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Abstract

Pointly supervised instance segmentation (PSIS) learns
to segment objects using a single point within the object
extent as supervision. Challenged by the non-negligible se-
mantic variance between object parts, however, the single
supervision point causes semantic bias and false segmenta-
tion. In this study, we propose an AttentionShift method, to
solve the semantic bias issue by iteratively decomposing the
instance attention map to parts and estimating fine-grained
semantics of each part. AttentionShift consists of two mod-
ules plugged on the vision transformer backbone: (i) to-
ken querying for pointly supervised attention map genera-
tion, and (ii) key-point shift, which re-estimates part-based
attention maps by key-point filtering in the feature space.
These two steps are iteratively performed so that the part-
based attention maps are optimized spatially as well as in
the feature space to cover full object extent. Experiments
on PASCAL VOC and MS COCO 2017 datasets show that
AttentionShift respectively improves the state-of-the-art of
by 7.7% and 4.8% under mAP@0.5, setting a solid PSIS
baseline using vision transformer.

1. Introduction

Instance segmentation is one of the most important vi-
sion tasks with a wide range of applications in medical im-
age processing [21,23,36], human machine interface [3, 7,
24] and advanced driver assistance system [14,37,41]. Nev-
ertheless, this task requires great human efforts to annotate
instance masks, particular in the era of big data. For exam-
ple, it takes more than four years to create the ground-truth
instance masks in the MS COCO dataset by a human anno-
tator [29]. The large annotation cost hinders the deployment
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Figure 1. Comparison of existing methods with the pro-
posed AttentionShift. Upper: The class activation map (CAM)
method [51] suffers partial activation for the lack of spatial
constraint. The self-attention map generated by vision trans-
former [16] encounters false and missed object parts. Lower: At-
tentionShift literately optimizes part-based attention maps (indi-
cated by key-points) by shifting the key-points in the feature space
to precisely localize the full object extent. (Best viewed in color)

of instance segmentation to real-world applications.

Pointly supervised instance segmentation (PSIS) [25,
26], where each instance is indicated by a single point, has
been a promising approach to solve the annotation cost is-
sue. Compared with the precise mask annotation, PSIS re-
quires only about 20% annotation cost, which is comparable
with the weakly supervised method, while the performance
is far beyond the later [2].

Existing methods [25, 26] typically estimate a single
pseudo mask for each instance and refine the estimated
mask by training a segmentation model. However, such
methods ignore the fact that the semantic variance between
object parts is non-negligible. For example, a “dog head”
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Figure 2. Flowchart of AttenttionShift. During training, the model first learns the fine-grained semantics by decomposing the instance
attention map to parts (indicated by key-points) and performing key-point shift the feature space. It then takes the estimated key-points
(each represents a part) as supervisions and querying their locations using the vision transformer.

and a “dog tail” belongs to the same semantic of “dog”, but
their appearances are quite different, Fig. 1 upper. With a
single supervision point, these methods could estimate the
semantic of “dog” as that of the most discriminative part
(“dog tail” in middle of Fig. 1 upper) or that of the regions
around the supervision point (“dog head” in right of Fig. 1
upper), which is termed as semantic bias. We make a statis-
tical analysis on ViT and found only 33% of ViT attention
maps can cover over 50% of foreground pixels. Despite its
ability to model long-range feature dependencies, ViT ap-
pears to remain vulnerable to the issue of semantic bias.

In this study, we propose AttentionShift to solve the se-
mantic bias problem by estimating fine-grained semantics
of multiple instance parts and learning an instance segmen-
tor under the supervision of estimated fine-grained seman-
tics, Fig. 1(lower). Considering that instance parts are un-
available during training, AttentionShift adopts an iterative
optimization procedure, which spatially decomposes each
instance to parts based on key-points defined on mean fea-
ture vectors and adaptively updates the key-points in a way
like mean shift [1 1] in the feature space, Fig. 2.

Using the vision transformer (ViT) as the backbone, At-
tentionShift consists of two steps: (i) token querying of
point supervision for instance attention map generation. It
takes advantage of the ViT to generate an instance attention
map by matching the semantics and locations of patch to-
kens with those of the supervision point. (ii) key-point shift
which re-estimates the part-based attention map by key-
point initialization and filtering in the feature space. These
two steps are iteratively performed so that the part-based at-
tention map, indicated by key-points, is optimized spatially
as well as in the feature space to cover the full object extent.

We conduct experiments on commonly used PASCAL
VOC and the challenging MS COCO 2017 datasets. At-
tentionShift respectively improves the state-of-the-art of by
7.7% and 4.8% under mAP@0.5, demonstrating the poten-
tial to fill the performance gap between pointly-supervised
instance segmentation and fully supervised instance seg-
mentation methods.

The contributions of this paper are concluded as follows:

* We propose a part-based attention map estimation ap-
proach for PSIS, which estimates fine-grained seman-
tics of instances to alleviate the semantic bias problem
in a systematic fashion.

* We represent object parts using key-points and lever-
age AttentionShift to operate key-points in the feature
space, providing a simple-yet-effective fashion to op-
timize part-based attention maps.

» AttentionShift achieves state-of-the-art performance,
setting a solid PSIS baseline using vision transformer.

2. Related Work

Object Localization using Key-points. Key-point fea-
tures received extensive attention in the past decades. In
the era of hand-crafted features, SIFT [32] used orientation-
encoded feature channels or bit cyclic shift to find out the
scale-invariant key-point locations. When using deep learn-
ing models for object detection, key-points including cor-
ners [52], centers [52], deformable grids [43], and edge
points [39] were used to categorize objects and regress
bounding boxes. Key-points have been widely used in hu-
man pose estimation, e.g., Convolutional pose machines
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(CPM) [40] took advantage of spatial context to predict and
refine part confidence maps. Openpose [3] delivered a great
real-time pose estimation method by proposing a part affin-
ity field (PAF) to group human parts. ExtremeNet [53]
learned the activation maps for extreme points, e.g., top
and left ones, to locate objects. RepPoint-V2 [8] intro-
duced foreground/background and corner activation maps
to discriminate objects from others. The success of key-
point approaches, particularly for part-based feature extrac-
tion and localization, inspires us to define attention maps as
key-points from a totally new perspective.

Weakly Supervised Detection and Segmentation. It
pursues localization ability and discrimination despite be-
ing trained on image-level labels. The class activation map
(CAM) [51] defined a global average pooling layer and en-
ables the localization ability by mapping the class score
is mapped back to the previous convolutional layer. IR-
Net [1] converted CAM [51] to a refined instance-aware
one that can correctly segment individuals from each other.
BESTIE [25] transferred a heat map from semantic knowl-
edge in semantic segmentation results. Nevertheless, when
objects come together, the weakly supervised segmentation
problem becomes ill-posed as the solution is not unique.
For example, when localizing discriminative object parts
and/or multiple neighboring objects with a single box/mask,
the training objective (image classification) remains being
met. Recent methods have introduced adversarial train-
ing [10, 34], spatial regularization [5, 0, 33, 34,42, 45,49,

], divergent activation [42,46] or continuation optimiza-
tion [38, 44]. However, the ill-posed problem remains,
which causes a large performance gap between weakly and
fully supervised methods.

Pointly Supervised Detection and Segmentation. The
difference between pointly supervised and weakly super-
vised methods lies in the former uses an additional point
within the object extent to indicate the coarse location.
Pointly supervised methods eliminate the ambiguity of lo-
calization supervision signals, while only increasing the an-
notation cost by 10% [26]. Through replacing supervision
points using those of minimal local responses, BESTIE [25]
implemented a promising PSIS approach with center points.
Supervised by point annotations, WISE-Net [26] locates a
region of each object and segments objects by calculating
the similarity between foreground regions. The main rea-
sons for these improvements come from the supervision of
relatively accurate instance-level labels. However, the se-
mantic bias caused by the mismatch between the single su-
pervision point and multiple object parts remains unsolved.
PointRend [9] proposed to segment instances under the su-
pervision of multiple points manually annotated in bound-
ing boxes. While achieving promising performances, it re-

quires additional bounding-box supervision, which is ex-
pensive to acquire. The problem of using a single supervi-
sion point to precisely locate all object parts while alleviat-
ing semantic bias remains unsolved.

3. AttentionShift

As shown in Fig. 3, AttentionShift consists of two steps:
(1) token querying which converts each single point su-
pervision to an instance attention map; (2) Key-point shift
which re-estimates the attention map in the feature space
and generates a set of points as supervision.

3.1. Token Querying: Pointly Supervised Attention
Map Generation

Point Prediction using Query Tokens. To generate at-
tention map for instance segmentation, we define a point
prediction task by introducing learnable query tokens. As
shown in Fig. 3, an input image is first converted to W x H
image patches (termed patch tokens). These patch tokens
are concatenated with the query tokens and fed to the vi-
sion transformer (ViT) to extract the token features. The
features of query tokens are then passed through two multi-
layer perceptron (MLP) branches (“Loc. MLP” and “Cls.
MLP”) to predict points with class probabilities and point
coordinates. The prediction points are matched with and
supervised by the GT supervision points using the bipar-
tite matching loss [4]. Note that each GT supervision point
can only be matched with a single prediction point, the un-
matched prediction points are regarded as background.

Attention Map Generation using Matched Tokens. The
query tokens which are matched with the supervision points
are thought to be aware of objects. We then used these to-
kens to generate the attention map for each instance.

To activate accurate object extent, we utilize the self-
attention operation of ViT following TS-CAM [16,27] and
produce a self-attention map A% € RW*H for each in-
stance using the matched query tokens. Af: ; denotes the
feature similarity between the patch token ¢;; and the
matched query token, where the features of patch tokens
are denoted as ® = {¢;; € RV>P i = 1,2, W, j =
1,2,..., H}) and D is the dimension of features.

Considering that A is learned under the supervision of
a single point, it suffers from the semantic bias problem
and therefore contains background noise and misses object
parts, Fig. 3. We simply use it as the guidance to partition
the patch tokens to high confidence foreground &7, high
confidence background ®~ or ignored tokens, by setting
thresholds for foreground and background on the A°. The
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Figure 3. AttentionShift implementation. For each supervision point, token querying produces an instance attention map, which is decom-

posed to parts through multiple key-points. By key-point shift in

the feature space, fine-grained semantics are estimated and the shifted

key-points, together with the GT point, are used to supervise the model to update the instance attention map.

c RWXH

instance attention map A’ is estimated as

l = d(¢i,j,¢+) % (1 _ d(¢i,j7¢_) )
" > d(dig.T) > d(ig, ) )
¢i,;€PT ¢i,jEPT

D

where d(a,b) denotes the cosine similarity between vec-
1 _

tor ¢ and b. T Wzmjeqﬁ ¢i,; and @

@—EI > s, €0~ ¢;,; denote the average feature of patch to-

kens in &+ and &, respectively. The first term in Eq. |
refines the foreground in A°, while the second term reduces
the background noise.

3.2. Key-point Shift: Part-based Attention Map Re-
estimation

The instance attention map A’ still suffers from the se-
mantic bias problem as semantics variance among object
parts is non-negligibly. With a single point on the head of a
dog as supervision, ViT tends to learn the semantic of “dog
head” to represent “dog”. To alleviate this problem, we pro-
pose to partition the instance attention map into parts, rep-
resenting the part-based attention map by key-points, and
estimating the fine-grained semantics by key-point shift.

Part-based Attention Map by Key-points. We propose
to decompose the attention map A’ to K part-based atten-
tion maps AY = {APx ¢ RW*H 'k = 1,..., K}. Never-
theless, precise object parts are unavailable under the point

supervision setting. For objects of complex and irregu-
lar shapes, it remains challenging to directly learn object
parts. Inspired by the assumption that the patch tokens (fea-
ture vectors) within an object part share the fine-grained se-
mantics and therefore are dense in the feature space, stable
and extreme points within the dense feature vectors are em-
ployed to indicate object parts.

To fulfill this purpose, we randomly initialize and adap-
tively shift K key-points towards stable and extreme points
within the feature space. Denote the key-points as Q =
{Qr,k = 1,2,..., K}, where Q) € R? are the location
indexes of key-points. Qr = (4,j) denotes that the k-th
key-point is closest to the patch token ¢; ; in the feature
space. Feature vectors of the key-points are denoted as
U = {¢p € RYP k = 1,2 ..., K}. Specially, given an
instance attention map A’, we uniformly sample K key-
points Q on A’ within the high confidence area (as shown
in Fig. 3). The key-point feature 1)}, is initialized as ¢g, .
Based on the initialized key-points, the instance attention
map A’ is decomposed into part-based ones, as

e A(9ij,Ur)

k= T T 2
B 3 d(dig k) @
2Y

where Af ; denotes the feature similarity between the patch

token ¢; ; and the key-point vy,.
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Key-point Shift. As these key-points are randomly ini-
tialized, they can not represent object parts well. We bor-
row the idea of mean shift [1 1] and perform key-point shift
in the feature space to find the stable and extreme points,
which is formulated as

wk Z 6 APk (bz NE (3)

> 5(APk) W

where 6(Af§.) is 1 if (arg max,, Af;‘) = k, and is O other-
wise. The location of the k-th key-point is computed as

Qr = ar%m)ax d(bi s V), 4
z)‘]

Decomposing the attention map using Eq. 2 does not
consider feature density. To solve, we introduce a density
weight w to the feature of patch token ¢; ; as

(i 5.00)/ ()

w00 = S ey O
where [, is an adaptive bandwidth defined as
fr=1- = rr D 5(A)d(i gy r). (6)
% 7

J %,

B is larger when the feature distribution around )y is
denser in the feature space. « is a temperature parameter.
Weighted by w(-), the patch token ¢; ; which is closer to
the key-point 1), contributes more to push the key-point 1),
shifting to the denser sample region in the feature space.
Based on the defined weight, Eq. 3 is rewritten as

= > (AMw

¢i,; €PT

¢z,j7wk)¢lj (7)

Eq. 7 enables each key-point to move to a sample-dense area
in the feature space. Based on shifted key-points, part atten-
tion maps are updated by Eq. 2. Iteratively performing Eq. 2
and Eq. 7 N times (empirically, N=10), the key-points in-
dependently shift to the mean of dense feature vectors so
that the indicated parts have fine-grained semantics.

Key-point Filtering. Despite the effectiveness to localize
fine-grained semantics, key-point shift faces noises when
falsely shifting to the background area or other objects. We
thereby propose to filter noise key-points while merging
similar key-points, as detailed in Alg. 1. Alg. | consists
of two steps. The first step removes key-points that are
not highly overlapped with the high confidence area on the
attention A, which is indicated by (5(141{]-). 5(Af_’j) is 1
if ¢;; € ®*, and 0 otherwise. The second step merges
the key-points which are similar with each other in a non-
maximum suppression (NMS) fashion.

Algorithm 1 Key-point Filtering.

Input: Key-point features ¥ = {¢;}X . instance at-
tention map A’, foreground threshold T, and merge
threshold 7,

Output: Features of filtered key-points ¥/ = {zbk}szlo

1: Step 1: Filtering.
2: fory, € U doP
S(A F)8(AL
if —Z”zl(, o ’5,;)“) < Ty then

4 U W\

5 end if

6: end for

7

8

9

[95]

: Step 2: Merging.
R\ |
: while ¥ # () do
10: M+ 0 [*set of key-points to be merged*/
11 m 4= argmaxy, » ., ; 5(Af’;»)
12: U T\,
13: M~ MUYy,
14: for ¢, € U do

15: if d(V, ¥m) > T, then

16: M — MUYy

17: U« D\ )y,

18: end if

19: end for

20: U < ¥ UMean(M) /*mean feature vector*/

21: end while
22: return U’

Attention Map Re-estimation. After performing key-
point filtering by Alg. 1, the spatial locations of each key-
point are estimated by Eq. 4. Each key-point is employed as
a pseudo supervision point, which shares the same class la-
bel with its corresponding GT supervision point. With key-
point supervisions, features of patch tokens are aware of
fine-grained semantics within full object extent, so that the
instance attention map is re-estimated according to Eq. 1.

4. Pointly Supervised Instance Segmentation

AttentionShift is implemented based on the Mask RCNN
framework [20]. In addition to the point prediction branch
illustrated in Fig. 3, it contains a bounding-box detection
branch and an instance segmentation branch. Fig. 4 shows
the overall framework of AttentionShift.

Point Prediction. This branch has been detailed in Sec. 3.
The bipartite matching loss is defined as Lp = Ip1 + lgs
upon query tokens, where Iz is L1 loss [28] for matched
query tokens, and [, is focal loss [28] for all query tokens.

Bounding-box Detection. The detection branch consists
of a region proposal network initialized by a convolutional
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Figure 4. Flowchart of the detailed implementation of the pro-
posed AttentionShift.

and two FC layers, a detection head initialized using the pre-
trained transformer decoder [47] and a detection loss with
pseudo bounding boxes. To produce the pseudo bounding
boxes, we binarize the attention maps A’ [27] and gener-
ate tight boxes to enclose the maximum connected area on
them. The detection loss is defined as Lp = lrpn + ldet
where [, is the loss of RPN, and /4., the detector head.

Instance Segmentation. The segmentation branch is ini-
tialized by a mask decoder following [47], which segments
pixels within the object bounding box to foreground and
background. The key-points Q are used as supervision for
the foreground. The supervision for the background is gen-
erated by sampling pixels in regions where A{, ; is small.
The segmentation loss is defined as £y, = l.e, where [,
denotes cross-entropy loss [20].

Training and Inference. The loss of the proposed
method can be defined as £L = Lp + Lp + L. During
training, network parameters are updated with AdamW al-
gorithm. Duing inference, only the detector, and the mask
decoder are carried out.

5. Experiment

In this section, we first describe the experimental setting.
We then report the performance of AttentionShift and com-
pare it with the state-of-the-art methods. We finally present
visualization analysis and ablation studies.

5.1. Setting

Protocols. We evaluate AttentionShift on the augmented
Pascal VOC 2012 [35] and MS-COCO [30]. The aug-
mented Pascal VOC 2012, a combination of the original
Pascal VOC 2012 and the SBD [18], contains 20 category
objects with 10,582 training images and 1,449 val images.
MS-COCO contains 118k images for training, 5k images
for validation, and 20k images for testing. It has 80 object
categories collected in natural scenes with object occlusion,
clutter backgrounds, and object scale variation, indicating

Table 1. Performance on the Pascal VOC 2012 val set. F, Z,
and P indicate full mask, image label, and point supervision, re-
spectively. For the method using extra proposals, we use M, W,
and R to indicate segment proposals, weakly supervised semantic
segmentor, and region proposals. “Sup.” denotes supervision fash-
jons. T indicates applying MRCNN refinement

Method | Sup. | Extra |mAP25s mAP5o mAP75
Mask R-CNN [20] F - 76.7 67.9 449
Mask R-CNN(ViT) [47]| F - 77.2 68.3 46.0
Label-Penet [17] A R 49.2 30.2 12.9
CL [22] Z | M, R| 56.6 38.1 12.3
BESTIE [25] 7 w 53.5 41.8 242
IRNet [1] T - - 46.7 23.5
WISE-Net [26] P M 53.5 43.0 25.9
BESTIE [25] P w 58.6 46.7 26.3
AttnShift(ours) P - 68.3 544 254
BESTIE' [25] P | W | 664 561 302
AttnShift' (ours) P - 70.3 57.1 30.4

more challenging for instance segmentation. On the aug-
mented VOC 2012 we use the mAP@0.5 [15] metric. Fol-
lowing [1,25], we also report the results under mAP@0.25
and mAP@0.75. When evaluating on the MS-COCO, the
standard AP [29] metric is applied. We also conduct MR-
CNN refinement following [1,25].

Implementation Details. AttentionShift follows the
training setting of imTED [48]. During Training, random
horizontal flips and auto-augmentation on multi-scale
ranges are used for data augmentation. AttentionShift is
trained with AdamW optimizer with batch size 16 on eight
Tesla A100 GPUs. The weight decay and training epoch are
0.05 and 12 respectively. The learning rate is initialized as
0.0001, and reduced by a magnitude after 8 and 11 epochs.
We adopt ViT-S [13] pre-trained on ImageNet-1K [12] with
MAE method [19] as the backbone network.

5.2. Performance

In Table 1, AttentionShift is compared with SOTA meth-
ods on the VOC 2012 wval set. AttentionShift outper-
forms the SOTA BESTIE [25] by a significant margin 7.7%
(54.4% vs 46.7%) in mAP@0.5, demonstrating that itera-
tive estimation of part-based attention maps facilities ac-
tivating precise and full object extent. Particularly upon
mAP@0.25 metric, AttentionShift achieves 68.3%, nearly
10% better than that of BESTIE. Upon the challenging
mAP@(.75 metric, AttentionShift achieves a comparable
performance to BESTIE without any extra proposals.

In Table 2, AttentionShift is compared with SOTA meth-
ods on MS-COCO wval and test-dev. With ViT-S, At-
tentionShift (“AttnShift-S”) outperforms BESTIE by 1.4%
AP (19.1% vs 17.7%). Upon AP@0.5 metric, Attention-
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Table 2. Performance on MS-COCO 2017 val and test-dev set.
Sz indicates training with proposals generated by the salient object
detector. “Sup.” denotes supervision fashions.

Method |Sup.| Extra | AP AP50 AP75
COCO val2017
Mask R-CNN [20] | F | - [354 773 375
Mask R-CNN(VIiT) [47]| F | - |38.8 612 413
BESTIE [25] | Z | w [143 280 132
WISE-Net [26] Pl M |78 182 88
BESTIE [25] P | W |17.7 340 164
AtmShift-Sours) | P | - [19.1 388 17.4
AttnShift-B(ours) P - 21.2 42.0 194
COCO test-dev
MaskR-CNN [20] | F | - [354 773 375
Mask R-CNN(VIT) [47]| F | - |389 615 417
LIID [31] I |M.Sz[160 27.1 165
BESTIE [25] | W |[144 280 135
BESTIE [25] Pl W [178 341 167
AttnShift-S(ours) P - 19.1 389 17.1
AtmnShift-B(ours) | P | - |2L9 43.5 20.1

Shift significantly outperforms BESTIE by 4.8% (38.8%
vs 34.0%). Upon more challenging AP@0.75 metric At-
tentionShift still outperforms BESTIE by 1.0% (17.4% vs
16.4%). These results shows the superiority of Attention-
Shift by addressing the semantic bias problem. With ViT-B
backbone (“AttnShift-B”) further achieves 21.2% upon AP
metric, establishing a new SOTA PSIS benchmark.

5.3. Visualization and Analysis

As shown in Fig. 5(second column), the self-attention
maps produced by ViT falsely activate backgrounds and/or
object parts. By introducing token querying and Attention-
Shift, the instance activation maps more precisely activate
object extent, Fig. 5(third column), which finally produce
precise instance segmentation, Fig. 5(the last column).

The progress of key-point shift is visualized in Fig. 6. At
the first shift, instance attention map is decomposed to part-
based attention maps. But the initial part-based attention
maps deviate from real object parts. Key-point shift then
makes sure that key-points are consistent with object parts.

With AttenttionShift, the part-based attention maps are
refined to represent object parts. The key-point filtering is
applied to remove key-points that are shifted to the back-
ground area to avoid false semantics. And redundant key-
points are merged to prevent the model from focusing on
the redundant object parts. By iteratively performing token
querying and key-point shift, the part-based attention maps
are optimized and the fine-grained semantics are estimated.

Instance Predicted
Attention Maps  Attention Maps Masks

Image & Self
Supervision

Figure 5. Visualization of the attention maps and instance masks.

5.4. Ablation Study

In this section, we first introduce the baseline. The we
conduct experiments to analyze the effect of attention map
generation, key-point shift, and key-point filtering. All re-
sults in this section are evaluated on the VOC 2012 val set.

Baseline. Following the previous WSOD [16, 27], we
leverage the self-attention maps in ViT to generate pseudo-
bounding boxes and use them as the supervision of the de-
tection branch. The baseline generate key-points by ran-
domly selecting points in the high-confidence area of the
self-attention map without shifting and filtering. As shown
in Table 3, the baseline method achieves 38.0% mAP.

Attention Map Generation. We replace the self-
attention map with the instance attention map. As shown in
Table 3, the mAP is significantly improved by 8.8% (46.8%
vs 38.0%), which indicates the effectiveness of instance at-
tention map generalization with noise reduction.

Key-point Shift. We introduce key-point shift to decom-
pose the generated attention map into part-based ones. As
shown in Table 3, introducing key-point shift further im-
proves the mAP by 2.4% (49.2% vs 46.8%), indicating the
semantic bias problem can be reduced by estimating fine-
grained semantics of object parts.

We further conduct experiments with different hyper-
parameters « and N in Table 4. When N = 10, a = 1.0
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Table 3. Ablation studies of AttentionShift modules.

. Attention Map Key-point Key-point
Baseline = eration  Shift  Filtering | ™F
v 38.0
v 46.8
v v 49.2
v v v o532

reports the best mAP (53.2%). When o = Inf, the proposed
key-point shift (defined by Eq. 2 and Eq. 7) degrades into
vanilla key-point shift (defined by Eq. 2 and Eq. 3), which
reduces the mAP by 3.4% (49.8% vs 53.2%). With a = 1.0,
mAP increase with IV becomes larger, and the best mAP is
achieved with N = 10. Note that more iterations of Eq. 2
and Eq. 7 (N = 20) do not further improve the mAP.

Key-point Filtering. In Table 3, Key-point filtering fur-
ther improves the mAP by 4.0% (53.2% vs 49.2%) , by re-
moving the noisy and redundant key-points.

Table 5 shows the impact of thresholds Ty and T,,,. At-
tentionShift is robust to Ty when Ty < 0.85. However,
when T’y becomes too large (17=0.9), foreground parts
could be falsely filtered, which hurts the performance by
~1%. In comparison, the merging threshold 7}, has a
larger impact. The best mAP (53.2%) is achieved when
T,, = 0.85. Larger or smaller 7},, causes ~2% mAP drop.

6. Conclusion

In this study, we proposed an AttentionShift approach, to
solve the semantic bias issue of pointly supervised instance

Table 4. Performance w.r.t. hyper-parameters o and N in key-
point shift.

o 01 10 10 Inf |10 10 10 1.0
N 10 10 10 10 0 5 10 20

mAP | 51.4 532 49.1 49.8 503 51.8 532 525

Table 5. Performance w.r.t, threshold Ty and 77, in key-point
filtering.

Ty 1085 0.85 0.85]0.80 0.85 0.90
T | 080 085 090 |0.85 0.85 0.85

mAP | 51.1 532 513530 532 523

segmentation. Our approach used key-points to represent
attention maps, as well as leveraging the mean shift algo-
rithm in the feature space to perform part-based attention
segmentation. It iteratively decomposed the instance atten-
tion map to parts through key-points and estimated fine-
trained semantics of each part, so that segmentation is opti-
mized spatially and in the feature space. Extensive experi-
ments on large-scale datasets validated the performance of
AttentionShift, with striking contrast to the state-of-the-art
methods. AttentionShift built a solid baseline for pointly
supervised instance segmentation with vision transformer.
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