


objects from known ones. However, they primarily focus
on improving the discriminatory power of uncertainty and
tend to suppress non-objects along with many potential un-
knowns in the training phase. As a result, these meth-
ods miss many unknown objects. Fig. 1 (a) shows that
VOS [9] misses many unknown objects, such as bags, stalls
and surfboards. Furthermore, OWOD requires generating
high-quality boxes for both known and unknown objects.
ORE [18] and OW-DETR [12] collect the pseudo-unknown
samples by an auto-labelling step for supervision and per-
form knowledge transfer from the known to the unknown
by contrastive learning or foreground objectness. But the
pseudo-unknown samples are unrepresentative of the un-
known objects, thus limiting the model’s ability to describe
unknowns. Fig. 1 (b) shows that ORE [18] mis-detects
many unknown objects, even though some are apparent.

In philosophy, there is a concept called ‘Analogy’ [34],
which describes unfamiliar things with familiar ones. We
argue that despite being ever-changing in appearance, the
unknown objects are often visually similar to the objects
of pre-defined classes, as observed in Fig. 1 (d). The t-
SNE visualization shows that the unknown objects tend to
be among several pre-defined classes, while the non-objects
are far away from them. This inspires us to express a unified
concept of ‘object’ by the proposed generalized object con-
fidence (GOC) score learned from the known objects only.
To this end, we first discard the background bounding boxes
and only collect the object-intersected boxes for training to
prevent potential unknown objects from being classified as
backgrounds. Then, a combined loss function is designed
to enforce the detector to assign relatively higher scores to
boxes tightly enclosing objects. Unlike ‘objectness’, non-
object boxes are not used as the negative samples for su-
pervision. Fig. 1 (e) shows that the GOC score distinctly
separates non-objects and ‘objects’. In addition, we design
a negative energy suppression loss on top of VOS’s energy
calculation [9] to further widen the gap between the non-
object and the ‘object’. Fig. 1 (f) shows three distinct peaks
for the knowns, unknowns and non-objects. Next, due to the
absence of the unknown’s semantic information in training,
the detector hardly determines the best bounding box by a
constant threshold when the number of objects cannot be
predicted ahead of time. In our model, the best box determi-
nation is modelled as a graph partitioning problem, which
adaptively clusters high-score proposals into several groups
and selects one from each group as the best box.

As far as we know, the existing methods are evaluated on
the COCO [22] and Pascal VOC benchmarks [10] that do
not thoroughly label unknown objects. Therefore, the accu-
racy of unknown object detection cannot be evaluated. Mo-
tivated by this practical need, we propose the Unknown Ob-
ject Detection Benchmark (UOD-Benchmark), which takes
the VOC’s training set as the training data and contains two

test sets. (1) COCO-OOD containing objects with the un-
known class only; (2) COCO-Mix with both unknown and
known objects. They are collected from the original COCO
dataset [22] and annotated according to the COCO’s in-
stance labeling standard. In addition, the Pascal VOC test-
ing set is employed for evaluating known object detection.

Our key contributions can be summarized as follows:
• To better separate non-object and ‘object’, we propose

the GOC score learned from known objects to express
unknown objects and design the negative energy sup-
pression to further limit non-object.

• The graph-based box determination is designed to
adaptively select the best bounding box for each object
during inference for higher unknown detection preci-
sion.

• We propose the UOD-Benchmark containing annota-
tion of both known and unknown objects, enabling us
to evaluate the precision of unknown detection. We
comprehensively evaluate our method on this bench-
mark which facilitates future use of unknown detection
in real-world settings.

2. Related Work
Open Set Classification and Detection aim to deal with
unknown samples encountered in classification or detec-
tion tasks. Many uncertainties measuring the feature differ-
ence between unknown and known objects have been pro-
posed, such as OpenMax [1], MSP [16], ODIN [19], Maha-
lanobis distance [5] and Energy [24]. For detection, some
works [11, 27, 28] used Monte Carlo dropout to generate
uncertainty scores. David et al. [13] proposed probabilis-
tic detection quality to measure spatial and semantic uncer-
tainty. Du et al. [8, 9] synthesized virtual outliers to shape
the decision boundary of networks and used energy as an
uncertainty measure. However, to ensure the accuracy of
detecting known objects, they suppress both unknowns and
non-objects in training, leading to a low recall of unknowns.
In contrast, our method aims to detect all unknown objects.
Open-world object detection (OWOD) is proposed by
ORE [18]. It detects both known and unknown objects by
training pseudo-labeled unknown objects and incrementally
learns updated annotations of new classes. OW-DETR [12]
improves performance with multi-scale self-attention and
deformable receptive fields. Yang et al. [40] introduced se-
mantic topology to ensure that the feature representations
are discriminative and consistent. UC-OWOD [37] also
classifies unknown objects to achieve better results than
ORE on measures about unknown classes. Zhao et al. [42]
correct the auto-labeled proposals by Selective Search and
calibrate the over-confident activation boundary by a class-
specific expelling function. However, the auto-labeling step
generates many pseudo-unknown samples that are unrepre-
sentative of the unknowns in fact, limiting their ability to
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Figure 2. The framework of UnSniffer contains a feature extractor, a known object detector and a generalized object detector. (a) is the
input RGB image. (b) visualizes several channels of deep features encoding the known and unknown objects at the same time, and the red
circles mark the position of the objects. (c) shows the GOC score’s distribution before and after training the GOC. (d) shows the negative
energy’s distribution before and after using negative energy suppression. (e) is the result.

transfer knowledge from the known to the unknown. Thus,
during inference, many non-objects are mis-detected as un-
known, leading to the low precision of unknown. This pa-
per aims to reduce the false positives by the proposed GOC
score and a graph-based box determination scheme.

3. Problem Formulation

Referring to [9], the problem of unknown detection in
the setting of object detection is formulated as follows.
We have a known class set K = {1, 2, ..., C} and an un-
known class C + 1. The N input RGB images are denoted
as {I1, ..., IN }, with corresponding labels {Y1, ...,YN }.
Each Yi = {y1, ...,yK} contains a set of object instances
with yk = [lk, xk, yk, wk, hk], where lk is the class label
for a bounding box represented by xk, yk, wk, hk. If yk en-
closes a known object, lk ∈ K, otherwise lk = C + 1.

The model is trained on the data containing known-class
objects only {(In,Yn)|lk ∈ K,yk ∈ Yn}Ntrain

n=1 , but tested
on the data including unknown objects {(In,Yn)|lk ∈
K ∪ {C + 1},yk ∈ Yn}Ntest

n=1 , where N train is the im-
age number of the training set, N test for that of the test set,
and N = N test + N train.

4. Method

We propose the unknown sniffer (UnSniffer) to find both
the known and unknown objects. The pipeline is shown in
Fig. 2. The RGB image In is fed into a feature extrac-
tor [33] that captures numerous object proposals {bi|i ∈
[1, M ]} and their feature vectors {fi|fi ∈ R1024, i ∈
[1, M ]}. Taking the feature fi as input, we use two detectors

for known and unknown objects.
Firstly, the generalized object detector learns the pro-

posed generalized object confidence (GOC) score to deter-
mine whether proposal bi contains an object (See Sec. 4.1).
Then, the graph-based box determination scheme is used
to cluster the high-score proposals into several groups (See
Sec. 4.2). We select the one with the highest GOC score in
each group as a set of unknown predictions.

The second one, i.e., a known object detector, computes
the class-specific probabilities and the negative energy score
[9] for bi. In addition to the classification head and box
regression head commonly used in two-stage object detec-
tors [2, 14, 20, 33], we employ the virtual outliers synthe-
sis [9] to learn energy scores and remove the low-negative-
energy proposals during inference. Unlike [9], we employ
a negative energy suppression loss to enforce the negative
energy scores of non-object boxes less than zero (See Sec.
4.3). It lowers the feature response inside non-object boxes
and boosts the discriminative power of both detectors.

Finally, the first detector outputs the bounding box pre-
dictions of unknown class, and the second detector gives
that of known class. We directly concatenate the two results
and remove the unknown-class predictions whose IoU with
any known-class prediction exceeds a constant threshold β.
Fig. 2 (e) shows the merged result of image In.

Note that the UnSniffer has two training stages, which
are consistent with VOS [9]. In the first stage, we employ
the training process of Faster-RCNN [33] (the red dot ar-
rows in Fig. 2), where Lcls and Lreg are the losses for clas-
sification and bounding box regression, respectively. And
the second stage additionally employs the losses proposed
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in this paper (the green dot arrows in Fig. 2).

4.1. Generalized Object Confidence Score

Uncertainty Scores are usually modeled as either the max-
imum known-class confidence scores [16,19] or the entropy
of the classification results [8,9,24]. It can be used to distin-
guish unknowns from known objects according to the high
uncertainty scores of the unknown objects. However, the
uncertainty’s training phase suppresses both unknowns and
non-objects, causing the inadequate detection of unknowns.
Objectness Scores are usually used to judge whether a
bounding box containing an object [26, 33, 47], which nat-
urally meets the requirement of unknown object detection,
such as the foreground objectness learning in OW-DETR
[12] implemented by a binary classification. However,
learning-based object proposal methods cannot avoid a mis-
use of unknown samples as negative samples, leading to low
discriminative power between non-objects and unknowns.
Generalized Object Confidence Score and Losses. We
propose the generalized object confidence (GOC) score. It
can be used to judge whether a proposal contains an object
(including unknown and known classes), while this capa-
bility stems from the fact that many unknowns are actually
encoded by the pre-trained backbone, as the ‘flag’ shown in
Fig. 2(b).

Different from uncertainty and objectness, the GOC
score is trained using only known objects and can be gen-
eralized to unknown objects. Specifically, the GOC regres-
sion head that is composed of a linear transformation, de-
noted as Φ, is used to compute the GOC score Φ(fi) for
a given proposal’s feature fi. In the training phase, given
an image-label pair (In,Yn), the region proposal network
is firstly used to extract numerous proposals Bn = {bi|i ∈
[1, M ]} from image In. And we define the intersection over
the predicted bounding box (IoP ) and the intersection over
the correct bounding box (IoC) for collecting training sam-
ples from Bn as follows:

IoP (bi,yk) =
|bi ∩ yk|

|bi|
, IoC(bi,yk) =

|bi ∩ yk|
|yk|

(1)

where yk is the k-th instance’s bounding box in Yn =
{y1, ...,yK}. Subsequently, for each proposal bi in Bn,
we find the object instance that has the maximum IoU with
bi. And the proposals enclosing the same object are as-
signed to the same group, obtaining K groups of proposals:
B1

n, B2
n, .., BK

n . Then, we divide the proposals of Bk
n into

complete-object, partial-object, oversized, and non-object
according to IoU, IoP, and IoC, as shown in Fig. 3:

Bk,c
n ={bi ∈Bk

n|IoU(bi,yk) ≥ e2}
Bk,p

n ={bi ∈Bk
n|e1≤IoU(bi,yk)<e2, IoP (bi,yk)≥ρ}

Bk,o
n ={bi ∈Bk

n|e1≤IoU(bi,yk)<e2, IoC(bi,yk)≥ρ}
Bk,n

n ={bi ∈Bk
n|IoU(bi,yk) < e1}

(2)

Ground-truth Boxes

Oversized Boxes

Partial-object Boxes

Complete-object Boxes

Non-object Boxes
(Excluded for training)

Figure 3. The sample definition in GOC supervision.

where e1, e2, ρ are the constant thresholds, as shown in Fig.
3. In order to prevent the potential unknown objects from
being treated as background during training, we only use the
first three groups in Eq. 2 to train the module Φ with three
losses. In the first loss, the GOC scores of complete-object
bounding boxes are pushed towards one:

Lpos=
1

K

X
k∈[1,K]

1

|Bk,c
n |

X
bi∈Bk,c

n

�
Φ(fi) − 1

�2
(3)

Then, due to the lack of clear criteria measuring GOC scores
of partial-object or oversized boxes, we suppress their GOC
scores to below a constant δ:

Lneg =
1

K

X
k∈[1,K]

1

|Bk,po
n |

X
bi∈Bk,po

n

max
�
0, Φ(fi)−δ

�
(4)

where Bk,po
n = Bk,p

n ∪Bk,o
n . Next, we improve the model’s

ability to capture a box enclosing an object more entirely by
a contrastive loss, which compares two boxes in Bk,c

n :

Lcon=
1

K

X
k∈[1,K]

$
2

|Bk,c
n |

% X
bi,bj∈Bk,c

n

max
�
0,

Φ(fi)−Φ(fj)

α
+ζ

�
(5)

where α = 1 when IoU(bj ,yk) > IoU(bi,yk), otherwise
α = −1. ζ is a tiny constant that is set to 0.01, and i ̸= j.
Finally, the total GOC loss is formulated as:

LGOC = Lneg + Lpos + Lcon (6)

Since our training process does not utilize the sample of
the background area, the GOC scores of non-object bound-
ing boxes would not be affected greatly. On the contrary,
the GOC scores of both unknown and known objects are
pushed to a high score. As shown in Fig. 2 (c), when the
GOC is not supervised, unknown boxes have the same out-
put as non-object boxes, but it changes dramatically when
the GOC regression head is supervised by LGOC .

4.2. Graph-based Top-scoring Box Determination

By using the GOC score for ranking proposals during in-
ference, we obtain the proposals where the objects are most
likely to be. However, the traditional post-processing mech-
anism, i.e. using NMS and outputting top-k highest results,
is inappropriate to determine the unknown prediction, as the
number of objects cannot be prophesied at ahead of time.
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