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Abstract

Neural networks are often prone to bias toward spurious
correlations inherent in a dataset, thus failing to generalize
unbiased test criteria. A key challenge to resolving the issue
is the significant lack of bias-conflicting training data (i.e.,
samples without spurious correlations). In this paper, we
propose a novel data augmentation approach termed Bias-
Adversarial augmentation (BiasAdv) that supplements bias-
conflicting samples with adversarial images. Our key idea
is that an adversarial attack on a biased model that makes
decisions based on spurious correlations may generate syn-
thetic bias-conflicting samples, which can then be used as
augmented training data for learning a debiased model.
Specifically, we formulate an optimization problem for gen-
erating adversarial images that attack the predictions of
an auxiliary biased model without ruining the predictions
of the desired debiased model. Despite its simplicity, we
find that BiasAdv can generate surprisingly useful synthetic
bias-conflicting samples, allowing the debiased model to
learn generalizable representations. Furthermore, BiasAdv
does not require any bias annotations or prior knowledge of
the bias type, which enables its broad applicability to exist-
ing debiasing methods to improve their performances. Our
extensive experimental results demonstrate the superiority
of BiasAdv, achieving state-of-the-art performance on four
popular benchmark datasets across various bias domains.

1. Introduction

Real-world datasets are often inherently biased [2, 34],
where certain visual attributes are spuriously correlated
with class labels. For example, let us consider a binary clas-
sification task between cats and dogs. Unbeknownst to us,
our dataset could consist of most cats indoors and most dogs
outdoors, as illustrated in Figure 1. When trained on such
a biased dataset, neural networks often learn unintended
shortcuts [2, 8, 34, 39] (e.g., making predictions based on
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Figure 1. An overview of BiasAdv. In MetaShift [26], the bias
attribute {Indoor, Outdoor} is spuriously correlated to the class
label {Cat, Dog}. In this work, we refer to data with such spurious
correlations as bias-guiding samples and without such correlations
as bias-conflicting samples, respectively. Using the biased dataset,
we train an auxiliary model to be biased, and BiasAdv supple-
ments bias-conflicting samples using adversarial images which at-
tack the biased predictions of the auxiliary model while preserving
the predictions of the debiased model. By leveraging the diversi-
fied bias-conflicting data, BiasAdv allows the debiased model to
learn generalizable representations for unbiased classification.

the background) and fail to generalize in a new unbiased test
environment. To tackle the problem, conventional methods
have utilized explicit bias annotations [1,19,39,43] or prior
knowledge of the bias type [2, 3, 5, 9, 46]. However, bias
annotations are expensive and laborious to obtain, and pre-
suming certain bias types in advance limits the capability to
be universally applicable to various bias types.

To train a debiased model without bias annotations, the
main line of recent research [6, 22, 30, 34, 42] has com-
monly utilized an intentionally biased model as an auxiliary
model under the idea that bias attributes are easy-to-learn.
In essence, these methods identify bias-conflicting samples
based on the auxiliary model and train the debiased model
in a way that focuses more on the identified samples (i.e., re-
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weighting based on the auxiliary model). Although recent
re-weighting methods have achieved remarkable success in
debiasing without bias annotations, they have inherent limi-
tation; since the number of bias-conflicting samples is often
too small for a model to learn generalizable representations,
the model is prone to over-fitting [25]. Consequently, re-
weighting methods suffer from the degraded performance
on bias-guiding samples [20, 44], which raises the question
of whether these methods truly make models debiased or
simply deflect models in unintended directions.

To resolve the aforementioned issues, data augmentation
methods have recently been proposed to supplement bias-
conflicting samples. For example, BiaSwap [20] conducts
image-to-image translation to synthesize bias-conflicting
samples. However, it requires delicate training of complex
and expensive image translation models [36], limiting its
applicability. On the other hand, DFA [25] utilizes feature-
level swapping based on disentangled representations be-
tween bias-guiding and bias-conflicting features. Learning
disentangled representations, however, is often challenging
on real-world datasets [27, 28, 31].

In this paper, we devise a much simpler yet more effec-
tive approach to generate bias-conflicting samples, coined
Bias-Adversarial augmentation (BiasAdv). Figure 1 shows
an overview of BiasAdv. We utilize an auxiliary model that
intentionally learns biased shortcuts, likewise [30, 34]. The
key idea of BiasAdv is that an adversarial attack on the
biased auxiliary model may generate adversarial images
that alter the bias cue from the input images (i.e., bias-
conflicting samples). Concretely, we formulate an optimiza-
tion problem to generate adversarial images that attack the
predictions of the biased auxiliary model without ruining
the predictions of the desired debiased model. Then, the
generated adversarial images are used as additional training
data to train the debiased model. It is noteworthy that, un-
like previous data augmentation methods [20, 25], BiasAdv
does not require complex image translation models or dis-
entangled representations, so it can be seamlessly applied
to any debiasing method based on the biased model. Fur-
thermore, we show that BiasAdv, despite its simplicity, can
generate surprisingly useful synthetic bias-conflicting sam-
ples, which significantly improves debiasing quality.

The main contributions of our work are three-fold:

• We propose BiasAdv, a simple and effective data aug-
mentation method for model debiasing, which utilizes
adversarially attacked images as additional training
data. Our method does not require any bias annotations
or prior knowledge of the bias type during training.

• BiasAdv can be easily applied to existing re-weighting
methods without architectural or algorithmic changes.
We confirm that BiasAdv significantly improves the
performance, achieving up to 22.8%, 13.4%, 7.9%,

and 8.0% better performance than the state-of-the-art
results on CIFAR-10C [25], BFFHQ [25], BAR [34],
and MetaShift [26], respectively.

• We demonstrate the effectiveness of BiasAdv through
extensive ablation studies and analyses. Our key find-
ing is that BiasAdv helps to learn generalizable repre-
sentations and prevents over-fitting; it does not degrade
the performance of bias-guiding samples and improves
model robustness against input corruptions.

2. Related Work
Debiasing with bias supervision. To alleviate dataset bias,
a majority of previous methods have exploited bias an-
notations [4, 12, 18, 33, 39, 40], balancing the data distri-
bution through re-weighting. However, these methods are
impractical since bias supervisions are costly, demanding
extensive labor. Recently, to reduce annotation costs, sev-
eral methods have utilized only a small amount of bias-
labeled data [16, 35]. Yet, obtaining a small set of bias-
labeled data could be still expensive since identifying which
attributes exhibit spurious correlations requires thorough
analysis of dataset [42]. Instead of using bias annotations
directly, several methods have designed bias-tailored debi-
asing models by leveraging the prior knowledge of the bias
type [2, 3, 5, 9, 46]. However, presuming certain bias types
in advance limits the applicability to various bias types.
Debiasing without bias supervision. Recent debiasing
methods without bias supervision [6, 22, 30, 34, 42] have
focused on identifying bias-conflicting samples and re-
weighting them. LfF [34] identifies bias-conflicting sam-
ples by an intentionally biased model trained by General-
ized Cross Entropy (GCE) loss [51], while JTT [30] con-
siders misclassified samples from standard ERM model as
bias-conflicting samples. EIIL [6] infers a partition of bias-
guiding and bias-conflicting by the invariance principle.
BPA [42] conducts clustering in feature space to identify
bias-conflicting samples. LWBC [22] employs committee
of auxiliary classifiers to identify bias-conflicting samples
more reliably. Unlike these methods, we focus on an or-
thogonal direction (i.e., augmenting bias-conflicting sam-
ples), and BiasAdv can be easily applied to them to im-
prove performance. Recently, several data augmentation
methods [20, 25] have been proposed; BiaSwap [20] learns
an image translation model [36], while DFA [25] presents
feature-level augmentation based on disentangled represen-
tations. In contrast, our BiasAdv augments bias-conflicting
samples by using adversarial images without generative
models or disentangled representations.
Adversarial data augmentation. Utilizing adversarial im-
ages as additional training data has been extensively stud-
ied, particularly for improving the model robustness against
adversarial attacks [11, 24, 32, 48, 49]. Related to our work,
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there have been several attempts to debias the model us-
ing adversarial images [38,47,50]. However, these methods
attack the explicit prediction models that directly classify
the bias attribute, and hence, require full bias annotations.
In contrast, BiasAdv leverages implicit information by em-
ploying the auxiliary model and does not require any bias
annotations or prior knowledge of the bias type. In addition,
M2m [21] for long-tailed classification, which translates the
majority samples to the minority samples, shares a similar
motive to our method. However, M2m requires information
on whether the sample belongs to the majority class or the
minority class, which is not given in our case. To the best
of our knowledge, our work is the first attempt to utilize ad-
versarial images without bias annotations, showing another
good use case of adversarial attacks for debiasing.

3. Proposed Method
In this section, we describe BiasAdv in detail. We first

present our problem setup in Section 3.1. Then, we describe
how BiasAdv generates synthetic bias-conflicting samples
and present the overall training procedure in Section 3.2. In
Section 3.3, we discuss the underlying effects of BiasAdv.

3.1. Problem Setup

We consider a task of learning a classifier that classifies
an input image x ∈ X as one of C classes y ∈ Y in the
presence of dataset bias. Specifically, we consider a biased
training dataset D = {(xi, yi)}Ni=1 where a certain visual
attribute a ∈ A of the image x is spuriously correlated to
the class label y while in fact there is no causal relationship
between them. In this work, we assume that we do not have
annotations on the bias attribute a in the training dataset
since they are expensive and laborious to obtain.

Let fθ : X → Y be a classification model parameterized
by θ ∈ Θ, which we want to optimize. A standard setting
of Empirical Risk Minimization (ERM) with a proper loss
function L(x, y; θ) : X ×Y ×Θ → R+ (e.g., cross entropy
loss) minimizes R(θ) defined as

R(θ) = E(x,y)∼D
[
L(x, y; θ)

]
. (1)

However, since most training data are bias-guiding sam-
ples, fθ trained by ERM exhibits high test errors for bias-
conflicting samples when evaluated on unbiased test set.

In recent years, re-weighting methods [6, 22, 30, 34, 42]
have been widely studied. Based on the assumption that the
bias attribute a is learned more preferentially than other in-
trinsic attributes [30,34], these methods employ an auxiliary
classification model gϕ : X → Y parameterized by ϕ ∈ Φ,
which is intentionally trained to make biased decisions (i.e.,
predicting y based on a). Based on the auxiliary model gϕ,
re-weighting methods first identify bias-conflicting samples
and then train the model fθ to be debiased in a way that em-
phasizes the identified bias-conflicting samples. Formally,

the existing re-weighting methods can be formulated in a
unified manner that minimizes the weighted empirical risk
Rw(θ) defined as follows,

Rw(θ) = E(x,y)∼D
[
W(x, y; θ, ϕ) · L(x, y; θ)

]
, (2)

where W(x, y; θ, ϕ) denotes the sample weight of (x, y).
In essence, the re-weighting scheme prevents learning from
being dominated by bias-guiding samples, improving the
performance of bias-conflicting samples. However, due to
the significant scarcity of bias-conflicting samples in the
given dataset D, re-weighting methods suffer from over-
fitting problems [25] and fail to learn generalizable rep-
resentations, resulting in degrading performance of bias-
guiding samples [20, 44]. In this work, to resolve the afore-
mentioned issues, we propose BiasAdv, a novel data aug-
mentation method that generates diversified bias-conflicting
samples using adversarial images.

3.2. Bias-Adversarial Augmentation

Given a training pair (x, y) ∈ D, the goal of BiasAdv
is to generate an adversarial image xadv that can act as a
synthetic bias-conflicting sample for training the debiased
model fθ. We utilize a biased model gϕ as an auxiliary
model. Note that we do not assume a specific auxiliary
model, and BiasAdv can be combined with any existing re-
weighting methods that can be formulated as Eq. (2). Given
the biased auxiliary model gϕ, our insight is that an adver-
sarial attack [10, 24, 32] on gϕ may alter the bias cue from
the input image x, generating a synthetic bias-conflicting
sample. However, since we do not use bias annotations dur-
ing training, gϕ is not an ideal biased predictor, and the
naive attack on gϕ risks ruining intrinsic attributes for class
prediction. Therefore, to ensure that only the bias attribute is
attacked, we constrain xadv not to affect the class prediction
of the debiased model fθ. To this end, BiasAdv generates
xadv by solving the following optimization problem,

xadv = argmax
x̃:=x+ϵ

[
L(x̃, y;ϕ)− λ · L(x̃, y; θ)

]
, (3)

where L denotes the cross entropy loss, λ > 0 denotes a
tunable hyperparameter, and ϵ denotes an adversarial per-
turbation. Note that we can use any attacker to obtain ϵ, and
Projected Gradient Descent (PGD) [32] is employed in this
work. The first term attacks the prediction of gϕ, while the
second term preserves the prediction of fθ, and thus pre-
venting intrinsic attributes from being compromised by ad-
versarial perturbations. In a nutshell, BiasAdv translates the
original image x to go across the decision boundary of gϕ
while preserving the prediction of fθ.

Then, the generated adversarial example xadv is used as
additional training data for learning the debiased model fθ.
Concretely, we train fθ with a mixture of adversarial data
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Figure 2. The overall training procedure with BiasAdv. During
training, BiasAdv generates adversarial samples on-the-fly that go
across the decision boundary of gϕ while preserving the prediction
of fθ . Note that BiasAdv can be easily applied to any re-weighting
methods based on the auxiliary model, illustrated in the upper.

and original data, minimizing Ra(θ) defined as

Ra(θ) = E(x,y)∼D
[
ωxL(x, y; θ)+ωadvL(xadv, y; θ)

]
, (4)

where ωx and ωadv denote the sample weights of x and
xadv, respectively. For ωx, we can take advantage of exist-
ing re-weighting formula W(x, y; θ, ϕ) in Eq. (2) by defin-
ing ωx = W(x, y; θ, ϕ). That is, BiasAdv can be combined
with any existing re-weighting methods that utilize the aux-
iliary model. In this case, we design ωadv to trade off the
sample weight ωx as follows: ωadv = β · (1 − ωx) where
β > 0 denotes a hyperparameter that controls the impor-
tance of adversarial data. Intuitively, our method can be in-
terpreted as complementing the insufficient learning of bias-
guiding samples due to the re-weighting by translating them
into synthetic bias-conflicting samples through the adver-
sarial attack. Figure 2 illustrates the overall training proce-
dure with our BiasAdv.

3.3. Discussion

Here, we discuss the underlying effects of BiasAdv in
two aspects: (1) BiasAdv extends the decision boundary to
include bias-conflicting samples. By solving Eq. (3), Bi-
asAdv generates a set of synthetic data points {xadv} near
the decision boundary of gϕ. At this time, as the bias at-
tribute a is a shortcut in the learning process, we can expect
that attacking the bias attribute is again the easiest short-
cut to achieve Eq. (3). As a result, {xadv} can act as syn-
thetic bias-conflicting samples. By incorporating {xadv}, fθ
learns an extended decision boundary, improving the gen-
eralization of bias-conflicting samples. In Section 4.3, we
will demonstrate that BiasAdv actually generates synthetic

samples near bias-conflicting samples in the embedding
space. (2) BiasAdv utilizes diverse and affluent information
from bias-guiding samples. Since most of the samples in
the dataset are bias-guiding samples, xadv is mostly trans-
lated from the bias-guiding sample. As an adversarial ex-
ample [15, 48], xadv still has enough information about the
original image. Hence, BiasAdv can be regarded as one of
natural ways to leverage diverse intrinsic attributes of bias-
guiding samples, allowing fθ to learn generalizable rep-
resentations. By leveraging the sample diversity, BiasAdv
prevents over-fitting and improves performance not only for
bias-conflicting samples but also for bias-guiding samples,
which will be validated in Section 4.

4. Experiments

4.1. Experimental Setup

Datasets. To evaluate the generalization of the proposed
method across various bias domains, we used one synthetic
dataset and three real-world datasets: (1) Corrupted CIFAR-
10 (CIFAR-10C) [25] is a synthetic dataset built upon
CIFAR-10 [23] and contains spurious correlations between
object classes and injected textures designed in [14]. The
ratio of bias-conflicting samples in the training set was set
to p ∈ {0.5%, 2%, 5%}. For the test set, we considered un-
biased test criteria where the texture biases were distributed
uniformly at random. (2) Biased FFHQ (BFFHQ) [25] is a
real-world facial dataset curated from FFHQ [17] where the
gender attribute {Male, Female} is spuriously correlated to
the class label {Young, Old}. The ratio of bias-conflicting
samples in the training set was set to 0.5% following [25],
and we evaluated the performance on the unbiased test set.
(3) Biased Action Recognition (BAR) [34] is a real-world
dataset that contains spurious correlations between six hu-
man action classes and six place attributes. Following [37],
the ratio of bias-conflicting samples in the training set was
set to p ∈ {1%, 5%}, and the test set consisted of only bias-
conflicting samples. (4) MetaShift [26] is a recently intro-
duced real-world dataset for evaluating contextual distribu-
tion shifts. We used “Cat vs. Dog”, a subset of MetaShift,
where the background context {Indoor, Outdoor} is spu-
riously correlated to the class label {Cat, Dog}. The ratio
of bias-conflicting samples in the training set was set to
p ∈ {1%, 6%, 12%} following the original setting [26], and
we evaluated the performance on the unbiased test set.
Evaluation metrics. For quantitative evaluation, we
adopted three metrics; AVERAGE (i.e., accuracy (%) of
all samples), CONFLICTING (i.e., accuracy (%) of bias-
conflicting samples), and WORST-GROUP (i.e., minimum
accuracy (%) among groups where each group is defined
by the class label and the bias attribute). To ensure statisti-
cal robustness, we ran three independent trials and reported
the mean and the standard deviation.
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Table 1. Comparison with state-of-the-art methods on CIFAR-
10C. BS denotes the model explicitly leverages bias annotations
or prior knowledge of the bias type. † and ∗ denote the numbers
reported from [25] and the original paper, respectively. Underline
indicates performance improvement when applying BiasAdv. Best
results are marked in bold.

Method BS
AVERAGE

p=0.5% p=2% p=5%

HEX [46]† ✓ 13.87 15.20 16.04
EnD [43]† ✓ 22.89 31.31 40.26
ReBias [2]† ✓ 22.27 31.66 43.43
BiaSwap [20]∗ ✗ 29.11 35.25 41.62
DFA [25]† ✗ 29.95 41.78 51.13

ERM ✗ 21.29±0.31 29.66±0.27 37.05±0.37

ERM + BiasAdv ✗ 28.43±0.45 36.80±0.23 48.00±0.11

JTT [30] ✗ 23.66±0.78 31.44±0.47 41.20±0.19

JTT + BiasAdv ✗ 28.83±0.65 40.10±0.37 48.44±0.18

LfF [34] ✗ 28.81±0.44 40.66±0.70 50.72±1.31

LfF + BiasAdv ✗ 36.78±0.20 48.36±0.59 57.78±0.33

Implementation details. For all experiments, we used
the same ResNet-18 [13] architecture for both auxiliary
and debiased models for fair comparisons. For BAR and
MetaShift, we started training from the pre-trained weights
on ImageNet [7], following prior works [26, 34]. Except
for the experiments on BAR and MetaShift, we trained the
models from scratch. To generate adversarial examples on-
the-fly, we used PGD [32] attackers for all experiments with
different perturbation sizes and attack steps. Specifically,
we set λ in Eq. (3) to {1, 0.5, 0.5, 0.5}, the perturbation
size ϵ to {0.7, 0.3, 0.3, 0.5}, the number of attack steps
S to {5, 5, 7, 3}, and the weights of adversarial images
β to {1.5, 0.5, 0.5, 1} for {CIFAR-10C, BFFHQ, BAR,
MetaShift}, respectively. Following [48], we applied the
auxiliary batch normalization for adversarial images, since
adversarial and clean images have different underlying dis-
tributions. We applied BiasAdv to three different methods to
verify its effectiveness: a vanilla ERM (ERM + BiasAdv),
LfF [34] (LfF + BiasAdv), and JTT [30] (JTT + BiasAdv).
For ERM + BiasAdv, we set ωx = 1 and ωadv = β in Eq.
(4), and trained the auxiliary model with the GCE [51] loss,
as in [25, 34]. For LfF + BiasAdv and JTT + BiasAdv, ωx,
ωadv, and the design choices of the auxiliary model were de-
fined by the re-weighting formula proposed in LfF and JTT,
respectively. To implement LfF and JTT, we used the codes
provided by the authors and followed the same settings.

4.2. Main Results

We compared BiasAdv with a standard ERM and recent
state-of-the-art debiasing methods including HEX [46],
EnD [43], ReBias [2], LfF [34], JTT [30], BiaSwap [20],

Table 2. Comparison with state-of-the-art methods on BFFHQ.
BS denotes the model explicitly leverages bias annotations or prior
knowledge of the bias type. † and ∗ denote the numbers reported
from [25] and the original paper, respectively. Underline indicates
performance improvement when applying BiasAdv. Best results
are marked in bold.

Method BS AVERAGE CONFLICTING

HEX [46]† ✓ - 52.83
EnD [43]† ✓ - 56.87
ReBias [2]† ✓ - 59.46
BiaSwap [20]∗ ✗ 79.00 58.87
DFA [25]† ✗ - 63.87

ERM ✗ 76.67±0.12 54.07±0.34

ERM + BiasAdv ✗ 78.67±0.12 57.73±0.19

JTT [30] ✗ 80.93±0.69 62.20±1.34

JTT + BiasAdv ✗ 82.20±0.65 64.87±1.20

LfF [34] ✗ 75.23±1.60 62.97±3.22

LfF + BiasAdv ✗ 81.97±1.02 72.40±1.34

Table 3. Comparison with state-of-the-art methods on BAR. BS
denotes the model explicitly leverages bias annotations or prior
knowledge of the bias type. † and ∗ denote the numbers reported
from [37] and the original paper, respectively. Underline indicates
performance improvement when applying BiasAdv. Best results
are marked in bold.

Method BS
CONFLICTING

p=1% p=5%

ReBias [2]† ✓ 52.10 65.00
DFA [25]† ✗ 52.30 63.50
IRMCon-IPW [37]† ✗ 55.30 67.90
LWBC [22]∗ ✗ 62.03 -

ERM ✗ 57.65±2.36 68.60±2.25

ERM + BiasAdv ✗ 60.78±2.33 72.25±1.07

JTT [30] ✗ 58.17±3.30 68.53±3.29

JTT + BiasAdv ✗ 62.22±3.29 73.29±1.37

LfF [34] ✗ 57.71±3.12 67.48±0.46

LfF + BiasAdv ✗ 63.20±2.64 72.62±0.11

DFA [25], IRMCon-IPW [37], and LWBC [22]. Note that
EnD [43] leverages explicit bias annotations, and HEX [46]
and ReBias [2] explicitly leverage prior knowledge of the
bias type during the training phase.

CIFAR-10C. Table 1 shows the overall results on CIFAR-
10C with different bias ratios for the training set. To en-
sure fair comparisons, we conducted experiments under the
same evaluation settings [25]. For all combined methods,
BiasAdv consistently and significantly improved their per-
formances. Notably, BiasAdv with the standard ERM al-
ready outperformed HEX and ReBias, which utilize bias-
tailored modules for the specific bias type, and EnD, which
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Table 4. Comparison with state-of-the-art methods on MetaShift. BS denotes the model explicitly leverages bias annotations or prior
knowledge of the bias type. Underline indicates performance improvement when applying BiasAdv. Best results are marked in bold.

Method BS
AVERAGE WORST-GROUP

p=1% p=6% p=12% p=1% p=6% p=12%

ERM ✗ 76.91±0.93 79.69±0.86 80.56±0.14 51.85±3.42 57.41±2.29 61.34±2.29

ERM + BiasAdv ✗ 77.26±1.12 78.70±1.71 80.96±1.99 53.94±2.40 58.33±3.46 63.89±1.59

JTT [30] ✗ 76.97±0.71 78.65±0.49 80.38±0.99 53.47±1.13 56.48±1.82 60.65±1.43

JTT + BiasAdv ✗ 78.01±0.72 79.34±1.07 80.79±0.43 55.09±0.87 61.34±2.80 65.51±2.34

LfF [34] ✗ 75.06±0.79 79.28±0.45 80.85±0.14 52.78±2.04 57.17±1.99 62.73±2.29

LfF + BiasAdv ✗ 76.91±1.48 79.92±0.74 81.42±1.33 53.47±2.91 58.10±1.43 64.35±1.45

uses bias annotations. Moreover, applying BiasAdv to the
recent re-weighting methods, LfF and JTT, made further
performance improvements. In particular, LfF + BiasAdv
improved AVERAGE accuracy by 22.8%, 15.7%, and 13.0%
compared to previous state-of-the-art results at p = 0.5%,
2%, and 5%, respectively, significantly outperforming the
complex data augmentation methods (BiaSwap and DFA).

BFFHQ. In Table 2, we report AVERAGE and CONFLICT-
ING accuracies (%) on BFFHQ under the same evaluation
settings as in [25]. Again, applying BiasAdv significantly
improved performances of all baselines. In particular, LfF
+ BiasAdv dramatically improved AVERAGE (75.23% →
81.97%) and CONFLICTING (62.97% → 72.40%) accura-
cies of LfF, suggesting that BiasAdv makes the debiased
model learn more generalizable representations by lever-
aging sample diversity, as discussed in Section 3.3. We
also achieved new state-of-the-art results: 4.1% and 13.4%
higher AVERAGE and CONFLICTING accuracies, respec-
tively, compared to previous state-of-the-art methods.

BAR. Table 3 summarizes the overall results on BAR under
the same evaluation settings as in [37]. The results clearly
demonstrated consistent performance improvements by ap-
plying BiasAdv, which achieved very clear margins over
the state-of-the-art results. In particular, when combined
with JTT and LfF, BiasAdv further improved their perfor-
mances remarkably and outperformed LWBC, the most re-
cent method that utilizes multiple auxiliary models.

MetaShift. We evaluated our method on a very recently in-
troduced real-world dataset MetaShift [26]. The results are
presented in Table 4. As in other datasets, BiasAdv achieved
promising improvements in both AVERAGE and WORST-
GROUP accuracies for all baselines. In particular, BiasAdv
markedly improved the WORST-GROUP accuracy, clearly
demonstrating its debiasing capability.

Overall, applying BiasAdv to existing methods signifi-
cantly improved their performances. Our successful results
on four benchmark datasets across different bias domains
prove the effectiveness of BiasAdv and its general applica-
bility to recent debiasing methods.

+ =

BiasAdv“99% Old”
“99% Old”

“99% Young”
“97% Old”

Figure 3. An example of generated image by BiasAdv. BiasAdv
attacks the prediction of gϕ while preserving the prediction of fθ .
The noise image is normalized to [0, 1] for better visibility.
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Figure 4. Visualization of feature embeddings via t-SNE [45].
We compare the original bias-guiding and bias-conflicting samples
from the BFFHQ dataset with the samples generated by BiasAdv.
In this plot, we visualize the distribution of samples that have the
same class label (i.e., Young). The generated samples by BiasAdv
can act as synthetic bias-conflicting samples.

4.3. Analysis

Does BiasAdv generate bias-conflicting samples? Fig-
ure 3 shows an example of the generated adversarial im-
age by BiasAdv. Although BiasAdv clearly changed the
prediction of gϕ (i.e., Old → Young) while preserving the
prediction of fθ, the resulting image raises the question
whether it can really act as a synthetic bias-conflicting sam-
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Figure 5. Performance of bias-guiding samples. Average accura-
cies (%) of bias-guiding samples in the test set during training on
CIFAR-10C (a) and BFFHQ (b), respectively. BiasAdv achieves
significantly higher bias-guiding accuracy than the baseline at the
end of training.

ples (i.e., old woman), since the adversarial perturbation is
almost negligible from the human perspective. To verify
that BiasAdv generates meaningful bias-conflicting sam-
ples from a network perspective, we visualized and com-
pared penultimate features of original bias-guiding samples,
original bias-conflicting samples, and generated samples by
BiasAdv, using t-SNE [45]. Specifically, we first trained
an auxiliary model and a debiased model using LfF [34]
on the BFFHQ dataset [25]. We then applied BiasAdv to
these trained models to generate adversarial images. Fi-
nally, we used t-SNE to visualize feature embeddings of
the original samples from the test set and the generated
samples where each embedding was obtained from the out-
put of the penultimate layer of the trained debiased model.
Figure 4 illustrates the results. As expected, bias-guiding
samples and bias-conflicting samples were distributed sep-
arately from each other. Notably, the samples generated by
BiasAdv were overlaid with bias-conflicting samples. This
observation suggests that these synthetic adversarial images
by BiasAdv can genuinely act as bias-conflicting samples
for training the debiased model, even if adversarial pertur-
bations are rarely recognized at the human level as shown in
Figure 3. It is also aligned to a recent claim that adversarial
perturbation is not a bug in neural networks, but a general-
izable feature [15, 21, 48].

Performance of bias-guiding samples. Comparing ERM
and LfF in Table 2, LfF improved CONFLICTING accuracy
but rather degraded AVERAGE accuracy (- 1.44%p) due to
the poor performance of bias-guiding samples, as reported
in [20]. A well-generalized model should work well for
both bias-guiding and bias-conflicting samples. Hence, we
demonstrate the effectiveness of BiasAdv on maintaining
the performance of bias-guiding samples. In Figure 5, we
display the average accuracies (%) of bias-guiding samples
in the test set during the training of LfF and LfF + BiasAdv,
on CIFAR-10C with p=0.5% and BFFHQ, respectively. In
the case of LfF, the performance of bias-guiding samples

Table 5. Performance comparison of ablation models. We eval-
uate AVERAGE and CONFLICTING accuracies (%) of variants of
BiasAdv with ERM and LfF [34] on the BFFHQ dataset.

Method AVERAGE CONFLICTING

ERM 76.67±0.12 54.07±0.34

+ Random 77.22±0.27 55.00±0.55

+ AdvProp [48] 75.10±0.46 50.68±1.03

+ BiasAdv (λ = 0) 77.80±0.30 56.16±0.74

+ BiasAdv 78.67±0.12 57.73±0.19

LfF [34] 75.23±1.60 62.97±3.22

+ Random 80.37±0.63 64.27±1.27

+ AdvProp [48] 79.38±0.43 60.80±1.05

+ BiasAdv (λ = 0) 81.07±0.74 66.13±2.17

+ BiasAdv 81.97±1.02 72.40±1.34

degraded as training progresses, which implies that LfF
was over-fitted to an insufficient number of bias-conflicting
samples. Applying BiasAdv, on the other hand, maintained
good bias-guiding performance and achieved significantly
higher bias-guiding accuracy at the end of training. These
results support that BiasAdv leads to learning generalizable
representations and reducing over-fitting.

Ablation studies. To validate the effectiveness of BiasAdv,
we compared BiasAdv to three ablation models. First, to
analyze whether the performance improvements brought
about by BiasAdv were simply the result of the regulariza-
tion power of adversarial images, we considered two ab-
lation models: Random and AdvProp [48]. The Random
model augments data by adding random noise instead of Bi-
asAdv. The AdvProp model uses adversarial images that at-
tack the debiased model instead of the auxiliary model (i.e.,
adversarial training as in [48]). Lastly, to verify the effect of
the regularization term λ · L(x̃, y; θ) of BiasAdv in Eq. (3),
we considered an ablation model in which λ is set to 0; Bi-
asAdv (λ = 0). For all ablation models and BiasAdv, ERM
and LfF [34] were considered as the baselines. Table 5 sum-
marizes the overall results of the ablation models and Bi-
asAdv on the BFFHQ dataset. Adding random noise yielded
slight performance improvements but was not promising.
However, AdvProp, which adds adversarial noise that at-
tacks the debiased model seriously degraded performance.
In contrast, BiasAdv (λ = 0), which only attacks the auxil-
iary model yielded significant performance improvements.
This observation reveals that attacking the biased auxiliary
model plays a pivotal role in making our method work. That
is, the performance improvement resulting from BiasAdv
is attributed to the generation of synthetic bias-conflicting
samples, as discussed in Figure 4, rather than the regular-
ization power of adversarial images. Lastly, the use of the
regularization term in Eq. (3) contributed to promising per-
formance improvements. The regularization term prevents
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Figure 6. Grad-CAM [41] comparison of ablation models. We
analyze the class activation maps of the test set images on the
BFFHQ dataset.

intrinsic attributes from being compromised by adversar-
ial perturbations and improves the quality of the generated
samples, providing additional performance gains.

Visualization of Grad-CAM. To understand the qualitative
effects of BiasAdv, we investigated the Grad-CAM [41] of
the test set images of BFFHQ. Specifically, we compared
our LfF + BiasAdv model to three baselines; ERM, LfF,
and LfF + BiasAdv (λ = 0). In Figure 6, we show the class
activation maps for predicting the age. It is noteworthy that
ERM and LfF highlighted beard and mustache, which are
strongly related to the gender (i.e., Male), implying that
these models made decisions based on the bias attribute.
Only attacking the biased auxiliary model gϕ (i.e., λ = 0)
drived the model to focus on areas other than the bias at-
tribute, but it was often, a completely wrong area such as
background. With the proposed regularization constraint to
maintain the prediction score of the debiased model fθ, Bi-
asAdv contributed to better semantic focus, attending on
discriminative regions for the age prediction, yet neutral
from the gender, such as the forehead. These observations
imply that our BiasAdv guides the debiased model to cap-
ture intrinsic attributes for the target class, supporting the
superior generalization performances for unbiased test cri-
teria presented in Section 4.2.

Model robustness. To further demonstrate the effectiveness
of BiasAdv, we evaluated the model robustness to various
input corruptions following the protocol [29]. Specifically,
we considered eight corruption types that were not used
for training; additive noises (Gaussian and Salt & Pepper),
dropping pixels (cutout and dropout), affine transformation
(rotation and perspective), and image quality deterioration
(JPEG-compression and Gaussian blur). After training on
the original BFFHQ dataset, we evaluated the CONFLICT
accuracy with corrupted test images. In Table 6, we com-

Table 6. Model robustness to unseen input corruptions. We re-
port the accuracy (%) of conflicting samples (i.e., CONFLICTING)
with eight unseen input corruptions (i.e., not used in the training)
on the BFFHQ dataset. + BiasAdv denotes that BiasAdv is applied
to LfF [34]. Best results are marked in bold.

Input corruption ERM LfF [34] + BiasAdv

Additive noise:
Gaussian 53.00±0.28 56.86±0.52 69.60±0.44

Salt & Pepper 52.86±0.18 56.67±0.19 68.73±0.99

Dropping pixels:
Cutout 51.80±0.81 53.79±0.71 68.00±1.00

Dropout 51.20±1.45 52.72±0.94 60.73±1.08

Affine transformation:
Rotation 52.06±0.66 53.40±1.56 61.03±1.97

Perspective 49.39±0.98 48.33±0.98 58.27±0.25

Image quality deterioration:
JPEG-compression 48.72±1.51 53.66±0.19 65.80±0.59

Gaussian blur 49.72±0.96 49.93±0.74 58.13±0.66

pare the results of ERM, LfF, and LfF + BiasAdv. ERM
and LFF yielded severely degrading performance despite
small changes in the input image, achieving near 50% accu-
racy. In contrast, applying BiasAdv significantly improved
the model robustness, achieving robust and superior perfor-
mance regardless of corruption type. In particular, the su-
periority of BiasAdv was more obvious as the corruption
worsens such as Cutout or JPEG-compression. The results
clearly demonstrate that BiasAdv allows the model to learn
more generalizable representations that are less affected by
distracting noises.

5. Conclusion

In this paper, we propose BiasAdv, a novel data aug-
mentation method for debiasing that supplements bias-
conflicting samples using adversarial attacks. We find that
BiasAdv can generate meaningful synthetic bias-conflicting
samples, even with small adversarial perturbations. By
leveraging the diversified synthetic bias-conflicting data,
BiasAdv enables the model to learn more generalizable
representations. The implementation of BiasAdv is simple
and can be easily integrated into any debiasing methods
based on re-weighting without architectural or algorithmic
changes. Our extensive experimental results on four bench-
mark datasets across various bias domains demonstrate the
effectiveness and general applicability of BiasAdv, and we
achieve state-of-the-art performance by large margins for all
benchmarks. We believe our work can provide a universal
and promising data augmentation method for future work
on learning debiased representations.
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