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Abstract

Post-training quantization (PTQ) is an effective com-
pression method to reduce the model size and computa-
tional cost. However, quantizing a model into a low-bit
one, e.g., lower than 4, is difficult and often results in non-
negligible performance degradation. To address this, we
investigate the loss landscapes of quantized networks with
various bit-widths. We show that the network with more
ragged loss surface, is more easily trapped into bad local
minima, which mostly appears in low-bit quantization. A
deeper analysis indicates, the ragged surface is caused by
the injection of excessive quantization noise. To this end,
we detach a sharpness term from the loss which reflects the
impact of quantization noise. To smooth the rugged loss
surface, we propose to limit the sharpness term small and
stable during optimization. Instead of directly optimizing
the target bit network, we design a self-adapted shrinking
scheduler for the bit-width in continuous domain from high
bit-width to the target by limiting the increasing sharpness
term within a proper range. It can be viewed as iteratively
adding small “instant” quantization noise and adjusting the
network to eliminate its impact. Widely experiments includ-
ing classification and detection tasks demonstrate the ef-
fectiveness of the Bit-shrinking strategy in PTQ. On the Vi-
sion Transformer models, our INT8 and INT6 models drop
within 0.5% and 1.5% Top-1 accuracy, respectively. On
the traditional CNN networks, our INT4 quantized models
drop within 1.3% and 3.5% Top-1 accuracy on ResNet18
and MobileNetV2 without fine-tuning, which achieves the
state-of-the-art performance.

1. Introduction

In recent years, network compression, such as Knowl-
edge distillation [16], Pruning [9, 17, 38], and Quantiza-
tion [30, 34, 35, 45] are rapidly developing to achieve effi-
cient inference for Deep Neural Networks (DNNs) both at

Figure 1. The loss landscapes of the full-precision and various
bits ResNet-20 on CIFAR-100. We plot the loss landscapes using
the visualization methods in [18]. The landscape of the lower-bit
quantized network is more ragged, and is more easily trapped into
bad local minima.

edge devices and in the clouds. Among them, quantization
is a promising as well as hardware-friendly approach. It re-
duces the computation complexity and memory footprint by
representing weights and activations with low-bit integers.

Traditional approaches often perform a Quantization-
aware Training (QAT) [35–37, 45] process to achieve guar-
anteed accuracy. However, the long time re-training and
the requirements of full training data consume unaccept-
able computation and storage resources, making it imprac-
tical in industry. On the contrary, Post Training Quantiza-
tion (PTQ) [2, 12, 25, 26, 43] is fast and light. PTQ effi-
ciently turns a pre-trained full precision network to quan-
tized one with only a small calibration set. Although more
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user-friendly, PTQ suffers performance degradation when
pursuing ultra low compression ratio [28, 39] (e.g. lower
than 4 bits). This is because only the magnitude informa-
tion of weights and activations is utilized by simply apply-
ing rounding-to-nearest in predominant approaches. The ir-
reparable quantization noise will accumulate layer by layer
throughout the network.

To this end, some layer-wise or block-wise
reconstruction-based algorithms (e.g. AdaRound [26],
Bit-Split [28], AdaQuant [12], QDrop [39], BRECQ [19],
UWC [20]) are proposed, which greatly improve the
accuracy when the quantized weights go down to 4-bit. An
analysis [26] on the second order Taylor series expansion
of the task loss indicates reconstruction-based methods
could reduce the error introduced by rounding because
they leverage the interaction between weights. QDrop [39]
proposes to take activation quantization into consideration
to increase the flatness of loss landscape. Nevertheless,
when the compression rate goes higher , e.g., the activations
quantized to 4 bits or the weights quantized to 2 bits, or
compressing more complex models, e.g., the recent prevail-
ing Vision Transformer models [6, 23, 33], it still remains a
non-negligible accuracy gap with original model [24, 42].
Fig. 1 shows that, as the bit-width goes lower, the loss land-
scapes have more ragged surface. Therefore, in lower bits’
optimization process, the networks are easily trapped into
bad local minima and result in performance degradation.

As mentioned above, optimizing a low-bit model in
PTQ is very challenging. In forward process, full-precision
weights and activations are quantized to a small set of fixed-
point values, which introduces large quantization noise to
the network. The quantization noise causes the loss dis-
torted, i.e. a rugged loss landscape shown in Fig. 1. As a
consequence, the distorted loss makes the optimization un-
stable, misleading the network to poor local minima. In
QAT, some progressive approaches [14, 47] are proposed.
For instance, CTMQ [14] trains multiple precision quan-
tized models from high-bit to low-bit, and use the weight of
trained higher bit model to initialize the next low-bit model.
The progressive process is experimentally verified to be
helpful for the quantized network to reduce the quantiza-
tion noise, resulting in better local minima. In QAT, to fully
optimize the low-bit quantization network, the progressive
approaches preset a complex bit dropping schedule, includ-
ing long precision sequence and tedious training iterations.
With multiplied training cost, traditional progressive meth-
ods are not practical in PTQ.

In this paper, a sharpness term, detaching the quantiza-
tion noise’s impact on loss, is defined to precisely estimate
the degree of the loss distortion. Based on the sharpness
term, a self-adapted progressive quantization scheduler for
PTQ, named Bit-shrinking, is designed to help the low-bit
model find better local minima. Instead of directly quan-

tizing the network to the target low bit-width, Bit-shrinking
relaxes bit-width to continuous value and gradually shrink
it to the target bit-width during optimization to limit the
sharpness. Each time the bit-width is shrunk, the “instant”
sharpness introduced is limited within a preset threshold.
Shrinking the bit-width and adjusting the weights are itera-
tively performed until the target bit arrives. Consequently,
with the “instant” sharpness term limited, the loss surface is
smoothed which helps to find good minima. Different from
traditional progressive approaches which evenly drops the
integer bit-width, Bit-shrinking has more proper dropping
scheduler on continuous bit-width. It tackles the additional
training cost issue by alleviating over-optimizing some triv-
ial bit-width.

This paper proposes a novel and practical Post-Training
quantization framework to improve the accuracy of low-bit
quantized network. The motivation is to reduce the impact
of quantization noise during optimization by a Bit-shrinking
strategy. We show that Bit-shrinking can help the low-bit
network to find better local minima comparing with the
direct quantization approach. Our main contributions are
summarized as follows:

• Based on the observation of the loss landscape in low-
bit quantization, we find that excessive sharpness of
the loss landscape misleads the optimization direction.
To precisely estimate and further limit the impact of
quantization noise during optimization, we detach a
sharpness term from the loss.

• To calibrate the optimization direction, we propose
Bit-shrinking, a self-adapted progressive quantization
scheduler for PTQ, to limit sharpness term small and
stable during optimization. The landscape is smoothed
as the progressive scheduler iteratively adds small “in-
stant” sharpness and adjusts the network. As a re-
sult, Bit-shrinking helps quantized low-bit network
find better local minima comparing with direct quanti-
zation approach, and results in better performance.

• Widely experiments, including Vision Transformer
and CNN classification models on ImageNet dataset
and Faster RCNN, RetinaNet detection models on
COCO dataset, demonstrate the superiority of the Bit-
shrinking without end-to-end fine-tuning. On the Vi-
sion Transformer models, our INT8 and INT6 mod-
els drop within 0.5% and 1.5% Top-1 accuracy, re-
spectively. Our INT4 quantized model drops within
1.3% and 3.5% Top-1 accuracy on ResNet18 and Mo-
bileNetV2, which achieves the SOTA performance.

2. Background and Notation
Notation. x and y denote the input and the target vari-

able, respectively. E [·] denotes the expectation operator.
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We use capital bold letters denoting tensors (or matrices)
and small bold letters denoting the flattened version, e.g.,
W, w. The quantized activations and weights are repre-
sented by x̂b, ŵb, with the subscript denoting the bit-width.

2.1. Related Work

Standard DNNs represented with float-point values are
inefficient in memory storage and consumes considerable
computational resources. Quantization is an effective way
to save the consumption.

Post-Training Quantization. Post-training quantization
(PTQ) is a lightweight approach since it doesn’t require
the original training pipeline. ACIQ [1] fits Gaussian and
Laplacian models to the distribution for optimal clip thresh-
old. [43] leverages model expansion to improve quantiza-
tion. [28] split the bits of weight to compensate quantization
error. [26] optimizes the rounding operation to improve the
final loss. BRECQ [19] proposes a block-wise reconstruc-
tion algorithm implicitly leveraging the cross-layer interac-
tion in a block. Unit-wise Calibration (UWC) [20] stresses
to make use of the interaction across blocks for higher per-
formance. Qdrop [39] proposes to take activation quan-
tization into consideration to increase the flatness of loss
landscape when optimization weights. In most cases, PTQ
methods are sufficient to achieve near-original accuracy un-
der 8-bit quantization, while the performance reduction be-
comes non-negligible when the bit-width goes less than 4-
bit. For the currently prevailing Vision Transformer archi-
tectures [6,23,33], Liu et al. [24] uses the Pearson correla-
tion coefficient and ranking loss as the metrics to determine
the scaling factors. While PTQ4ViT [42] reformulates the
format of uniform quantization and introduces two scaling
factors to quantize the wide range data and narrow range
data respectively in each layer.

Progressive Quantization. In order to tackle distur-
bance of quantization noise during training in low precision
quantization, progressive quantization approaches are pro-
posed [14, 47] in QAT. For instance, Zhuang et al. [46, 47]
and Qu et al. [29] propose to progressively quantize and
train the network from high-precision to low-precision.
CTMQ [14] divides the quantization process into multiple
steps. In each quantization step, the trained weights of a
model are used to initialize the weights of the next model
with the quantization bit depth reduced by one. However,
these bit dropping schedulers is set beforehand. To ensure
sufficient training for all bits, it takes a very long time. De-
spite the effectiveness, the tedious training process makes
it unpractical in PTQ. Jung et al. [13] proposed an adaptive
loss-aware quantization scheme for multi-bit networks. It
gradually removes binary basis during training. It can be
viewed as a combination of pruning and quantization. The
cost on training is also very huge.

Flatness. The concept of ”flat” local minima is pio-
neered by [10] for better generalization in neural networks.
After that, many works such as adversarial training [40],
improving robustness under perturbation [41,44], have ben-
efited from flat local minima. Quantization, that turns full-
precision weights and activations to fixed pointed ones,
could also be viewed as adding perturbation might prefer
flat model. In Sharpness-aware Quantization (SAQ) [22],
they find better optimization direction by encouraging
the flatness via adding proper perturbation on quantized
weights. In PTQ, Qdrop [39] helps the quantized model
generalizing to activation quantization noise with more flat-
ten loss landscape.

2.2. Background

Uniform quantization. For convenience, we revisit
the uniform quantization. Given a bit-width b, it turns
the weights or activations from full-precision space Rd
to Vd, where d represents dimension, V = αb ×
{−2b−1, . . . , 2b−1−1} is the unified discrete potential value
space of each element. αb is a floating-point scale factor,
representing the quantization interval. Omitting layer in-
dex, for example, quantizing a weight w is formulated as

ŵ = Q(w, b) = clip(αbb
w

αb
e, n, p), (1)

where n and p are the negative and positive thresholds for
clipping, corresponding to the min and max values in V.

In this paper, we calculate αb like previous low-bit quan-
tization method [19], which considers the trade-off between
the representation precision and the range. Generally, A
higher bit-width will have higher precision, corresponding
to a smaller αb.

Network quantization. In this paper, we formulate net-
work PTQ problem as follows. Given a small set of cali-
bration data S = {xi,yi}ni=1, and a pre-trained neural net-
work G parameterized with worig, the goal of PTQ is to
find a quantized network Ĝ that could imitate the mapping
between the input and output in G. In Ĝ, weights and activa-
tions will be turned into fixed-point ones during inference.
We omit the layer index for simplification.

Therefore, without loss of generality, we formulate PTQ
as minimizing

Ex∼DS [L(w + ∆w,x, 1 + u(x))− L(worig,x, 1)] , (2)

where L the loss function of the task, ∆w is the injected
quantization noise on weights. And u(x) presents the in-
jected noise on the intermediate activations in forward pro-
cess, which is variable with x [39]. Eq. (2) minimizes the
distance between the quantized network’s output and the
original network’s output. Therefore, PTQ is to find an op-
timal w that remains original input-output mapping when
quantization noises are added in inference .
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Figure 2. Schematic of the optimization process. (a) and (b) are
high-bit case and low-bit case, respectively. ε represented by the
green lines are the perturbation added on w. With different mag-
nitude of ε, the sharpness terms s, represented as the distance be-
tween L(w+ ε) and L(w), are different in (a) and (b). The black
arrow line is the optimization direction which is the resultant of
the gradient produced by s (the blue dotted arrow line) and the
gradient produced by (4-2) (red dotted arrow line). For high-bit
optimization in (a), with small perturbation on w, optimization di-
rection is hardly disturbed. While low-bit optimization in (b), the
perturbation is excessive that leads the weight to poor minima.

3. Method
3.1. Optimization difficulty in low-bit quantization

To further improve PTQ, we first investigate the loss
landscapes of various bit-width networks. As shown in
Figure 1, the low-bit model has a much rugged loss land-
scape compared with higher-bit ones. Lower-bit quantiza-
tion introduces bigger quantization noises ∆w, u(x). In
the lower-bit case, the large noises cause severe loss fluc-
tuations, and hence mislead the gradients, making the op-
timization process unstable. As a result, the low-bit quan-
tized model is more likely to get trapped in poor local min-
ima, resulting in performance degradation.

To precisely estimate the impact of quantization noise
∆w, u(x), we divide our objective Eq.(2) into two parts:

Ex∼DS L(w + ∆w,x, 1 + u(x))− L(w,x, 1)︸ ︷︷ ︸
(3−1)

+

L(w,x, 1)− L(worig,x, 1)︸ ︷︷ ︸
(3−2)

(3)

where term (3-1) reflects the impact of quantization noises
∆w, 1 + u(x) on the loss, term (3-2) finds optimal weight
that minimize the distance between the model’s output and
the original one. Therefore, our objective Eq. (3) that over-
all optimizing the sum of the two terms could be viewed
as finding optimal w which could generalize to jitters on
weights and activations.

To simplify the problem, we convert the impact of acti-
vations’ quantization noise u(x) into an equivalent impact
quantization noise on weights v(x) as QDrop [39] Lemma

1 did, i.e., adding v(x) on weights w produces the same
response as adding u(x) on activations x. Therefore, quan-
tizing weights and activations into b bits, approximates to
adding resultant perturbation ε = ∆w + v(x) on weights.
Then Eq.(3) is reformulated as

Ex∼DS L(w + ε,x)− L(w,x)︸ ︷︷ ︸
(4−1)

+ L(w,x)− L(worig,x)︸ ︷︷ ︸
(4−2)

,

(4)
where ε is random perturbation whose magnitude increases
as the bit-width decreases. Then, minimizing Eq. (4) is
formed as optimizing the goal of reconstructing the output
of original model, represented by (4-2), with a sharpness
term (4-1) as [7] proposed. We symbolize (4-1) under b
bit-width as s(w, b).

In a forward process, s(w, b) captures the increase of the
reconstruction loss (4-2) when weight w randomly moves
to a nearby weight w + ε. With certain perturbation, s(w)
estimates the sharpness of the loss landscape.

During optimization, the weights updating is guided by
the sum of gradients coming from the sharpness term (4-
1) and the reconstruction loss (4-2) as shown in Figure 2.
For minimizing the reconstruction loss (4-2), the sharpness
term (4-1)’s gradients are noises that disturbs the weight w
to reconstruct the original output. In the higher-bit case, the
sharpness term (4-1)’s gradients are small. With gradients
from reconstruction loss play a major role, term (4-1)’s gra-
dients can hardly hinder the weight w to find the right opti-
mizing direction. On the contrary, in the low-bit case, term
(4-1)’s gradients become a major component, which makes
the total gradients unreliable. In this case, it can hardly find
out the right optimizing direction and is easily trapped into
poor minima.

3.2. Proposed method

In PTQ, optimizing a low-bit (e.g., lower than 4) quan-
tization model is very challenging. The reason is, as afore-
mentioned, the excessive quantization noises introduced
during the forward process, produces in-accurate gradients
that disturb the weights’ updating direction. Rather than di-
rectly quantizing the network to the target bit-width which
introduces excessive quantization noises at one time, we
propose a Bit-shrinking optimization strategy. In the fol-
lowing, we will show how the Bit-shrinking strategy helps
to calibrate the optimization direction.

Given a low target bit-width bl, the sharpness introduced
by large perturbation is excessive to mislead the direction
of updating weights. In order to reduce the impact of sharp-
ness, we propose to seek out weight with more flatten loss
landscape before optimizing bl-bit model. Rather than in-
jecting excessive perturbation at one time, we divide the
whole perturbation into multiple stages in which proper
magnitude of perturbation is added which only introduce
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small “instant” sharpness. After the minimization of the
“instant” sharpness each stage, a more flatten loss landscape
is prepared for the next stage. More specifically, since the
perturbation increases as the bit-width decreases, in each
stage, we gradually decrease the bit-width from high-bit to
proper bit-width to implement adding the perturbation.

To tackle the large s(w, bl), we decompose it into some
components that are easier to be optimized by rewriting
Eq. (4) into

s(w, bl) =

∫ εbl

0

L
′
(w + ε,x)dε

=

∫ εbc

0

L
′
(w + ε,x)dε︸ ︷︷ ︸
(5−1)

+

∫ εbl

εbc

L
′
(w + ε,x)dε︸ ︷︷ ︸
(5−2)

,

(5)
where L

′
(w + ε,x) is the derivative of L(w + ε,x) to

the perturbation ε. εbc is a smaller perturbation introduced
when the weights and activations are quantized to a higher
bit-width bc. (5-1) is the sharpness term s(w, bc) when op-
timizing bc-bit model. As analyzed above, when the sharp-
ness term is small (assuming smaller than τ ), the optimiza-
tion direction of bc-bit model is merely disturbed. For the
seek of granular control the sharpness term within τ , we
relax the bit-width to continuous value.

Therefore, seeking to minimize the sharpness term
s(w, bl), we first minimize a small component (5-1) by
optimizing a higher-bit model. After the convergence of
bc-bit model, the weights w come to a new state, w∗bc =
arg min

w
(L(w+ εbc ,x)−L(worig,x)). The corresponding

sharpness term to quantize the new weights w∗bc to bl bits is
hereby changed to

s(w∗bc , bl) =

∫ εbc

0

L
′
(w∗bc + ε,x)dε︸ ︷︷ ︸
(6−1)

+

∫ εbl

εbc

L
′
(w∗bc + ε,x)dε︸ ︷︷ ︸,
(6−2)

(6)
According to the work [7] that study the flatness of the loss
landscape, they obtain both low loss and low curvature in
neighborhood of the minima by adding perturbation with
proper magnitude on weight. Therefore, adding the per-
turbation εbc during optimization helps f(w∗bc) learning a
more flatten landscape in the l2 Euclidean ball with radius
|εbc |. Then, we have L

′
(w∗bc + ε,x) < L

′
(w + ε,x) when

ε < |εbc |. (6-1) is minimized with a new state w∗bc .
To further minimize Eq. (6), we re-decompose it into

small components by finding a lower bit-width bc2 , where
bc > bc2 > bl. With the bc shrunk to bc2 , Eq. (6) is mini-
mized when the weights adapted to the new bit-width bc2 .

In such way, by gradually shrink the bc to a series of
bits bci , where bc1 > bc2 ...... > bci >= bl, Eq. (6) is fi-
nally minimized when bci reaches bl. As a result, when

we optimize the target low-bit model, the loss landscape is
smoothed.

Self-adapted progressive quantization scheduler. In
the following, we will detail how the sharpness guide a self-
adapted progressive quantization scheduler from a higher-
bit to the target bit bl.

Given the weights from the original pre-trained model,
the weight w and activation x are first quantized into 8-bit,
e.g., bc0 = 8. Then, the following bit-width bci is adaptively
selected by limiting the increase of sharpness within τ when
shrinking the former optimized bit-width bci−1 ,

bci = min(bc)

s.t.S(w, bc)− S(w, bci−1
) < τ,

(7)

We name S(w, bci) − S(w, bci−1) as “instant” sharpness,
meaning the increased sharpness when shrinking the bit-
width bc. The ”instant” sharpness ceiling τ is a fixed value,
calculated by a small constant times of the total sharpness.
We optimize w to adjust the block quantization noise un-
der bci -bit to make the weights adapted to the newly added
“instant” noise.

Our self-adapted progressive quantization scheduler au-
tomatically performs iterative shrinking the bit-width based
on Eq. (7) and optimizing process until the target bit-width
arrives.

Algorithm 1 Self-adapted progressive quantization optimization.

Input: Pre-trained FP model worig , calibration dataset, sharpness coeffi-
cient τc, acceptable error coefficient εc, optimization iterationK, target
bit-width b.

Output: Quantized model ŵ.
for all i = 1, · · · ,K-th block in FP model do

Collect calibration data to block’s input x̂i
inp and output yi

out.
Calculate the total sharpness St = S(wi

orig , x̂
i
inp, b).

Calculate sharpness ceiling τ ← τc × St.
Calculate sharpness searching acceptable error ε←εc × St.
Initialize bc ← 8, w← worig .
repeat

Quantize activations xi and weights wi into bc bits.
Update wi by the gradients from block-wise reconstruction loss

Li for K iterations.
Shrinking bc by Algorithm 2. . sharpness within ceiling τ

until bc == b
Update wi by Li for another K iterations.

end for

3.3. Implementation Details

Following BRECQ [19], we divide the network into
blocks, and reconstruct the input and output mapping block-
wisely. Adam [15] optimizer and the ReduceLROnPlateau
Scheduler with the beginning learning rate of 5e − 6 are
used to optimize the weights. The algorithm is shown in
Algorithm 1.

Given a desired bit-width b, we first calculate the total
sharpness Sb using 32 images from the calibration data.
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Algorithm 2 Self-adapted progressive quantization scheduler.

Input: Optimized weights wi∗
bc

, current bit bc, target bit b, sharpness ceil-
ing τ , acceptable error ε. Block input and output x̂i

inp, yi
out.

Output: Next optimizing bit-width bn.
if S(wi∗

bc
, x̂i

inp, b) < τ + ε then
return b

end if
Initialize the searching interval blow ← bc, bhigh ← b.
repeat

bn ← (blow + bhigh)/2 . half of the interval.
Calculate new sharpness Sn = S(wi∗

bc
, x̂i

inp, bn)
if Sn > τ + ε then

blow ← bn
else Sn < τ − ε

bhigh ← bn
end if

until Sn ∈ [τ − ε, τ + ε]

The sharpness ceiling τ is set to 0.04 × Sb, where 0.04 is
a hyper-parameter chosen by conducting grid search over
{0.01, 0.02, · · · , 0.1, 0.5, 1}. The Bit-shrinking optimiza-
tion process begins from 8 bits, e.g., bc0 = 8. Then, the
following continuous bit-width bci is adaptively selected by
limiting the increase of sharpness within τ when shrink-
ing the former optimized bit-width bci−1 by Eq. (7). The
sharpness S(bc) is calculated using 32 images from the cal-
ibration data. We use half-interval search to appropriately
match the desired sharpness within ε = 0.01 of the total
sharpness error shown in Algorithm 2.

For each bit-width, 3200 iterations’ optimization are ap-
plied. When weights and activations are quantized to differ-
ent bit-widths, e.g., 2 and 4 bits, we shrink the bit-width
of weights and activations to 4 bits, and then shrink the
weights’ bit-width to 2 bits.

4. Experiments
In this section, we evaluate the effectiveness of our pro-

posed method on various computer vision tasks and models.
Section 4.1 presents ablation study on the Bit-shrinking op-
timization strategy on classification task on ImageNet. In
Section 4.2, we compare Bit-shrinking optimization strat-
egy among other post-training quantization methods on
classification task. We also present the performance of Bit-
shrinking optimization strategy on object detection task on
COCO.

4.1. Ablation Study

4.1.1 Bit-shrinking vs. Direct.

We investigate the benefits of our proposed Bit-shrinking
optimization algorithm by comparing with directly quantiz-
ing the model to the target bit-width optimization algorithm.
In our experiments, five widely used convolutional mod-
els, including ResNet18, ResNet50, ResNet101 [8], Incep-
tionV3 [32], MobileNetV2 [11] are used for comparison.

(a) 2-bit landscape of direct quantization. (b) 2-bit landscape of bit-shrinking quantization

Figure 3. Loss landscapes of direct quantization and bit-shrinking

All the pre-trained models are trained on ImageNet [5] with
the open-source codes [3] and [4]. The Direct approach is
performed by directly optimizing the target-bit quantized
network as a baseline. In the Bit-shrinking approach, we
first quantize the network to 8-bit.

In both Direct approach and Bit-shrinking approach, the
scale factors of weights and activations, i.e. αbl,w, αbl,x are
calculated by the method in [19]. In Bit-shrinking approach,
the scale factors αbc of higher-bit bc are calculated based on
αbl by αbc = αbl × 2bl−bc . The results are shown in Table
1.

Shown in Table 1, the proposed Bit-shrinking method
provide obvious accuracy improvement on all models even
on the less redundant models, e.g. MobilenetV2 compar-
ing with direct method, which demonstrate than limiting the
impact of quantization noise by Bit-shrinking during opti-
mization could help the quantized network find better min-
ima. Under 4-bit quantization of weights and activations,
the quantized models induce negligible performance degra-
dation with 1.3% to 3.5% Top-1 accuracy drop on various
networks. For the more aggressive 2-bit and 3-bit quanti-
zation of weights and activations, the Bit-shrinking shows
more obvious performance improvement. For example, un-
der the 3-bit quantization, Bit-shrinking strategy has more
than 1% improvement in Top-1 accuracy on the direct quan-
tization approach on all networks. Another phenomenon is
that the gap becomes larger when the original model be-
comes more compact. For example, on InceptionV3 and
MobilenetV2, Bit-shrinking achieves 1% uplift under 4-bit
quantization. When the bit-width decreases to 2-bit quanti-
zation, the improvement expands to more than 10%.

4.1.2 Bit-shrinking vs. Progressive quantization

Progressive quantization is proven in QAT to be helpful for
the quantized network to reduce the disturbance of quanti-
zation noise and results in better local minima. However, it
needs a complex bit dropping schedule, including long pre-
cision sequence and tedious training iterations, making it
unpractical in PTQ. Bit-shrinking avoid the tedious process
of traditional progressive quantization by adopting a more
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Table 1. Comparison with Direct post-training quantization approaches on ImageNet classification benchmark. Top-1 accuracy (%) are
reported. Bold values indicate best results. Weights and activations are quantized to 2 to 4 bits.

Algorithms W A ResNet18 ResNet50 ResNet101 InceptionV3 MobileNetV2

FP. 32 32 71.24 77.25 77.37 77.57 72.58

Direct 4 4 69.80 75.68 76.11 73.81 68.15
Bit-shrinking 4 4 69.94 76.04 76.52 74.79 69.02

Direct 3 3 66.33 71.74 72.89 46.77 32.15
Bit-shrinking 3 3 67.12 72.91 74.14 54.17 58.66

Direct 2 4 64.63 69.65 70.15 49.88 48.17
Bit-shrinking 2 4 65.77 71.11 71.26 52.16 54.88

Direct 2 2 45.27 38.18 40.35 33.31 2.17
Progressive 2 2 52.41 53.15 52.58 35.49 15.32
Bit-shrinking 2 2 57.33 59.03 56.98 37.68 18.23

proper scheduler.
Bit-shrinking adaptively selects the bit-width by limiting

the increase of sharpness, and achieves lower training loss
and much less optimizing iterations than progressive quan-
tization method, as shown in Fig. 4, We present the realistic
loss landscapes of direct quantization and bit-shrinking. As
shown in Fig. 3, the magnitude of injected noise is smaller
in (b) with more flatten loss landscape.

Figure 4. Loss carves of progressive quantization. In the pro-
gressive quantization, the bit-width scheduler is [8, 7, 6, 5, 4, 3,
2]. For each bit-width, 20000 iterations’ optimization are applied
to ensure fully optimize the network. In the Bit-shrinking quanti-
zation, the bit-width scheduler is [8, 2.87, 2.58, 2.36, 2.18, 2]. For
each bit-width, 3200 iterations’ optimization are applied.

4.2. Comparison with State-of-the-arts

4.2.1 Vision Transformer on ImageNet Classification.

We evaluate our algorithm on currently prevailing Vision
Transformer architectures, including ViT [6] DeiT [33],
and Swin [23] and compare the performance with previ-

ous method PTQ4ViT [42] and Liu [24]. PTQ4ViT re-
formulates the format of uniform quantization and intro-
duces two scaling factors to quantize the wide range data
and narrow range data respectively in each layer. Liu et
al. [24] uses the Pearson correlation coefficient and rank-
ing loss as the metrics to determine the scaling factors. The
results are demonstrated in Tab. 2. For the W8A8 quanti-
zation, Bit-shrinking and PTQ4ViT both achieve less than
0.5% Top-1 accuracy drop. The accuracy drop of liu is
2.4%(W8A8) and 1.7%(W8A8 mixed-precision) on DeiT.
For W6A6 quantization, Bit-shrinking results in 1% Top-1
accuracy drop on average on all architectures while 2.1%
on average for PTQ4ViT. The accuracy drop of Liu et al.
[24] is 5.2%(W6A6) and 4.7%W6A6 mixed-precision on
DeiT. Even on the experiments of W4A6 quantization, our
accuracy drops are less than 2%.

4.2.2 CNN on ImageNet Classification.

Here, we evaluate our algorithm and compare with the
State-of-the-arts post-training quantization approaches, in-
cluding ACIQ-Mix [1], ZeroQ [2], LAPQ [27], Bit-
split [28], AdaRound [26], BRECQ [19], AdaQuant [19]
and QDrop [39]. Shown in Table 3, the proposed Bit-
shrinking strategy outperforms all competing methods for
all bit-width setting. Under 4-bit quantization, the com-
pared methods still report good performance on the rela-
tively redundant models, e.g., ResNets. Among all meth-
ods, our method leads to the smallest accuracy drop within
1.3%. For the more challenging networks, InceptionV3 and
MobilenetV2, 4-bit quantization has a bigger impact. In
this case, our method shows prominent superiority compar-
ing with other methods. For MobilenetV2, all other meth-
ods lead to un-tolerable performance degradation, while our
approach obtain the best result with only 2.46% drop in ac-
curacy. When the bit-width goes down to 3, Bit-shrinking
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Table 2. Comparison among typical post-training quantization strategy on Vision Transformer models on ImageNet-1k validation set in
terms of Top-1 Accuracy.

Algorithms Bits (W/A) ViT-S ViT-B DeiT-S DeiT-B Swin-T Swin-S

Full Prec. 32/32 81.39 84.54 79.80 81.80 81.39 83.23

PTQ4ViT [42] 8/8 81.00 84.25 79.47 81.48 81.24 83.10
Ours 8/8 81.09 84.33 79.49 81.56 81.20 83.12

PTQ4ViT [42] 6/6 78.63 81.65 76.28 80.25 80.47 82.38
Ours 6/6 80.44 83.16 78.51 80.47 80.61 82.44

Ours 4/6 80.07 82.77 77.93 79.97 80.49 82.30

Table 3. Comparison with State-of-the-arts post-training quanti-
zation approaches on ImageNet classification benchmark. Top-1
accuracy (%) are reported. Bold values indicate best results (with
the least accuracy drop).

Algorithms W/A ResNet18 ResNet50 MobileNetV2

FP. 32/32 71.24 77.25 72.58

ACIQ-Mix [1] 4/4 67.00 73.80 64.33
ZeroQ [2] 4/4 21.71 2.94 26.24
LAPQ [27] 4/4 60.30 70.00 49.70
Bit-split [28] 4/4 67.56 73.71 -
AdaRound [26] 4/4 69.36 74.76 64.33
BRECQ [19] 4/4 69.60 75.05 66.57
QDrop [39] 4/4 69.62 75.45 68.84
AdaQuant [19] 4/4 68.60 75.90 -
Ours 4/4 69.94 76.04 69.02

AdaRound [26] 3/3 60.09 67.46 2.23
BRECQ [19] 3/3 65.87 68.96 23.41
QDrop [39] 3/3 66.75 72.38 57.98
Ours 3/3 67.12 72.91 58.66

AdaRound [26] 2/4 64.14 68.40 41.52
BRECQ [19] 2/4 64.80 70.29 53.34
QDrop [39] 2/4 65.25 70.65 54.22
Ours 2/4 65.77 71.11 54.88

BRECQ [19] 2/2 42.54 29.01 0.24
QDrop [39] 2/2 54.72 58.67 13.05
Ours 2/2 57.33 59.03 18.23

results in less performance degradation. Our method out-
performs QDrop, BRECQ and AdaRound since the loss
landscape is more flatten to achieve better minima. In the
more aggressive 2-bit weights quantization, even both ours
and QDrop’s show obvious loss of performance, the bit-
shrinking strategy helps us get higher accuracy.

4.2.3 Object Detection.

To validate the effectiveness and applicability of Bit-
shrinking strategy, the experiments of object detection task
are applied. Bit-shrinking strategy has been evaluated on

Table 4. Comparison among typical post-training quantization
strategies on MS COCO validation set in terms of mAP. Follow-
ing BRECQ and QDrop, the weights and activations in head are
remain un-quantized.

Algorithms Bits (W/A)
Faster RCNN RetinaNet
R18 R50 R18 R50

Full Prec. 32/32 34.7 38.8 33.4 37.0

AdaRound 4/4 32.6 34.5 31.0 33.5
BRECQ 4/4 32.6 34.6 31.2 33.5
QDrop 4/4 33.4 37.0 32.0 35.7
Ours 4/4 33.8 37.4 32.5 36.0

BRECQ 2/4 29.92 30.23 28.73 29.47
QDrop 2/4 31.01 34.33 29.69 33.01
Ours 2/4 31.95 35.61 30.78 34.15

object detection with one-stage RetinaNet [21] and two-
stage Faster R-CNN [31], models. For all networks, we
choose Resnet18 and Resnet50 as backbone. MS COCO is
adopted as the testing set to evaluate our method. For cali-
bration and validation data, we resize them to 1333 × 800.
Since the input images are much bigger than classification
images, only 400 images are sampled as calibration data.
The bounding box mAP performance for object detection is
reported in Table 4. According to Table 4, we can see that
there are within 1% mAP degradation without re-training
the network, which demonstrate our method nearly achieves
near-to-original performance with 4-bit weight and 4-bit ac-
tivation quantization.

Conclusion
In this paper, we propose a Bit-shrinking strategy to

improve PTQ under low bit-width. In order to alleviate
the impact of excessive quantization noise, we divide
the whole perturbation introduced by low-bit quantiza-
tion into multiple stages in which proper magnitude of
perturbation is added to limit the “instant” sharpness
small. As a result, the impact of excessive quanti-
zation noise is alleviated with more flatness landscape.
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