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Abstract

Owing to the non-i.i.d. nature of client data, channel neu-
rons in federated-learned models may specialize to distinct
features for different clients. Yet, existing channel-sparse
federated learning (FL) algorithms prescribe fixed sparsity
strategies for client models, and may thus prevent clients
from training channel neurons collaboratively. To minimize
the impact of sparsity on FL convergence, we propose Flado
to improve the alignment of client model update trajectories
by tailoring the sparsities of individual neurons in each client.
Empirical results show that while other sparse methods are
surprisingly impactful to convergence, Flado can not only at-
tain the highest task accuracies with unlimited budget across
a range of datasets, but also significantly reduce the amount
of floating-point operations (FLOPs) required for training
more than by 10⇥ under the same communications budget,
and push the Pareto frontier of communication/computation
trade-off notably further than competing FL algorithms.

1. Introduction
In the light of the importance of personal data and recent

privacy regulations, e.g. the General Data Protection Regula-
tion (GDPR) of the European Union [28,31,34], there is now
a great amount of risk, responsibility [7, 10] and technical
challenges for securing private data centrally [30]; it is often
impractical to upload, store and use data on central servers.
To this end, federated learning (FL) [21,24] enables multiple
edge devices to learn a global shared model collaboratively
in a communication-efficient way without collecting their
local training data. Federated averaging (FedAvg) [24] and
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subsequent FL algorithms [16, 22] can notably reduce the
burden of data transmission.

These FL algorithms, however, neglected that the clients
exhibit a high degree of system heterogeneity. That is, the
clients may occupy a wide spectrum of different hardware
training capabilities [12]. Yet, dropping stragglers (i.e., the
slowest clients) inherently increases statistical heterogeneity,
which causes a negative impact on convergence [22]. Moti-
vated by this, recent FL methods, e.g., Federated Dropout [5],
and FjORD [13], thus prescribe fixed channel sparsity strate-
gies for each client, depending on their corresponding com-
putational capabilities (Figure 1a).

Yet, owing to the non-i.i.d. nature of client data, a fixed
sparsity strategy is suboptimal, as neurons may specialize to
distinct features [3, 37] for different clients (Figure 2). Intu-
itively, clients may waste computational effort on neurons
that lead to conflicting update trajectories “canceling out”
each other. Since neuron training is heavily dependent on
the clients’ data, it presents us an opportunity: can we adapt
neuron sparsities such that clients can focus their computa-
tional efforts to collaborate more effectively? Inspired by
the observation above, an optimal model sparsity strategy
should thus adapt to clients’ model training, and make clients
collaborate on similar model update trajectories by making
such neurons denser, while sparsifying neurons that conflict
in update directions.

Adaptive channel sparsity for FL clients is, however, a
nontrivial endeavor. First, naı̈vely pruning channel neurons
i.e., setting to 0, would cause them to make no contribu-
tion in training after pruning. It is thus difficult to decide if
and when a pruned channel should be recovered. Second,
as neurons tend to extract distinct features from data, data
heterogeneous clients thus specialize to training different
neurons. Third, prescribing sparsities to channels is subopti-
mal, it may be desirable to allow certain clients to collaborate
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(a) FjORD prescribes fixed sparsity.

(b) Adaptive sparsity with Flado.

Figure 1. Comparing existing sparse FL algorithms (e.g.,
FjORD [13]) with Flado. (a) FjORD trains models with fixed
channel sparsities for clients with different capabilities. (b)
Flado adapts channel sparsities with underlying training trajec-
tories and capabilities for each training round. As an example
we use 6 clients with different computational capabilities and a con-
volutional layer with 8 input and 8 output channels. Each colored
bullet “•” denotes a filter computation, and lighter color ones are
more likely to skip, and “⇣��⌘” arrows indicate communications.

on particular neurons, but the neurons may not exist in the
sparse models. In other words, the optimal sparsification
strategy must adapt different sparsities for each neuron in
each client, depending on the training trajectories.

To this end, this paper introduces Flado, a method that
optimizes channel activation probabilities to sparsify client
models with trajectory alignment towards the global trajec-
tory. The advantage of Flado is two-fold. First, coarse-
grained channel dropouts can be easily implemented and
leveraged by existing models and hardware devices to ac-
celerate client training. Second, a light-weight trajectory-
alignment algorithm optimizes the sparsity of each channel
in each client with very low overhead for the clients, and it
can reap immense computational benefits. We summarize
the contributions of this paper as follows:

• In contrast to existing fixed sparsity strategies for FL,
Flado propose to further optimize channel activation
probabilities to accelerate sparse training for each chan-
nel in each client.

• As evinced by our experiments, it can drastically re-
duce the amount of floating-point operations (FLOPs)
required for training by more than 10⇥ under the same

Figure 2. Clients sharing similar data distribution also share
similar trained parameters. Simply aggregating the conflicting
update trajectories from multiple clients can result in wasteful
computations as the trajectories are mostly orthogonal to each
other. As an example, we trained the same LeNet-5 model using 10
clients with each pair of clients receiving only same-class images
from Fashion-MNIST to simulate concept disparity. Each circle
denotes a channel neuron of the 1th layer, and it contains the update
magnitudes for all its parameters (arranged radially) after 1 round
of training. The 5 rows represent the first 5 channel neurons, and
each column is a different client (grouped in pairs).

communications budget, and enjoys a much improved
communication/computation Pareto frontiers than com-
peting FL approaches when training under data and
system heterogeneity.

• Flado widens its lead in convergence rate when high
degrees of heterogeneity are present in both data distri-
butions and system capabilities. Furthermore, it scales
well to larger models and fractional client participation.

2. Related Work
Federated learning. Distributed machine learning has

a long history of progress and success [20, 27], yet it
mainly focuses on training with i.i.d. data. The Federated
Learning (FL) paradigm and the Federated Averaging al-
gorithm (FedAvg) initially introduced by [24] allow clients
to train collaboratively without sharing the private data in
a communication-efficient manner. As a result of privacy
limitations and personal preferences, the FL clients natu-
rally collect data that are non-i.i.d., i.e., the data on training
clients may display varying levels of differences and imbal-
ance in their distribution. This presents a notable challenge
for FL algorithms to converge efficiently. We refer read-
ers to [21, 33] for a more comprehensive literature review.
While being effective at reducing communication, most of
the state-of-the-art FL methods neglected the computational
costs associated with the training process.

Computation vs. communication during federated
learning. There are a few precursory methods that focus on
the joint optimization of computation and communication
costs during training. Caldas et al. [5] introduced federated
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dropout, which prunes parameters following a uniform ran-
dom distribution, whereas PruneFL [15] proposes a greedy
gradient-magnitude-based unstructured pruning. In each FL
round, both methods produce a shared pruned model with
fine-grained sparsity for all clients. Unstructured sparsity is,
however, difficult to accelerate on hardware, and a shared
global model cannot exploit the data distribution of individ-
ual clients. HeteroFL [9] propose nested models to tackle the
problem of system heterogeneity in FL, where sub-models
are derived from a large base model by masking the last
channel neurons of each layer, and let clients with lower
computational budgets to train on smaller sub-models. On
top of this, FjORD [13] introduces ordered dropout by allow-
ing clients to randomly choose sub-models to train during
each local training step. As shown by our experiments how-
ever, they overlooked the side effect of introducing a fixed
sparsity scheme that is oblivious to client training trajecto-
ries induced by non-i.i.d. data distributions. It is noteworthy
that Flado differs from them as it infers individual channel
selection probabilities for all clients, in order to minimize its
impact on convergence.

Model Pruning and Sparse Training. Model pruning
methods [2, 11, 19, 23] introduce sparsity by removing the
neurons or parameters of deep learning models to accelerate
inference. Sparse training [36], which draws inspiration from
the progress made in model pruning, has been gaining signifi-
cant traction in the deep learning community recently, owing
to the growing cost of training [4]. To tackle this challenge,
Yuan et al. [36] propose to progressively grow a neural net-
work with continuous relaxation of network structure to save
computational costs. Zhou et al. [38] introduce an efficient
sparse training method that identifies important neurons with
a variance reduced policy gradient estimator to achieve prac-
tical training acceleration. Mohtashami et al. [25] propose
to iteratively optimize an over-parameterized neural network
and its compute-efficient subnetwork. Flado differs from
these approaches as it tackles the challenge of optimal gradi-
ent alignment introduced by collaborative sparse training of
FL clients with non-i.i.d. data, which necessitate a simulta-
neous minimization of compute and communication costs.
In contrast, all above related works only consider centralized
sparse training.

3. The Flado Method
Flado augments FL by allowing clients to adopt sparsity.

Client training sparsifies models by sandwiching convolu-
tional layers with channel-wise channel selection layers. Be-
fore each round of client training, the server compresses
the parameter update trajectory with a random embedding,
such that freshly-joined clients receive global model param-
eters, and an embedding of the global trajectory. Each client
then aligns the training direction along the global trajectory
for each channel neuron in the client’s model (Section 3.3).

This process also takes into consideration the FLOPs bud-
get constraints to encourage client models to sparisfy (Sec-
tion 3.2). Finally, following conventional FedAvg, the server
then broadcasts the weighted-average model parameters to
all training clients in the new round, and also sends the em-
bedded trajectory to the respective clients to commence the
next round of training.

3.1. Preliminaries and Definitions
We assume the training loss function of a client c 2 C to

be `c(✓c), where ✓c comprises the parameters of all layers in
the model of client c. We illustrate a FL training round for a
set of sampled clients c 2 C ✓ C. In each FL training round
t, clients train on the loss function, with initial parameters
✓(t) received from the server for this round:

✓(t+1)
c = SGDc

�
`c,✓

(t), ⌘, E
�
. (1)

Here, SGDc indicates that client c carries out stochastic
gradient descent (SGD) on `c(✓

(t)
c ) locally, and it uses a

learning rate ⌘ for E epochs. The FedAvg server then aggre-
gates client model parameters after the tth training round, by
taking the weighted average of them:

✓(t+1) =
P

c2C �c✓
(t+1)
c , (2)

where �c is the weight of client c and is proportional to
the size of its training set |Dc| with

P
c2C �c = 1. Finally,

the (t+ 1)th training round starts by repeating the above
procedure.

3.2. Sparsity Enforcement
To stochastically induce sparsity in model, for each convo-

lutional layer in a client c, we introduce a vector of channel
activation probabilities pc. Each channel is thus randomly
activated by sampling an independent Bernoulli distribution
of probability p

n
c during model training. By doing so, the

sparse model drops not only the output channels of each
convolutional layer, but also the input channels from their
preceding layers with sparse activations.

To enforce sparsity for each client c, we constrain the
feasible set of pc to be within gc(rc,pc) � 0, where rc 2
(0, 1] dials the FLOPs budget permitted by the client c, with
rc = 1 reducing to the full model. The function gc(rc,pc)
thus evaluates the following FLOPs budget constraint:

gc(rc,pc) = rc � flops(`c,pc)
�
flops(`c,1), (3)

and the terms flops(ˆ̀c,pc) and flops(`c,1) respectively de-
note the FLOPs of a sparse model (combined with its loss
evaluation) with channel activation probabilities pc, and
the full FLOPs of the corresponding dense model. In Ap-
pendix B, we explain how one can compute the FLOPs of a
model.
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3.3. Sparsity-driven Trajectory Alignment
As client training trajectories may not be well aligned

with the global trajectory, we propose to adaptively adjust the
clients’ channel activation probabilities before client training.
Specifically, it aligns the client’s gradient direction with
the global model trajectory, by maximizing the following
objective for a new set of channel activation probabilities pc

at the start of tth training round:

maxpc Ebc⇠B(pc)

cossim
�
J
�
�✓(t)

�
, J

�
r✓(t)`c

�
bc � ✓(t)

���
,

s.t. gc(rc,pc) � 0. (4)

Here, �✓(t) , ✓(t) � ✓(t�1) is the global model update tra-
jectory from round t to t+ 1, and r✓(t)`c

�
bc � ✓(t)

�
is the

stochastic gradient of the local client model under sampled
sparsity bc ⇠ B(pc). The function cossim(a,b) evaluates
the cosine similarity between a and b, and the function J
performs a differentiable fast Johnson-Lindenstrauss trans-
form (FJLT) [1] to compress the representation of its input
with a random embedding by dimension reduction.

We define the FJLT function J : Rd ! Rk with k ⌧ d
as the following random embedding:

J(z) = PHDz, (5)

where P is a k ⇥ d sparse matrix and its entries are 0 with
probability 1 � q and remaining are drawn randomly with
Pij ⇠ N (0, q�1). H is a d ⇥ d Hadamard matrix, and D

is a d ⇥ d diagonal matrix with entries drawn uniformly
from {�1, 1}. With high probability, the FJLT of any vector
z 2 Rd can be evaluated in O(d log d+ qd✏�2) time, where
✏ denotes the approximation gap. The FJLT can effectively
preserve the geometry of the compressed input, and thus
the cosine similarity cossim(J(a), J(b)) closely matches
cossim(a,b) with a very high probability. Appendix C pro-
vides theoretical and empirical evidences for the geometry
preserving properties of FJLT, and its performance.

The rationale for employing cosine similarity over the
`2 distance is that �✓(t) accumulates the average of param-
eters updates after multiple client training steps, whereas
`c(b � ✓c) is only one-step of the client’s local gradient up-
date. Aligning them by cosine similarity thus encourages
local gradients to follow the same direction of global conver-
gence trajectory.

We also note that the optimization of (4) can be trained
with stochastic gradient descent on the channel activation
probabilities pc, and this process incurs minimal overhead.
First, if the client did not participate in the previous round of
training (this happens under fractional device participation),
it requires training clients to receive a very small J(�✓(t))
along with the global model parameters. Otherwise, it can
evaluate J(�✓(t)) efficiently. Second, it only takes a few

steps of local training to converge well, where we set the
number of steps to be 1% of the client’s local training steps.

3.4. The Overall Algorithm

Algorithm 1 provides an algorithmic overview of Flado.
It uses the client model loss functions ˆ̀

c, client weights �c,
and the FLOPS constraints functions gc : [0, 1]

C⇥N ! R for
each client c 2 C. It further takes a local learning rate ⌘,
the number of local epochs per round E the number of FL
rounds T , and a client sub-sampling ratio R. It returns the
optimized model parameters ✓(T+1) upon completion.

The algorithm starts by initializing model parameters ✓(0)

to be shared across all clients, and assigns a uniform keep
probability p to all channels, which satisfies the FLOPs
constraint g(p) = 0 (lines 3).

It then optimizes the trajectory similarity of the training
client locally, as described on line 12. Line 16 then performs
conventional stochastic gradient descent on the model, but
with updated sparsity. Finally, the server performs weighted
model averaging and randomly embeds the trajectory with
FJLT for the next round of clients.

Algorithm 1 The Flado algorithm.

1: function FLADO({(gc, ˆ̀c,�c) : c 2 C}, ⌘, E, T,R)
2: // Initialization.
3: initialize(✓(0),p)
4: // For each round t. . .
5: for t 1, 2, . . . T do
6: // Sample a fast JL transform with seed t.
7: J  fjlt sample(t)
8: // Sample a subset of clients.
9: C subsample(C,R)

10: // For each sampled client in parallel. . .
11: for c 2 C in parallel do
12: if t > 1 then
13: // After the 1st round of training, optimize
14: // client channel selection probabilities.
15: pc  argmaxqc s.t. gc(qc)�0

16: cossim
⇣
�✓(t), J

�
r✓(t)`c

�
bc � ✓(t)

��⌘

17: end if
18: // Client training with sparsity.
19: ✓(t+1)

c  SGDc

�
ˆ̀
c,✓(t),pc, ⌘, E

�

20: end for
21: // Server aggregation with FedAvg.
22: ✓(t+1)  

P
c2C �c✓

(t+1)
c

23: // Global trajectory embedding.
24: �✓

(t+1)  J(✓(t+1) � ✓(t))
25: end for
26: return ✓(T+1)

27: end function
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Figure 3. An example data and system heterogeneity for 20 clients
on CIFAR-10. It shows for all clients the uneven class distributions
of images under ↵ = 0.5 and their disparate FLOPs budgets.

4. Evaluation of Sparse FL Algorithms
4.1. Experiment Setup

In this section, we present a comprehensive evaluation
of both the communication and computation costs of Flado
and compare it against other sparse FL algorithm baselines.
Figure 3 exemplifies the data and system heterogeneous
properties of the default experimental setup. We provide an
explanation of the training setups below.

Dataset configurations. We conduct experiments on
three popular vision datasets CIFAR-10 [17], Fashion-
MNIST [35] and SVHN [26]. Unless specified otherwise, the
experiment adopts a common baseline, which uses 20 clients
for CIFAR-10, and 100 clients for both Fashion-MNIST and
SVHN, defined as follows. Similar to [14, 32], we simulate
data heterogeneity using a Dirichlet distribution Dir|C|(↵)
to split the training dataset class-wise among clients, where
↵ controls data heterogeneity, which we fix at 0.5 by default.
Here, ↵!1 gives uniform class distribution across clients,
and! 0 denotes extreme heterogeneity. Although we split
the datasets for non-i.i.d. characteristics, we evaluate global
model accuracies with unified test datasets.

System configurations. By default, we use a VGG-9, a
9-layer VGG-style architecture [29] for CIFAR-10, whereas
Fashion-MNIST and SVHN use LeNet-5 [18] of different
widths. Refer to Appendix A in the appendix for more
on the model architectures. To simulate system hetero-
geneity across training clients, we draw FLOPs budgets
rc ⇠ U(0.04, 0.64) for all clients c 2 C, i.e., the densest
clients allow 64% FLOPs of the base model, whereas the
sparsiest ones use 4% — effectively enabling clients with
16⇥ difference in computational capabilities to train collab-
oratively. Note that the data and computational budgets are
independent sampled to make the task even more challenging
for sparse FL methods.

Training configurations. We use the same hyperpa-

rameters (batch size B = 32, learning rate ⌘ = 0.1, and
local training epochs E = 1) and train all models for up
to T = 2000 rounds by default. We note that existing
sparse FL algorithms provides different fixed channel keep
probabilities instead of respecting the actual FLOPs budget
of each client. To compare more fairly, we thus solve the
quadratic Eq. (3), for an average p given a client’s FLOPs
budget rc, and reassign the probabilities for all channels
in each layer according to their respective methods, while
maintaining the mean within the same layer to be p to keep
a constant FLOPs consumption by the sparse model. The
comparing sparse FL algorithms are as follows, and please
refer to the supplementary material for detailed explanations:

• UniProb. This is a simple sparse baseline, where all
neurons share an activation probability of p, and p is
chosen w.r.t. the client’s respective capability.

• HeteroFL [9]. In a training round, each client receives
and trains a p-reduced model, which removes the last
1�p of all output channels in each layer, where p is cho-
sen w.r.t. its capability. For the next round, the server
then receives and averages each channel parameters
across clients that trains it.

• FjORD [13]. Each device receives a common base
model. In each local training step, it samples the model
density from a set of p values uniformly, and forms a
p-reduced model for training.

• eFD (an extension of federated dropout [5] by [13]).
Before each training round, federated dropout [5] sim-
ply pre-samples a sub-model with a shared probability
p of enabling channel neurons and zeroing the rest for
each client. As it shares a global dropout probability
for all devices, it does not natively support heteroge-
neous client capabilities. [13] thus proposes eFD, which
extends it by allowing each client to adapt its channel
selection probability p to its computational capability.

• Flado. This is the method proposed in this paper, which
uses Algorithm 1 to optimize the channel activation
probabilities under the FLOPs constraints of each client
during each round of server aggregation.

4.2. Main Evaluation
Flado attains higher converged accuracies. Table 1

shows the highest accuracies achieved by the sparse FL al-
gorithms with 2000 rounds of training, and the total num-
bers of FLOPs and communicated parameters consumed by
each method to reach their respective best accuracies. Flado
consistently trains the models to the highest accuracies com-
pared to other sparse FL algorithms, while maintaining a
low consumption of computational and communication re-
sources. We highlight that with 2000 rounds of training,
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Table 1. Comparing the sparse FL algorithms on the converged accuracies (%) using the default training setup, sorted by their competitiveness.
For each row, it also evaluates the number of additional FLOPs and communicated parameters (“Comm. Params”) required by the
method in the current row to match the best accuracy of the previous row, and negative values indicate saving. Note that these values are
consecutive comparisons and cannot be accumulated by row. We repeat experiments 3 times for statistical bounds with different random
seeds for initialized parameters, and the sampling of system and data heterogeneity. “—” denotes failure to satisfy the accuracy budget.

Method CIFAR-10 Permitting �5% accuracy budget from Flado Permitting �10% accuracy budget from Flado

Accuracy � FLOPs � Comm. Params Rounds FLOPs CommParams Rounds FLOPs Comm. Params

HeteroFL 53.83%±3.66% 2.13P±14.67 T 18.08G±124.45 M — — — — — —
UniProb 80.91%±0.61% �2.90P±2.12 P �14.01G±18.03 G — — — 1329.5±2.9 6.21P±14.48 T 75.59G±176.28 M

eFD 81.82%±0.31% �113.08T±91.82 T �34.02G±1.09 G — — — 1287.5±5.2 6.01P±25.31 T 51.56G±218.57 M

FjORD 84.38%±0.18% �6.59P±76.82 T �47.06G±657.26 M 562.5±5.76 2.63P±14.48 T 31.98G±176.28 M 314.5±4.6 1.47P±22.77 T 17.88G±277.20 M

Flado 87.24%±0.17% �7.21P±6.18 T �87.71G±75.17 M 330.5±3.45 1.54P±8.99 T 18.79G±108.93 M 215.5±2.3 1.01P±11.71 T 12.25G±142.62 M

Method SVHN Permitting �2% accuracy budget from Flado Permitting �5% accuracy budget from Flado

Accuracy � FLOPs � Comm. Params Rounds FLOPs Comm. Params Rounds FLOPs Comm. Params

HeteroFL 89.07%±0.23% 390.35T±1.02 T 38.63G±103.75 M — — — 163.5±1.7 55.28T±647.74 G 5.47G±64.11 M

UniProb 90.39%±0.07% �299.57T±83.02 T �22.48G±8.22 G — — — 426.5±2.9 139.25T±1012.26 G 18.07G±131.38 M

eFD 91.11%±0.06% �226.29T±40.39 T �39.24G±5.24 G 1540.5±2.3 502.85T±804.65 G 51.35G±83.41 M 430.5±5.2 140.55T±1.75 T 14.35G±182.26 M

FjORD 92.36%±0.04% �399.73T±10.61 T �34.31G±1.08 G 667.5±3.5 217.86T±1.18 T 28.29G±156.45 M 253.5±1.7 82.75T±625.16 G 10.74G±81.18 M

Flado 92.90%±0.04% �354.03T±1.46 T �45.98G±194.05 M 442.5±2.9 144.48T±1012.26 G 18.75G±131.38 M 199.5±2.9 65.14T±1012.26 G 8.45G±131.38 M

Method Fashion-MNIST Permitting �5% accuracy budget from Flado Permitting �10% accuracy budget from Flado

Accuracy � FLOPs � Comm. Params Rounds FLOPs Comm. Params Rounds FLOPs Comm. Params

UniProb 83.00%±0.11% 1.83P±2.84 T 44.38G±69.06 M — — — 698.5±1.7 656.28T±1.76 T 15.56G±42.67 M

eFD 84.94%±0.09% �1.18P±3.66 T �33.68G±88.83 M — — — 410.5±2.3 386.11T±2.29 T 6.24G±38.14 M

FjORD 85.54%±0.06% �253.89T±51.17 T +7.49G±847.86 M — — — 366.5±1.1 344.15T±1.21 T 8.16G±29.45 M

HeteroFL 87.29%±0.17% �1.35P±3.66 T �36.75G±88.83 M 498.5±4.6 491.32T±4.69 T 7.66G±74.94 M 122.5±5.8 115.10T±5.56 T 2.73G±134.95 M

Flado 90.58%±0.09% �1.05P±147.24 T �11.56G±2.30 G 354.5±4.0 333.07T±3.93 T 7.90G±95.42 M 81.5±1.7 80.33T±1.84 T 1.25G±29.45 M

most algorithms have already converged, or converging so
slowly that expending a large amount of additional resources
are unlikely to notably increase the best accuracies. Figure 4
illustrates this convergence behavior.

4.3. Elasticity under Heterogeneity
Flado tolerates aggressive data heterogeneity. To inves-

tigate how different data distributions affect the performance
of sparse FL algorithms, in addition to the ↵ = 0.5 base-
line, we examine ↵ 2 {0.05, 5.0,1} in the data sampling
distribution Dir|C|(↵) for CIFAR-10 to simulate varying
degrees of imbalanced data. We provide the convergence
results in Table 2. Note that with an aggressive degree of
data imbalance, unlike other sparse algorithms, Flado can
still maintain much higher converged accuracies, and gain a
notable advantage over the competing methods in terms of
FLOPs and communication savings.

Flado is highly elastic under system heterogeneity. In
addition to data heterogeneity, we perform sensitivity anal-
yses of sparse FL training by adopting varying levels of
performance disparities. Table 3 progressive increases the
system heterogeneity from a constant FLOPs budget across
all clients, to the highest system disparity, i.e., we draw client
FLOPs budget from U(r, 0.64), with increasing values of
disparity: r 2 {0.64, 0.32, 0.16, 0.08}. Note that r = 0.64
corresponds to the case when all clients models consume the
same number of FLOPs. Again, the result reveals that Flado
typically leads the convergence in comparison to other sparse
FL methods under even the heaviest system heterogeneity.

To summarize, we observe a remarkable gap between Flado
and the other sparse FL algorithms, with a widening of the
client performance differences. This also verifies the effec-
tiveness of our optimization scheme.

Table 2. Following the evaluation of Table 1, we further compare
the sparse FL algorithms for client data distributions under increas-
ingly larger data heterogeneity on CIFAR-10.

↵ =1 Accuracy � FLOPs � Comm. Params

HeteroFL 83.20%±0.42% 2.49P±14.67 T 21.13G±124.45 M

UniProb 85.38%±0.22% +0.80P± 2.02 P +31.49G± 17.14 G

eFD 85.86%±0.21% �0.87P±98.72 T �40.32G± 1.17 G

FjORD 87.58%±0.09% �6.43P±36.67 T �44.91G±313.70 M

Flado 89.16%±0.08% �7.13P±58.68 T �86.80G±714.29 M

↵ = 5 Accuracy � FLOPs � Comm. Params

HeteroFL 82.51%±0.34% 5.17P±14.67 T 43.86G±124.45 M

UniProb 84.82%±0.17% +1.69P±14.67 T +39.67G±124.45 M

eFD 85.69%±0.25% �1.75P±14.48 T �48.29G±176.28 M

FjORD 86.92%±0.17% �5.38P±14.47 T �32.17G±123.96 M

Flado 88.85%±0.10% �6.97P±14.48 T �84.81G±176.28 M

↵ = 0.05 Accuracy � FLOPs � Comm. Params

HeteroFL 28.06%±5.04% 2.27P±14.67 T 19.29G±124.45 M

UniProb 63.05%±1.14% +0.60P±14.67 T +15.51G±124.45 M

eFD 62.84%±1.20% �0.34P±13.10 T �49.88G±159.45 M

FjORD 77.64%±0.91% �10.54P±14.44 T �82.39G±124.11 M

Flado 79.14%±1.12% �5.92P±14.48 T �72.07G±176.28 M
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Figure 4. Visualization of convergence curves for CIFAR-10. Flado leads a large gap against other sparse FL methods, in both computational
and communication savings w.r.t. trained model accuracy.

Table 3. We further compare the sparse FL algorithms under in-
creasingly level of system heterogeneity on CIFAR-10, following
the evaluation of Table 1.

U(0.64, 0.64) Accuracy � FLOPs � Comm. Params

FjORD 87.01%±0.11% 15.26P±23.83 T 112.89G±176.28 M

HeteroFL 87.43%±0.09% �4.72P±24.22 T �47.32G±150.50 M

UniProb 87.44%±0.13% �3.11P±23.79 T �4.81G±176.28 M

eFD 88.26%±0.09% �2.18P±23.82 T �29.42G±149.96 M

Flado 88.82%±0.14% �11.88P±23.83 T �25.67G±176.28 M

U(0.32, 0.64) Accuracy � FLOPs � Comm. Params

HeteroFL 58.91%±4.23% 2.96P±19.11 T 21.40G±138.38 M

eFD 85.55%±0.15% +227.50T±18.92 T +1.89G±138.11 M

UniProb 86.08%±0.31% �2.81P±18.84 T �1.70G±176.28 M

FjORD 86.43%±0.14% �102.70T±18.84 T �960.70M±176.28 M

Flado 87.88%±0.13% �8.98P±18.84 T +3.04G±176.28 M

U(0.16, 0.64) Accuracy � FLOPs � Comm. Params

HeteroFL 57.64%±4.65% 2.52P±16.53 T 20.02G±131.09 M

eFD 83.82%±0.28% +842.98T±16.44 T +6.78G±131.05 M

UniProb 83.89%±0.43% �331.42T±16.35 T +25.80G±176.28 M

FjORD 85.84%±0.19% �6.83P±16.35 T �73.60G±176.28 M

Flado 86.91%±0.16% �5.09P±16.34 T �54.90G±176.28 M

U(0.08, 0.64) Accuracy � FLOPs � Comm. Params

HeteroFL 57.39%±4.20% 2.35P±15.36 T 19.39G±126.96 M

eFD 81.45%±0.59% +999.93T±15.02 T +8.46G±126.61 M

UniProb 81.70%±0.52% �186.77T±15.10 T +29.60G±176.28 M

FjORD 84.58%±0.19% �6.62P±15.10 T �77.24G±176.28 M

Flado 86.98%±0.11% �5.93P±15.08 T �69.17G±176.28 M

4.4. Scalability Experiments

Fractional Device Participation. To measure the perfor-
mance of Flado in the more practical distributed scenario,
we scale the number of devices by a factor of 10, while
reducing the fraction of participation rate R per round to
10%, yielding results in Table 4. Flado outperforms other
sparse training for FL under fractional device participation
by a notable margin. Not only does it increase the converged
accuracies, it can also drastically reduce the FLOPs and

communication cost.

Table 4. Comparing the accuracies of sparse FL algorithms, con-
sidering 10⇥ the original device count and a 10% fractional device
participation ratio. We remind that each row also reports the num-
ber of additional FLOPs and communicated parameters (“Comm.
Params”) required by the current method to match the best accura-
cies of the previous row, and negative values indicate saving.

Method CIFAR-10
Accuracy � FLOPs � Comm. Params

UniProb 25.98%±1.07% 829.11T±1.26 T 111.25G±176.28 M

eFD 38.59%±0.88% �88.17T±1.28 T �44.27G±118.47 M

HeteroFL 60.91%±1.54% �660.16T±1.26 T �59.79G±117.45 M

FjORD 73.74%±1.19% +45.57T±1.28 T +41.06G±176.28 M

Flado 78.71%±0.84% �15.91T±1.41 T �20.04G±176.28 M

Method SVHN
Accuracy � FLOPs � Comm. Params

UniProb 86.77%±0.12% 88.76T±61.88 G 84.69G±56.02 M

eFD 87.13%±0.15% �6.02T±138.27 G �22.08G±104.31 M

FjORD 89.37%±0.06% �31.10T±137.76 G �12.38G±131.38 M

HeteroFL 90.60%±0.06% �25.97T±137.38 G �24.77G±131.38 M

Flado 91.12%±0.08% �19.96T±142.25 G �33.98G±104.55 M

Method Fashion-MNIST
Accuracy � FLOPs � Comm. Params

eFD 77.58%±0.21% 203.20T±318.92 G 30.40G±47.98 M

UniProb 78.60%±0.36% �45.20T±321.37 G +3.70G±69.06 M

FjORD 81.04%±0.26% �60.82T±317.30 G �12.91G±69.06 M

HeteroFL 86.32%±0.21% �131.26T±317.15 G �28.68G±69.06 M

Flado 86.86%±0.18% �27.55T±331.94 G �18.56G±48.15 M

Scaling to larger models. Table 5 scales the competition
to a larger ResNet-18 model, which employs batch normal-
ization (BN) layers. Under E = 1 local epochs per round,
HeteroFL and eFD failed to produce models even with 2000
rounds of training. It reveals that frequent communications
(i.e., E = 1) are surprisingly harmful to sparse FL algo-
rithms that allow clients to train only sub-models. The exper-
iments thus use a search of E 2 {1, 2, 4, 8, 16, 32, 64}, and
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Table 5. Following the evaluation of Table 1, we further compare
the sparse FL algorithms with a much larger ResNet-18 model than
the baseline VGG-9 on CIFAR-10.

ResNet-18 Accuracy � FLOPs � Comm. Params

eFD 19.35%±1.16% 3.58P±239.47 T 11.67G±778.04 M

HeteroFL 24.51%±4.26% +1.75P±476.43 T +2.88G±778.22 M

UniProb 73.87%±0.37% +1.66P±953.86 T +3.61G±1.26 G

FjORD 78.36%±2.08% �7.23P±953.86 T �9.79G±1.26 G

Flado 92.04%±0.50% �6.90P±1.20 P �36.06G±1.26 G

report the highest accuracies of the competing algorithms, to
give them a better chance. As noted by [9], there are privacy
concerns related to frequent uploads of running BN statistics,
we thus follow [9] to query clients to update BN statistics
after all training rounds have been completed. Our results
show that under both data and system heterogeneity, Flado
demonstrates the best trained accuracies scaling to a larger
model.

Flado efficiently trades off communication and com-
putational costs. To bolster the trade-off between communi-
cation and computation, we additionally conducted a hyper-
parameter exploration to navigate the Pareto frontiers of this
trade-off relationship. The hyperparameters include the num-
ber of local epochs per round E 2 {1, 2, 4, 8, 16, 32, 64}
and the batch size B 2 {16, 32, 64}. Figure 5 shows the
FLOPs/communication trade-off of the FL methods under
both data and system heterogeneity. Here, we allow a 5%
accuracy degradation from the best accuracy attained by all
algorithms (87.24%). It shows that Flado Pareto-dominates
all competing algorithms in terms of FLOPs vs. communi-
cation trade-offs. It is notable that with decreasing FLOPs
budgets, Flado expends minimal communications, whereas
other methods consume significantly higher communication
costs (more than 10⇥) to reach the same target accuracy.

In summary, Flado substantially outperforms all com-
peting sparse FL methods, showing that aligning trajec-
tories across training clients is a powerful technique to im-
prove convergence under sparsity for FL. In contrast, exist-
ing sparse FL algorithms prescribes fixed channel sparsities.
They are unable to adapt their sparsity strategies to disparate
model training trajectories incurred by non-i.i.d. data distri-
butions and a wide spectrum of client capabilities. It also
demonstrates high versatility to scaling, and good adaptabil-
ity to hyperparameter settings.

Additional observations. In Appendix D, we provide
ablation and sensitivity analyses of components in Flado, we
also show in Appendix C that the FJLT provides an efficient
and effective approximation of the cosine-similarity metric.

5. Conclusion
Recent federated learning (FL) algorithms focus on the

reduction of communication costs, while neglecting the ex-
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Figure 5. Comparing the FLOPs vs. communicated parameters
trade-off across different FL methods reaching a target accuracy
under both data and system heterogeneity. Here, we permit an
accuracy degradation of 5% on CIFAR-10 from the best possible
baseline accuracy (87.24%) and report the FLOPs and commu-
nication costs minimally required by the methods under a wide
parameter grid search to reach the target accuracy. We highlight the
Pareto frontier of each algorithm with solid lines. Note that some
algorithms report fewer or no results (e.g., HeteroFL) as they may
fail to train to the target accuracy under the given parameter setups.

pensive local compute required by edge clients. This could
be further exacerbated as the models we employ may in-
crease in size over time to attain a higher task performance.
We presented Flado, a novel FL technique that uses channel
sparsities for all neurons in clients with adaptive sparse prob-
abilities to concentrate the clients’ training effort on neurons
that they specialize well, while making the models sparse to
reduce computational costs. Experiments show that Flado
can push the Pareto frontiers of communication/computa-
tion trade-off of FL scenarios notably further than existing
algorithms. We believe this paves the way for future work
that allow FL algorithms to scale up models being trained
considerably, and consequently improve their performance
on more challenging training tasks.
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