn-
able tensor representing prompt tokens as P ∈ RNp×E .
Finally, the final input to the transformer is computed as
T ⊗Mp + P ⊗ (1 −Mp), where ⊗ denotes element-wise
multiplication. Following the “deep prompts” in [20], we
can add such prompt tokens to deeper layers of the trans-
former. This is also illustrated in Figure 4.

Compared with fully finetuning the entire model [42],
mask prompt tuning has several advantages. First, it is
specifically designed for segmentation tasks, where parts
of input images are masked. Next, compared with full
model finetuning, the amount of trainable parameters in
mask prompt tuning is orders of magnitude smaller, leading
to much better training efficiency. Moreover, as a founda-
tional model, CLIP may be simultaneously used for many
tasks, and we may not be allowed to tune CLIP’s weights.
Mask prompt tuning does not require changing weights of
CLIP, thus is suitable for such multi-task scenarios. Lastly,
our experiments show that mask prompt tuning alone leads
to significant improvement. And if applied together with
full model finetuning, it can further improve the open-
vocabulary segmentation performance (Section 4.3.2).

4. Experiments

4.1. Experimental setup

Training Dataset We train our model on the COCO
dataset [26]. We first train the modified MaskFormer us-
ing the segmentation labels from COCO-Stuff [5]. Next,
we finetune CLIP on the mask-category dataset that we ob-
tained from COCO Captions [8]. There are 118k train-
ing images labeled with 171 valid categories in the dataset,
ranging from things (e.g., orange, car) to stuffs (e.g., sky,
road). If not specified otherwise, we use all the 171 cate-
gories data during training.

Evaluation Dataset Our open-vocabulary model is able
to perform zero-shot segmentation on arbitrary datasets
without dataset-specific adaption. Thus, we test our model
on challenging ADE20K [43], Pascal VOC [15] and Pas-
cal Context [33] datasets. ADE20K is a densely pixel-wise
annotated dataset for scene understanding, which spans di-
verse annotations of indoor and outdoor scenes. There are
2K images in its validation set. We choose two versions of
categories, one with 150 frequently used categories (A-150)
and one with more diverse 847 categories (A-847). Pascal
VOC is a classical dataset for segmentation. We evaluate
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Table 1. The mIoU results of open-vocabulary generalist models and supervised specialist models. Results for SPNet and ZS3Net on PAS-
20 are reported from [23]. Results for ZegFormer on PAS-20 are recalculated by us. SimBaseline [40], ZegFormer [11] and OpenSeg [16]
are using the same COCO images, i.e., the 2017 splits with 118K images, but with different annotations. COCO-Stuff-156/171 denotes
using COCO Stuff mask annotations of 156/171 categories. Under the R101c model scale, our model significantly outperforms other
open-vocabulary models. Our largest Swin-Base model can match the performance of some supervised specialist models in 2017.

method backbone training dataset A-847 PC-459 A-150 PC-59 PAS-20

Open-vocabulary generalist models
SPNet [37] R-101 PASCAL-15 - - - 24.3 18.3
ZS3Net [4] R-101 PASCAL-15 - - - 19.4 38.3
LSeg [23] R-101 PASCAL-15 - - - - 47.4
LSeg+ [16] R-101 COCO Panoptic 2.5 5.2 13.0 36.0 59.0
SimBaseline [40] R-101c COCO-Stuff-156 - - 15.3 - 74.5
ZegFormer [11] R-50 COCO-Stuff-156 - - 16.4 - 80.7
OpenSeg [16] R-101 COCO Panoptic 4.0 6.5 15.3 36.9 60.0
OVSeg (Ours) R-101c COCO-Stuff-156 7.0 10.4 24.0 51.7 89.2
OVSeg (Ours) R-101c COCO-Stuff-171 7.1 11.0 24.8 53.3 92.6

LSeg+ [16] Eff-B7 COCO Panoptic 3.8 7.8 18.0 46.5 -
OpenSeg [16] Eff-B7 COCO Panoptic 6.3 9.0 21.1 42.1 -
OVSeg (Ours) Swin-B COCO-Stuff-171 9.0 12.4 29.6 55.7 94.5

Supervised specialist models
FCN [29] FCN-8s Same as test - - 29.4 37.8 -
Deeplab [6] R-101 Same as test - - - 45.7 77.7
SelfTrain [45] Eff-L2 Same as test - - - - 90.0
MaskFormer [9] R-101c Same as test 17.4 - 46.0 - -

on the 1.5K validation images with 20 categories (PAS-20).
Pascal Context is a set of additional annotations for PAS-
CAL VOC 2010. It goes beyond the original PASCAL se-
mantic segmentation task by providing annotations for the
whole scene. There are 5K images in its validation set. We
also choose two versions of categories, one with 59 fre-
quently used categories (PC-59) and one with the whole 459
categories (PC-459).

Implementation Details As indicated before, our model
consists of two part: one segmentation model based on
MaskFormer [9] and one mask-adapted CLIP model [35].
The final class prediction is ensemble of MaskFormer’s pre-
diction and CLIP’s prediction. The ensemble weight λ can
be found in Appendix. For the segmentation model, we
have two backbone choices, ResNet-101c [6] and Swin-
Base [28]. For the CLIP model, we have two choices: ViT-
B/16 and ViT-L/14 [13]. We detail our largest model set-
ting here, while the training recipe of the R101c model can
be found in Appendix. For Swin-Base segmentation model,
the backbone weights are initialized from an ImageNet-21K
pre-trained model. We use AdamW [30] optimizer with the
poly learning rate schedule [6]. The initial learning rate and
weight decay are set to 6 · 10−5 and 10−2, respectively. We
use a crop size of 640 × 640, a batch size of 32 and train
the model for 120K iterations. For data augmentations and
other hyper-parameters, we mainly follow the setting of [9].

For adapting CLIP ViT-L/14 model, we utilize the Open-
CLIP [18] implementation. After collecting 440K mask-

category pairs from captions (see Section 3.2), we propose
three ways to adapt CLIP: mask prompt tuning (MPT) only,
full model fine-tuning (FT) only and joint MPT + FT. For
MPT only, we initialize the CLIP model with official Ope-
nAI weights [35] and the learnable tokens are randomly
initialized. We also use the deep prompts as proposed in
[20]. The prompt depth is set to 3 if not specified other-
wise. The training optimizer is AdamW with initial learn-
ing rate 2 · 10−2 and weight decay 0. The cosine annealing
scheduler is adopted to adjust the learning rate. The model
is trained with input size of 224 × 224, a batch size of 256
for 5 epochs. For FT only, we keep similar training pro-
cedure but with a much lower learning rate 5 · 10−6 and
larger weight decay 0.2. For MPT + FT, we first initial-
ize the CLIP with fully finetuned model and then apply the
mask prompt tuning over it, which we fined more stable and
effective (see Appendix) All other hyper-parameters are the
same with MPT only. The text encoder of CLIP is frozen in
all our experiments.

4.2. Main results on open vocabulary semantic seg-
mentation

OVSeg achieves best performance among open-
vocabulary models. We conduct the comparison with
other open-vocabulary generalist models using the com-
mon ResNet-101 (R-101) model scale in Table 1. We
use R-101c [6], which replaces the first 7 × 7 convolu-
tion layer of R-101 with 3 consecutive 3 × 3 convolu-

7066



Table 2. Ablation on mask-category pairs. The baseline is MaskFormer Swin-Base with original CLIP ViT-L/14. The masks come from
ground-truth (GT) or generated proposals. The category nouns come from ground-truth (GT) classes or captions. We also calculate the
statistics (number of pairs and unique nouns) of collected pairs.

Case
Source Statistics

A-847 A-150 PC-59
Mask Category Pairs Unique nouns

Baseline - - - - 7.3 21.8 51.4
(1) GT GT 965K 171 5.3 (-2.0) 23.0 (+1.2) 57.3 (+5.9)
(2) GT 1 caption 440K 12K 7.9 (+0.6) 24.2 (+2.4) 53.2 (+1.8)
(3) proposals 1 caption 440K 12K 8.8 (+1.5) 28.8 (+7.0) 55.7 (+4.3)
(4) proposals 5 captions 1.3M 27K 8.8 (+1.5) 28.6 (+6.8) 55.5 (+4.1)

tions and which is popular in the semantic segmentation
community. If not specified otherwise, our best perfor-
mance is achieved using joint mask prompt tuning and fine-
tuning (see Section 4.3.2). First of all, compared with per-
pixel approaches (SPNet [37], ZS3Net [4], LSeg [23] and
LSeg+ [16]), proposal-based approaches (OpenSeg [16],
SimBaseline [40] and ZegFormer [11]) show better perfor-
mance. Our OVSeg also falls into the proposal-based cat-
egory. Compared with other proposal-based approaches,
our model shows significant improvements across all five
benchmarks. In particular, our R101c model achieves
7.1% and 11.0% mIoU on challenging A-847 and PC-459,
which even performs better than the EfficientNet-B7 based
OpenSeg model. We notice open-vocabulary segmenta-
tion is a new research problem, thus different approaches
may use different experimental settings, such as different
COCO annotations. Our experiments show different anno-
tations result in relatively small performance differences:
we only observe a 0.8% mIoU drop on A-150 when chang-
ing COCO-Stuff-171 to COCO-Stuff-156.

Largest OVSeg model sets up new SOTA results on
zero-shot benchmarks. When we scale up the model,
our method can further achieve better results. With Swin-
Base (Swin-B) backbone and CLIP ViT-L/14, our model
can achieve 29.6% and 55.5% mIoU on A-150 and Pascal
PC-59, which is +8.5% and +13.6% higher than the SOTA
zero-shot results. On the challenging A-847 and PC-459,
our model sets up a new zero-shot state-of-the-art 9.0% and
12.4% mIoU. We further detail the class-wise IoU of A-150
categories in Appendix.

Open-vocabulary generalist models can match super-
vised specialist models in 2017. We show our general-
ist model can achieve competitive performance without the
need of any dataset specific training. On the challenging A-
150, our model achieves similar performance with fully su-
pervised FCN-8s [29]. On the PAS-20, our model achieves
94.5% mIoU, which is even +4.5% than the SOTA special-
ist model [45]. We note OVSeg is not directly comparable
with supervised models because OVSeg is not trained on
evaluation datasets. OVSeg also has different backbones
and segmentation model architectures. Thus, comparison
with supervised models is for reference purposes only. Our

Table 3. Ablation on mask prompt tuning (MPT) and full model
tuning. The baseline is MaskFormer Swin-Base with CLIP ViT-
L/14. We report the zero-shot mIoU on representative ADE-847,
ADE-150 and PC-59 datasets. All the improvements are measured
upon the baseline model.

case
FT method

A-847 A-150 PC-59
MPT full

Baseline 7.3 21.8 51.4
(a) ✓ 8.4 (+1.1) 26.5 (+4.7) 55.4 (+4.0)
(b) ✓ 8.8 (+1.5) 28.8 (+7.0) 55.7 (+4.3)
(c) ✓ ✓ 9.0 (+1.7) 29.6 (+7.8) 55.7 (+4.3)

generalist model still underperforms the advanced specialist
models, such as supervised MaskFormer [9].

4.3. Ablation study

4.3.1 Collecting mask-category pairs

We discuss the impact of finetuning data in Table 2. The
baseline model is MaskFormer Swin-Base with the origi-
nal CLIP ViT-L/14. Our initial trial (case (1)) is collecting
ground-truth (GT) masks with supervised GT classes. We
can collecting 965K mask-category pairs with 171 unique
nouns (the number of classes defined in COCO-stuff). Then
we finetune the CLIP model with the collected pairs. We
observe a -2.0% performance drop on the A-847 dataset.
This is because the adapted CLIP is over-fitting to the 171
GT classes. Although the model achieves good results
on PC-59 (whose categories are highly overlapped with
COCO-Stuff), it perform badly for more diverse concepts
in A-847. As detailed in Section 3.2, we propose to utilize
captions [8] to collect diverse mask-category pairs. After
parsing the nouns in the caption, we match the nouns with
GT masks (case (2)) or proposals (case (3)) generated by the
baseline model. By replacing the GT masks with proposals,
the A-150 mIoU is significantly improved (from 24.2% to
28.8%) We conjecture that many regions are not labeled as
GT masks (see examples in Figure 3), and are therefore ig-
nored. In contrast, the generated proposals (usually 100)
can cover most of regions-of-interest in the image, leading
to better performance. If all the 5 captions per image are
used (case (4)), we observe a mild -0.2% degradation on A-
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Query: saturn V, blossom Query: golden gate, yachtQuery: Oculus, Ukulele

Figure 5. Open-vocabulary segmentation with user-defined queries. Our model accurately segments unseen categories, such as the Saturn
V rocket, Oculus headset, and Golden gate bridge.

150 and PC-59 We hypothesis that 12K nouns are adequate
for the CLIP to retain its open-vocabulary ability. Thus, we
choose to use 1 caption for efficiency purposes as it’s 5x
faster in training then using 5 captions.

4.3.2 Mask prompt tuning

We ablate the effect of mask prompt tuning in Table 3.
The baseline model is MaskFormer Swin-Base with CLIP
ViT-L/14. If we only use mask prompt tuning (case (a)),
our model outperforms the baseline by a large +4.7% and
+4.0% mIoU improvement on ADE-150 and PC-59, respec-
tively. Case (b) shows the result of full model fine-tuning.
Although it achieves the best accuracy, the trainable param-
eters are orders of magnitude higher. In contrast, the pro-
posed mask prompt tuning only modifies the input without
changing CLIP’s weight. Furthermore, mask prompt tun-
ing can further improve over a fully finetuned model, as
shown in case (c). Case (c) achieves 29.6% mIoU ADE-
150, which further improves the fully finetuned model by a
considerable margin of +0.8%.

4.4. Discussions

4.4.1 Segmentation with user-defined queries.

Our method allows users to define arbitrary queries and
search the query in the image, see Figure 5. Without train-
ing our models to learn specific concepts, our model can lo-
cate and segment Saturn V as the lego rocket, Oculus
as the VR headset, and golden gate as the bridge in cor-
responding images. This demonstrates the strong potentials
of open vocabulary semantic segmentation.

4.4.2 Ambiguity of open vocabulary evaluation

We show some “failure” predictions from the A-150 dataset
in Figure 6. For the left figure, the ground-truth category
is “building” while our model predicts “skyscrapers”. The
“skyscrapers” is a reasonable description, but the standard
A-150 evaluation protocol will treat it as a wrong predic-
tion. A similar case happens in the right figure, the ground-
truth “rail” is recognized as “road”. This is caused by the

GT: building Pred: skycraper GT: rail Pred: road

Figure 6. Ambiguity of the class definition in open vocabulary
segmentation evaluation.

fact that language defined categories are ambiguous and can
overlap with each other. Designing a better evaluation met-
ric for open-vocabulary segmentation models is an impor-
tant topic for our future research. Note that due to IP con-
straints, we use our own images, instead of ADE20K im-
ages in Figure 6. But this phenomenon widely exists on
ADE20K images.

5. Conclusion
This paper studies open-vocabulary semantic segmenta-

tion where the model segments an image by arbitrary cate-
gories described by texts. We identify the performance bot-
tleneck of current two-stage methods to be the pre-trained
CLIP, since it doesn’t perform well on masked images.
We propose to adapt CLIP for masked images. To re-
tain CLIP’s open-vocabulary classification ability, we adapt
CLIP with diverse mask-category pairs mined from image-
caption dataset. We further propose mask prompt tun-
ing, a method can adapt CLIP without changing its orig-
inal weights. The proposed model is general and can
do zero-shot segmentation on arbitrary datasets without
dataset-specific adaption. For the first time, we showopen-
vocabulary generalist models can match the performance of
supervised specialist models.
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