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Abstract

Active speaker detection is a challenging task in audio-
visual scenarios, with the aim to detect who is speaking in
one or more speaker scenarios. This task has received con-
siderable attention because it is crucial in many applica-
tions. Existing studies have attempted to improve the per-
formance by inputting multiple candidate information and
designing complex models. Although these methods have
achieved excellent performance, their high memory and
computational power consumption render their application
to resource-limited scenarios difficult. Therefore, in this
study, a lightweight active speaker detection architecture
is constructed by reducing the number of input candidates,
splitting 2D and 3D convolutions for audio-visual feature
extraction, and applying gated recurrent units with low
computational complexity for cross-modal modeling. Ex-
perimental results on the AVA-ActiveSpeaker dataset reveal
that the proposed framework achieves competitive mAP per-
formance (94.1% vs. 94.2%), while the resource costs are
significantly lower than the state-of-the-art method, partic-
ularly in model parameters (1.0M vs. 22.5M, approximately
23×) and FLOPs (0.6G vs. 2.6G, approximately 4×). Ad-
ditionally, the proposed framework also performs well on
the Columbia dataset, thus demonstrating good robustness.
The code and model weights are available at https:
//github.com/Junhua-Liao/Light-ASD.

1. Introduction
Active speaker detection is a multi-modal task that aims

to identify active speakers from a set of candidates in ar-
bitrary videos. This task is crucial in speaker diariza-
tion [7, 42], speaker tracking [28, 29], automatic video edit-
ing [10, 20], and other applications, and thus has attracted
considerable attention from both the industry and academia.
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Figure 1. mAP vs. FLOPs, size ∝ parameters. This figure shows
the mAP of different methods [1,2,19,23,37,45] on the benchmark
and the FLOPs required to predict one frame containing three can-
didates. The size of the blobs is proportional to the number of
model parameters. The legend shows the size of blobs correspond-
ing to the model parameters from 1× 106 to 30× 106.

Research on active speaker detection dates back more
than two decades [8, 35]. However, the lack of reliable
large-scale data has delayed the development of this field.
With the release of the first large-scale active speaker detec-
tion dataset, AVA-ActiveSpeaker [33], significant progress
has been made in this field [15, 37, 38, 40, 47], following
the rapid development of deep learning for audio-visual
tasks [22]. These studies improved the performance of ac-
tive speaker detection by inputting face sequences of mul-
tiple candidates simultaneously [1, 2, 47], extracting visual
features with 3D convolutional neural networks [3, 19, 48],
and modeling cross-modal information with complex atten-
tion modules [9,44,45], etc, which resulted in higher mem-
ory and computation requirements. Therefore, applying the
existing methods to scenarios requiring real-time process-
ing with limited memory and computational resources, such
as automatic video editing and live television, is difficult.
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This study proposes a lightweight end-to-end architec-
ture designed to detect active speakers in real time, where
improvements are made from the three aspects of: (a) Sin-
gle input: inputting a single candidate face sequence with
the corresponding audio; (b) Feature extraction: split-
ting the 3D convolution of visual feature extraction into 2D
and 1D convolutions to extract spatial and temporal infor-
mation, respectively, and splitting the 2D convolution for
audio feature extraction into two 1D convolutions to ex-
tract the frequency and temporal information; (c) Cross-
modal modeling: using gated recurrent unit (GRU) [6]
with less calculation, instead of complex attention mod-
ules, for cross-modal modeling. Based on the character-
istics of the lightweight architecture, a novel loss function
is designed for training. Figure 1 visualizes multiple met-
rics of different active speaker detection approaches. The
experimental results reveal that the proposed active speaker
detection method (1.0M params, 0.6G FLOPs, 94.1% mAP)
significantly reduces the model size and computational
cost, and its performance is still comparable to that of the
state-of-the-art method [23] (22.5M params, 2.6G FLOPs,
94.2% mAP) on the benchmark. Moreover, the proposed
method demonstrates good robustness in cross-dataset test-
ing. Finally, the single-frame inference time of the proposed
method ranges from 0.1ms to 4.5ms, which is feasible for
deployment in real-time applications.

The major contributions can be summarized as follows:

• A lightweight design is developed from the three as-
pects of information input, feature extraction, and
cross-modal modeling; subsequently, a lightweight
and effective end-to-end active speaker detection
framework is proposed. In addition, a novel loss func-
tion is designed for training.

• Experiments on AVA-ActiveSpeaker [33], a bench-
mark dataset for active speaker detection released by
Google, reveal that the proposed method is comparable
to the state-of-the-art method [23], while still reducing
model parameters by 95.6% and FLOPs by 76.9%.

• Ablation studies, cross-dataset testing, and qualitative
analysis demonstrate the state-of-the-art performance
and good robustness of the proposed method.

2. Related Work

The scientific community is increasingly interested in
fusing multiple information sources to establish more ef-
fective joint representations [24]. Audio-visual learning
is a common multi-modal paradigm in the video field and
is used to solve tasks such as audio-visual action recog-
nition [12, 17], audio-visual event localization [14, 32],
audio-visual synchronization [4,36], and audio-visual sepa-

ration [16,25]. The active speaker detection method studied
in this study is an example of audio-visual separation.

The active speaker detection task was pioneered by Cut-
ler and Davis [8] in the early 2000s, when they learned
audio-visual correlations through time-delayed neural net-
works. Subsequent studies attempted to solve this task
by capturing lip motion [11, 34]. Although these studies
have promoted the development of this field, the lack of
large-scale data for training and testing limits the applica-
tion of active speaker detection in the wild. To this end,
Google introduced the first large-scale video dataset, AVA-
ActiveSpeaker [33], for active speaker detection, and this
has resulted in the emergence of numerous novel solutions.

Alcázar et al. [1, 2] first exploited the temporal con-
textual and relational contextual information from multi-
ple speakers to handle the active speaker detection task.
Köpüklü et al. [19] and Min et al. [23] followed this idea to
design structures that can better model temporal and rela-
tional contexts for improving detection performance. Sub-
sequently, Zhang et al. [46, 47] introduced a spatial context
to obtain a robust model by integrating three types of con-
textual information. Conversely, Tao et al. [37] achieved su-
perior performance using cross-attention and self-attention
modules to aggregate audio and visual features. Subse-
quently, based on this work [37], Wuerkaixi et al. [44] and
Datta et al. [9] improved the performance by introducing
positional encoding and improving the attention module. To
better exploit the potential of the attention module, Xiong et
al. [45] introduced multi-modal layer normalization to alle-
viate the distribution misalignment of audio-visual features.

In summary, existing studies focused primarily on model
performance and largely ignored the cost of inputting more
candidates or designing more complex models. This im-
plies that their deployment scenarios require abundant re-
sources, whereas the actual scenarios may not be ideal. In
the field of user-generated content, TikTok and other appli-
cations provide several automatic video editing functions
to assist users in their content creation. Active speaker
detection provides additional possibilities for this service.
As numerous users prefer creating on resource-constrained
electronic devices, such as mobile phones and tablets, a
lightweight model is required for deployment. In live televi-
sion, active speaker detection can assist the director in cut-
ting a shot at the current speaker, which requires the model
to perform real-time detection. Therefore, a lightweight and
efficient active speaker detection framework must be devel-
oped for coping with extreme environments.

3. Method
This section describes the proposed lightweight end-to-

end active speaker detection approach in detail. As shown
in Fig. 2, the proposed framework consists of a feature rep-
resentation frontend and a speaker detection backend. The
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Figure 2. Overview of the proposed lightweight framework.

frontend contains visual and audio feature encoders, which
encode the input candidate face sequence and the corre-
sponding audio to obtain the features of the visual and audio
signals, respectively. To fully utilize the multi-modal fea-
tures, the backend detector first models the temporal context
of the audio-visual features obtained by the point-wise addi-
tion of visual and audio features, and then predicts whether
the current candidate is speaking.

3.1. Visual Feature Encoder

Several active speaker detection methods use 3D con-
volutional neural networks as visual feature encoders [3,19,
45,48]. Although 3D convolution can effectively extract the
spatiotemporal information of face sequences, it requires
numerous model parameters, and its computational cost is
excessively high. To construct a lightweight visual feature

Figure 3. Architecture of visual feature encoder. The channel out-
put dimensions Cout of the three visual blocks are 32, 64, and
128, respectively. The MaxPool is executed in the spatial dimen-
sion, with a kernel size of 3 and stride of 2.

encoder herein, the 3D convolution is split into 2D and 1D
convolutions to extract the spatial and temporal information
from the candidate face sequence, respectively. Compared
with 3D convolution, this method can significantly reduce
the number of model parameters and computational burden
while maintaining good performance [21, 30, 39].

The lightweight visual feature encoder is shown in
Fig. 3. The encoder comprises three visual blocks, each
of which contains two paths for spatiotemporal feature ex-
traction: one is the convolution combination after 3D con-
volution splitting with a kernel size of 3, and the other is the
convolution combination after 3D convolution splitting with
a kernel size of 5. Herein, multiple paths are designed to ex-
tract features with different receptive fields and obtain abun-
dant spatiotemporal information. Next, convolution with a
kernel size of 1 integrates the features from different paths.
Batch normalization and ReLU activation are performed for
each convolution in the visual block. It is worth noting that
all convolutions in the visual feature encoder have a stride
of 1, except for the 2D convolution in the first visual block,
which has a stride of 2. This design reduces the spatial di-
mension when extracting features, which results in smaller
feature maps generated by the visual feature encoder in the
subsequent feature extraction. The small-size feature map
not only reduces the memory footprint, but also improves
the computation speed [31]. Finally, global max pooling
is performed in the spatial dimension to obtain the visual
feature Fv of the candidate face sequence.

3.2. Audio Feature Encoder

Currently, Mel-frequency cepstral coefficients (MFCCs)
is among the most widely used methods in audio recogni-
tion with the aim of improving the accuracy of speech activ-
ity detection [27]. Therefore, similar to most existing active
speaker detection methods [9,37,38,44,45,47], herein, a 2D
feature map composed of 13D MFCCs and temporal infor-
mation is extracted from the original audio signal as the in-
put of the audio feature encoder. However, the general con-
cept of the aforementioned studies [9,37,38,44,45,47] that
used 2D convolutional neural networks to extract audio fea-
tures is not followed herein. Instead, the idea of lightweight
visual blocks is adopted, and the 2D convolution is split
into two 1D convolutions to extract information from the
MFCCs and temporal dimensions, respectively. Figure 4
illustrates the proposed audio feature encoder architecture,
comprising three audio blocks. Similar to the visual block,
the audio block has two paths with different receptive fields
for feature extraction, and a convolution with a kernel size
of 1 is used for feature integration. It is worth mentioning
that the first two max pooling layers in the audio feature en-
coder perform dimensionality reduction in the temporal di-
mension. As the original audio signal sampled by the anal-
ysis window for MFCCs typically has overlapping areas be-
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Figure 4. Architecture of the audio feature encoder. The channel
output dimensions Cout of the three audio blocks are 32, 64, and
128, respectively. The MaxPool is executed in the temporal di-
mension, with a kernel size of 3 and stride of 2.

tween adjacent frames, pooling is required to maintain the
temporal dimension of the audio features consistent with
that of the visual features. Finally, global average pooling
is performed in the MFCCs dimension to obtain the audio
features Fa of the candidate.

3.3. Detector

The multi-modal features Fav obtained by summing the
visual features Fv and audio features Fa are input into the
speaker detector. The architecture of the detector is shown
in Fig. 5, which is also a lightweight structure. First, the
bidirectional GRU models the temporal context information
of multi-modal feature Fav . Next, a fully connected layer
(FC) predicts whether the candidate is speaking.

3.4. Loss Function

The existing active speaker detection loss function typi-
cally consists of three parts: the main classifier, the visual
auxiliary classifier, and the audio auxiliary classifier [33].
Unlike previous studies [37, 44, 47], the proposed single-
candidate input framework integrates visual and audio fea-
tures directly without any additional cross-modal interac-
tion. This implies that auxiliary classifiers rely only on
single-modal features for prediction. In special scenarios
with multiple candidates, the visual auxiliary classifier can

Figure 5. Architecture of the detector. f i
v , f i

a, and f i
av represent

the visual features, audio features, and multi-modal features of the
ith frame of the candidate sequence, respectively.

determine whether a candidate is speaking based only on
the facial information of the candidate. However, with-
out introducing visual features, the audio auxiliary classi-
fier can only determine whether someone is speaking, but
not whether the current candidate is speaking, thus result-
ing in high losses. To this end, the proposed active speaker
detection loss function is composed of only the main clas-
sifier and the visual auxiliary classifier.

The loss function is calculated as follows:
First, the prediction result is divided by the temperature

coefficient τ , and softmax is performed.

ps =
exp(rspeaking/τ)

exp(rspeaking/τ) + exp(rno speaking/τ)
(1)

where rspeaking and rno speaking respectively represent the
prediction result of whether the current candidate speaks,
and ps denotes the probability of the candidate speaking.

Note in particular that the temperature coefficient τ grad-
ually decreases during training, as follows.

τ = τ0 − αξ (2)

where τ0 is set to 1.3 as the initial temperature and α is set
to 0.02 as the decay degree. ξ indicates the training epoch.

Next, the loss L is calculated, as follows.

L = − 1

T

T∑
i=1

(g i log(pis) + (1− gi) log(1− pis)) (3)

where pis and gi are the probability and ground truth of the
candidate speaking in the ith frame of the video. T refers
to the number of video frames.

Finally, the complete loss function Lasd is obtained.

Lasd = Lav + λLv (4)

where Lav and Lv denote the losses of the main classifier
and the visual auxiliary classifier respectively, and λ is the
weight coefficient which is set to 0.5.
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Method Single candidate? Pre-training? E2E? Params(M) FLOPs(G) mAP(%)

ASC (CVPR’20) [1] % ! % 23.5 1.8 87.1
MAAS (ICCV’21) [2] % ! % 22.5 2.8 88.8
Sync-TalkNet (MLSP’22) [44] ! % ! 15.7 1.5(0.5×3) 89.8
UniCon (MM’21) [47] % ! % >22.4 >1.8 92.2
TalkNet (MM’21) [37] ! % ! 15.7 1.5(0.5×3) 92.3
ASD-Transformer (ICASSP’22) [9] ! % ! >13.9 >1.5(0.5×3) 93.0
ADENet (TMM’22) [45] ! % ! 33.2 22.8(7.6×3) 93.2
ASDNet (ICCV’21) [19] % ! % 51.3 14.9 93.5
EASEE-50 (ECCV’22) [3] % ! ! >74.7 >65.5 94.1
SPELL (ECCV’22) [23] % ! % 22.5 2.6 94.2
Our Method ! % ! 1.0 0.6(0.2×3) 94.1

Table 1. Performance comparison for methods on the validation set of the AVA-ActiveSpeaker dataset [33]. For each method, the results
originate from its published paper or calculate from the open-source code. For the studies [3, 9, 47] that are not yet open source, the
parameters and FLOPs of their audio-visual encoder are estimated. E2E refers to end-to-end, and FLOPs indicates the number of floating
point operations required to calculate one frame containing three candidates. The FLOPs of the single candidate input method are tripled.

4. Experiment

4.1. Dataset

AVA-ActiveSpeaker. The AVA-ActiveSpeaker dataset
[33] is the first large-scale standard benchmark for active
speaker detection. It consists of 262 Hollywood movies, of
which, 120 are training sets, 33 are validation sets, and the
remaining 109 are test sets. The entire dataset contains nor-
malized bounding boxes for 5.3 million faces, and each face
detection is assigned a speaking or nonspeaking label. As
a mainstream benchmark for active speaker detection tasks,
this dataset contains occlusions, low-resolution faces, low-
quality audio, and various lighting conditions that render it
highly challenging. Note that the test set is provided for the
ActivityNet challenge and is unavailable. Therefore, herein,
the performance of the validation set is evaluated in a man-
ner similar to that in previous studies [9, 38, 44, 45, 47].

Columbia. The Columbia dataset [5] is another standard
test benchmark for active speaker detection. It consists of an
87-minute panel discussion video. In the video, five speak-
ers (Bell, Boll, Lieb, Long, and Sick) take turns speaking,
and 2-3 speakers are visible at any given time.

4.2. Implementation Details

Each face is reshaped into 112 × 112 pixels. The final
architecture is implemented using PyTorch [26] and all ex-
periments are performed using an NVIDIA RTX 3090 GPU
(24GB). These models utilize the Adam optimizer [18] over
30 training epochs, where the learning rate is set as 0.001,
with a decay rate of 0.05 for every epoch.

Evaluation metric. According to the common protocol,
the metric of the AVA-ActiveSpeaker dataset is the mean

Average Precision (mAP), and the metric of the Columbia
dataset is the F1 score. Herein, model parameters and float-
ing point operations (FLOPs) are reported to further mea-
sure the size and complexity of the different models.

4.3. Comparison with State-of-the-art Methods

The performance of the proposed framework is com-
pared with that of other active speaker detection meth-
ods [1–3,9,19,23,37,44,45,47] on the AVA-ActiveSpeaker
validation set, and the results are summarized in Tab. 1.
The four aspects of the experimental results are highlighted.
(a) Lightweight and efficient. The mAP of the proposed
method reaches 94.1%, which is only slightly inferior to the
94.2% of the state-of-the-art method SPELL [23], with 23
times fewer model parameters and 4 times fewer computa-
tions. (b) End-to-End. The proposed method and EASEE-
50 [3] are state-of-the-art end-to-end active speaker detec-
tion methods with more than 75 times fewer model param-
eters and 109 times less computation. (c) No pre-training.
Unlike approaches [1–3,19,23,47] that use other large-scale
datasets for pre-training models, the proposed architecture
uses only the AVA-ActiveSpeaker training set to train the
entire network from scratch without additional processing.
(d) Single candidate. Existing studies [1–3, 19, 23, 47] fo-
cused on exploiting relational contextual information be-
tween speakers to improve performance. To reduce the
computational burden, the proposed model inputs only a
single candidate, which implies that it can make accurate
predictions based on the audio and visual signals of a single
candidate. In general, the results support the effectiveness
and superiority of the proposed lightweight framework.

Contrary to our lightweight model design philosophy,
the state-of-the-art end-to-end active speaker detection

22936



method EASEE-50 [3] uses a 3D convolutional neural net-
work to extract the visual features of multiple input candi-
date face sequences. By increasing the amount of informa-
tion and the complexity of the model, its performance im-
proves to 94.1%, but the number of model parameters and
FLOPs also increase to more than 74.7M and 65.5G, respec-
tively. Multi-candidate input amplifies this disadvantage of
expensive computation of the visual feature encoder based
on 3D convolution, because each inference requires more
computational resources to extract the visual features of
multiple candidate faces. By contrast, the proposed model
achieves the same mAP using only about 1% of the number
of model parameters and computational cost of EASEE-50.
This suggests that the small model can also achieve excel-
lent performance in the active speaker detection task.

In addition, to evaluate the robustness of the proposed
method, it is further tested on the Columbia dataset [5].
The results are presented in Tab. 2. Without fine-tuning,
the proposed method achieves a state-of-the-art average F1
score of 81.1% on the Columbia dataset compared with
TalkNet [37] and LoCoNet [43], showing good robustness.

Method Speaker
Bell Boll Lieb Long Sick Avg

TalkNet [37] 43.6 66.6 68.7 43.8 58.1 56.2
LoCoNet [43] 54.0 49.1 80.2 80.4 76.8 68.1
Our Method 82.7 75.7 87.0 74.5 85.4 81.1

Table 2. Comparison of F1-Score (%) on the Columbia dataset [5].

4.4. Ablation Studies

Kernel size. The performance of the frontend feature
encoder with different convolutional kernel sizes is eval-
uated, and the results are presented in Tab. 3. When the
encoders use convolutions with a kernel size of 3, the en-
tire framework achieves a mAP of 93.0% with only 0.5M
model parameters and 0.21G FLOPs, thus outperforming
several active speaker detection methods [1, 2, 37, 44, 47].
When the size of the convolutional kernel increases from 3
to 5, the amount of information input in the feature extrac-
tion process increases, and the performance of the model is
improved. However, when the convolutional kernel size is

Kernel size Params(M) FLOPs(G) mAP(%)

3 0.50 0.21 93.0
5 0.77 0.42 93.4
7 1.12 0.72 93.4
3 and 5 1.02 0.63 94.1

Table 3. Impact of convolutional kernel size.

increased from 5 to 7, only the number of model parameters
and the computation amount increase significantly, whereas
the performance does not improve. This suggests that prop-
erly increasing the receptive field is helpful in improving
the model performance. In addition, convolutions with dif-
ferent kernel sizes are combined and the best performance
of 94.1% is achieved by combining the information under
different receptive fields. This verifies the rationality and
effectiveness of multipath design in visual and audio blocks.

Visual feature encoder. The effectiveness of the pro-
posed lightweight visual feature encoder is experimentally
verified, and the results are presented in Tab. 4. Owing to
the high computational cost of 3D convolution, numerous
active speaker detection methods use 2D convolutional neu-
ral networks to extract the spatial features of face sequences
and then use additional modules to extract temporal fea-
tures [1, 2, 23, 37, 47]. Therefore, herein, a visual encoder
from TalkNet [37] is used to verify whether the traditional
ideas are more effective. This visual encoder consists of
ResNet-18 [13] and a temporal module. Evidently, after the
introduction of this visual encoder, the number of parame-
ters and FLOPs of the overall architecture reaches 13.68M
and 1.53G respectively, but the performance does not im-
prove (only 92.8%). Although the large-capacity model can
learn more knowledge, the input of this study is small and
relatively simple face images, so a small model with an
exquisite design is sufficient to complete the task of feature
extraction. In addition, the dimensions of the features ex-
tracted by ResNet are relatively large, and researchers typi-
cally reduce the dimensions and conduct multi-modal mod-
eling, which inevitably leads to information loss. There-
fore, the features extracted by the proposed visual encoder
are only 128 dimensions, which not only meets the design
concept of lightweight, but also avoids the information loss
caused by dimension reduction. Additionally, the perfor-
mance of the proposed framework when the visual blocks
in the visual feature encoder use 3D convolution is evalu-
ated. Although the encoder is lightweight, 3D convolution
doubles the number of model parameters and FLOPs with-
out improving the performance. Compared with 3D con-
volution, the combination of 2D and 1D convolutions dou-
bles the number of nonlinear rectifications, thereby allow-
ing the model to represent more complex functions. There-
fore, reasonably splitting 3D convolution is conducive to
lightweight models and improves model performance.

Encoder Params(M) FLOPs(G) mAP(%)

TalkNet [37] 13.68 1.53 92.8
3D convolution 2.06 1.56 92.9
Our Method 1.02 0.63 94.1

Table 4. Impact of visual feature encoder.
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Audio feature encoder. Table 5 lists the performance of
the proposed active speaker detection framework using dif-
ferent audio feature encoders. As an audio feature map is a
2D signal composed of MFCCs and temporal information,
numerous active speaker detection methods use ResNet-18
to extract audio features [1–3, 9, 23, 47]. Therefore, first,
the performance of an audio encoder based on ResNet-18 is
verified. After adopting this encoder, the number of param-
eters in the proposed framework reaches 11.98M. However,
the large-capacity model does not improve performance,
probably for similar reasons to the poor performance of
ResNet in the visual encoders. A large model may be prone
to overfitting when information is extracted from a feature
map with small dimensions. Next, the performance of us-
ing 2D convolution in audio blocks is evaluated. As the
proposed audio encoder is small, the number of model pa-
rameters and FLOPs exhibits less difference before and af-
ter 2D convolution splitting. The results indicate that the
performance of the audio encoder based on 2D convolution
is inferior to that of the audio encoder based on 1D convo-
lution by splitting. Perhaps the audio feature map does not
have a strong spatial logic similar to that of images, so pro-
cessing the MFCCs and temporal dimensions separately is
more conducive to audio information aggregation.

Encoder Params(M) FLOPs(G) mAP(%)

ResNet-18 [13] 11.98 0.69 93.4
2D convolution 1.12 0.63 93.6
Our Method 1.02 0.63 94.1

Table 5. Impact of audio feature encoder.

Detector. Table 6 presents the impact of the detector
using different methods to process audio-visual features on
model performance. Evidently, when FC is used directly
for prediction without processing of audio-visual features,
its mAP is only 88.0%. When a forward GRU is used for
the temporal modeling of audio-visual features, the mAP
increases by 4.6%. This indicates that the temporal context
information of audio-visual features helps improve the per-
formance of the active speaker detection model. However, a
forward GRU can only transmit temporal information in one
direction, thus causing the amount of information obtained
in each frame of the sequence to be unbalanced. There-
fore, herein, a bidirectional GRU is used to make each frame
combine the information of the entire sequence for predic-
tion, and achieve the best performance of 94.1%. In ad-
dition, the transformer [41] is used as an attention module
to extract temporal context information of audio-visual fea-
tures, and its performance is 1.1% lower than that of the
forward GRU. In this attention module, all frames in the se-
quence have the same chance to influence the current detec-
tion frame. Although this is an effective mechanism, in this

task, the information of the frames near the current detec-
tion frame is more helpful in determining whether the can-
didate is speaking. The forgetting mechanism of GRU ren-
ders the neighboring frames more informative, so the GRU
is a better choice in this scenario.

Detector Params(M) FLOPs(G) mAP(%)

None 0.82 0.63 88.0
Transformer [41] 1.02 0.63 91.5
Forward GRU 0.92 0.63 92.6
Bidirectional GRU 1.02 0.63 94.1

Table 6. Impact of the detector.

Loss function. Table 7 presents the experimental results
of whether the proposed loss function Lasd is helpful for
model training. First, when the proposed active speaker
detection model is trained with the standard binary cross-
entropy, it achieves 93.1% mAP on the benchmark, essen-
tially outperforming most existing active speaker detection
methods [1, 2, 9, 37, 38, 44, 47] and proving its superiority.
After introducing the proposed loss function Lasd for train-
ing, the performance of the model improves by 1% and be-
came 94.1%, thus indicating that the visual auxiliary classi-
fier can better supervise the visual feature encoder. More-
over, the introduction of temperature coefficients allows the
model to avoid falling into a local optimum, provides more
opportunities for exploration in the early stages of training,
and helps the model pay more attention to difficult samples
in the later stages of training to further improve its accuracy.

Method Params(M) FLOPs(G) mAP(%)

Our (without Lasd) 1.02 0.63 93.1
Our (with Lasd) 1.02 0.63 94.1

Table 7. Impact of the loss function.

Detection speed. The proposed framework supports dy-
namic length video input, so the inference time and frames
per second (FPS) of the model are evaluated with differ-
ent numbers of input frames. The experimental results are
presented in Tab. 8. Excluding data preprocessing, the
proposed framework takes 96.04ms to infer 1000 frames

Video frames Inference time(ms) FPS

1 (about 0.04 seconds) 4.49 223
500 (about 20 seconds) 50.28 9944
1000 (about 40 seconds) 96.04 10412

Table 8. Impact of the number of frames on the detection speed.
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(about 40 seconds) of video on an NVIDIA RTX 3090 GPU,
whereas the EASEE-50 [3] takes 2068.95ms for the audio-
visual encoder portion alone. Even in the extreme case of
a single-frame input, the inference time of the proposed
framework does not exceed 4.5ms, and the FPS reaches 223,
whereas the FPS of EASEE-50 is less than 36. This indi-
cates that the proposed active speaker detection method not
only meets the real-time detection requirements under dif-
ferent input lengths, but also has a higher detection speed
compared with the state-of-the-art end-to-end method [3].

4.5. Qualitative Analysis

On the benchmark AVA-ActiveSpeaker, we break down
the performance of the proposed method according to the
number and size of faces, similar to the state-of-the-art
methods [1,2,19,33,37]. The results are presented in Fig. 6.

First, the data are divided into three mutually exclusive
groups based on the number of faces detected in a frame,
which account for approximately 90% of the entire valida-
tion set. Figure 6a reports the performance of the active

(a) Performance comparison by the number of faces on each frame.

(b) Performance comparison by face size.

Figure 6. Performance breakdown. The performance of the pro-
posed active speaker detection method and that of the previous
state-of-the-art methods are evaluated on frames with one, two,
and three detected faces and on faces of different sizes.

speaker detection methods based on the number of faces de-
tected in the frame, and it can be seen that the performance
of all methods decreases as the number of faces increases.
Although the proposed method only inputs one candidate
per step to reduce computational complexity, it consistently
outperforms state-of-the-art methods with multiple inputs
(ASC [1], MAAS [2], and ASDNet [19]) for different num-
bers of detected faces. The advantage of inputting multi-
ple candidates is that the model can use not only audio-
visual information but also additional relational context in-
formation to select the most likely speaker from multiple
candidates. However, in the method of inputting a single
candidate, the decision can be made only according to the
audio-visual information of the current candidate, which
has high requirements for the reliability of audio-visual fea-
tures. This confirms that the proposed active speaker detec-
tion method can effectively extract and utilize audio-visual
features to make accurate predictions.

Figure 6b shows the performance of the active speaker
detection methods for different face sizes. Herein, the ver-
ification set is divided into three parts according to the
width of the detected faces: large (faces with widths greater
than 128 pixels), middle (faces with widths between 64
and 128 pixels), and small (faces with widths less than 64
pixels). Although the performance of all the methods de-
creases with a decrease in face size, the advantage of the
proposed method is more significant (+0.2% mAP, +1.4%
mAP, +3.2% mAP). The proposed method achieves the best
performance in the six scenarios subdivided by previous
work, and it is the only one with mAP greater than 90%
when the number of candidates is less than three or the face
width is larger than 64 pixels, thus indicating that it is sig-
nificantly more robust than other competing methods.

5. Conclusion

In this study, a lightweight end-to-end framework for ac-
tive speaker detection is proposed. The key features of the
proposed architecture include inputting a single candidate,
splitting 2D and 3D convolutions for extracting audio and
visual features, respectively, and using simple modules for
cross-modal modeling. Experimental results on the bench-
mark dataset AVA-ActiveSpeaker [33] reveal that the pro-
posed method reduces the model parameters by 95.6% and
FLOPs by 76.9% compared with state-of-the-art methods,
with mAP lagging by only 0.1%. In addition, the proposed
active speaker detection method exhibits good robustness.
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[3] Juan León Alcázar, Moritz Cordes, Chen Zhao, and Bernard
Ghanem. End-to-end active speaker detection. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Is-
rael, October 23–27, 2022, Proceedings, Part XXXVII, pages
126–143. Springer, 2022. 1, 3, 5, 6, 7, 8

[4] Relja Arandjelovic and Andrew Zisserman. Objects that
sound. In Proceedings of the European conference on com-
puter vision (ECCV), pages 435–451, 2018. 2

[5] Punarjay Chakravarty and Tinne Tuytelaars. Cross-modal
supervision for learning active speaker detection in video.
In Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part V 14, pages 285–301. Springer, 2016. 5, 6

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and
Yoshua Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014. 2

[7] Joon Son Chung, Jaesung Huh, Arsha Nagrani, Triantafyl-
los Afouras, and Andrew Zisserman. Spot the conver-
sation: speaker diarisation in the wild. arXiv preprint
arXiv:2007.01216, 2020. 1

[8] Ross Cutler and Larry Davis. Look who’s talking:
Speaker detection using video and audio correlation. In
2000 IEEE International Conference on Multimedia and
Expo. ICME2000. Proceedings. Latest Advances in the Fast
Changing World of Multimedia (Cat. No. 00TH8532), vol-
ume 3, pages 1589–1592. IEEE, 2000. 1, 2

[9] Gourav Datta, Tyler Etchart, Vivek Yadav, Varsha Hedau,
Pradeep Natarajan, and Shih-Fu Chang. Asd-transformer:
Efficient active speaker detection using self and multimodal
transformers. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4568–4572. IEEE, 2022. 1, 2, 3, 5, 7

[10] Haihan Duan, Junhua Liao, Lehao Lin, and Wei Cai. Flad:
a human-centered video content flaw detection system for
meeting recordings. In Proceedings of the 32nd Workshop on
Network and Operating Systems Support for Digital Audio
and Video, pages 43–49, 2022. 1

[11] Mark Everingham, Josef Sivic, and Andrew Zisserman. Tak-
ing the bite out of automated naming of characters in tv
video. Image and Vision Computing, 27(5):545–559, 2009.
2

[12] Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo
Torresani. Listen to look: Action recognition by previewing
audio. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 10457–10467,
2020. 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6, 7

[14] Di Hu, Yake Wei, Rui Qian, Weiyao Lin, Ruihua Song, and
Ji-Rong Wen. Class-aware sounding objects localization via
audiovisual correspondence. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021. 2

[15] Chong Huang and Kazuhito Koishida. Improved active
speaker detection based on optical flow. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 950–951, 2020. 1

[16] Arindam Jati and Panayiotis Georgiou. Neural predictive
coding using convolutional neural networks toward unsu-
pervised learning of speaker characteristics. IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
27(10):1577–1589, 2019. 2

[17] Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and
Dima Damen. Epic-fusion: Audio-visual temporal bind-
ing for egocentric action recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 5492–5501, 2019. 2

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5
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