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Abstract

Recent advances in hand pose estimation have shed
light on utilizing synthetic data to train neural networks,
which however inevitably hinders generalization to real-
world data due to domain gaps. To solve this problem,
we present a framework for cross-domain semi-supervised
hand pose estimation and target the challenging scenario of
learning models from labelled multi-modal synthetic data
and unlabelled real-world data. To that end, we propose
a dual-modality network that exploits synthetic RGB and
synthetic depth images. For pre-training, our network uses
multi-modal contrastive learning and attention-fused super-
vision to learn effective representations of the RGB images.
We then integrate a novel self-distillation technique during
fine-tuning to reduce pseudo-label noise. Experiments show
that the proposed method significantly improves 3D hand
pose estimation and 2D keypoint detection on benchmarks.

1. Introduction

Hand pose estimation supports a wide range of appli-
cations, including sign language recognition [18, 19] and
gesture-based interaction systems [1]. However, it is dif-
ficult to obtain the large amounts of accurate ground truth
labels required for training deep-learning-based hand pose
estimation systems. Training models with synthetic data is
one option, but such models exhibit a sim-to-real domain
gap and generalize poorly to real-world settings. More so-
phisticated synthesis can narrow this gap, but the perfor-
mance drop is still noticeable [23].

This paper addresses the cross-domain pose estimation
problem and focuses on a semi-supervised setting. We tar-
get learning from labelled synthetic data and unlabelled
real-world data for application to real-world data. Pre-
training with synthetic data is common [14, 32]; surpris-
ingly, only RGB synthetic images have been considered.
Yet when generating synthetic data, it is relatively easy to
render multiple data modalities. For example, the RHD
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Figure 1. Attention comparisons between RGB and depth maps.
Apart from the hand region, the RGB attention shows high acti-
vation on the background. The depth map attention however pro-
vides high activation only on the hand, confirming its strength to
focus on task-relevant information.

dataset [41] features both RGB images and depth maps.
Across the modalities, there are shared common visual

cues relating to the underlying geometry or semantics that
are task-relevant for hand pose estimation. To exploit such
information during pre-training, a simple solution is to ap-
ply pixel-wise ℓ1 alignment between feature maps of RGB
and depth maps [37]. However, the large discrepancy be-
tween RGB images and depth maps might cause the pixel-
wise alignment to also focus on irrelevant regions related
to the background. Fig. 1 shows the attention derived from
RGB versus depth maps and their overlays on the original
RGB input. We observe that the RGB attention is strong in
task-related areas, i.e. the hand, but also on unrelated areas
of the background. In contrast, the attention from the depth
map is successfully localized on the hand.

To focus more on relevant regions, we propose a dual-
modality network for RGB images and depth maps that
improves RGB-based hand pose estimation via a multi-
level alignment. Specifically, we design an attention mod-
ule to apply information learned from depth maps to the
RGB image to produce attention-fused RGB features. The
learned information is then aligned to RGB features by
multi-modal supervision on the predictions from all modal-
ities with ground truth. This limits the RGB encoder’s sen-
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sitivity to non-informative cues such as background or ir-
relevant textures [10, 34]. At the feature space level, we ex-
plore intra-modal and inter-modal contrastive learning for
multi-modal data. Our work is the first to investigate su-
pervised multi-modal contrastive learning on hand pose es-
timation. In particular, contrastive learning between RGB
features and attention-fused RGB features minimizes fea-
ture discrepancies across modalities.

After pre-training, pseudo-labelling is commonly used
to fine-tune on unlabelled data [4,20,22]. However, naı̈vely
generated pseudo-labels are inevitably noisy and deteriorate
model performance. To handle noisy pseudo-labels, we de-
sign a two-pass self-distillation procedure (see Fig. 2 (b)).
The RGB input is first applied through the multimodal de-
coder to predict a depth map and pose. In a second pass,
the same RGB input is applied together with the predicted
depth map to estimate the pose. As the attention from depth
maps activates RGB features in relevant regions, the two
passes can be considered a refinement or denoising process.
The pose predicted from the RGB in the first pass is encour-
aged to be consistent with the pose from the attention-fused
version in the second pass. Such a procedure distills knowl-
edge from within the network itself. The self-distillation
also prevents the network from over-fitting to noisy samples
that often have unstable predictions [17, 20].

In summary, we make the following contributions:

1. We propose a dual-modality network that learns from
RGB images and depth maps but is applicable to
only RGB inputs for fine-tuning and inference. The
network features a specially designed attention mod-
ule that identifies geometric relationships common to
RGB and depth from stand-alone RGB images.

2. We propose the first supervised multi-modal con-
trastive learning method based on fused features to
minimize feature discrepancies across modalities.

3. We introduce a self-distillation procedure to exploit yet
not over-fit to noisy pseudo-labels during fine-tuning.

4. The proposed method significantly improves the state-
of-the-art by up to 16.0% and 14.8% for 2D keypoint
detection and 3D keypoint estimation respectively.

2. Related Work
2.1. Contrastive Learning

Contrastive learning encourages the learning of feature
spaces in which similar sample pairs (positive pairs) stay
close together while dissimilar samples (negative pairs) are
further apart. It is applicable in unsupervised [6, 7, 28]
and supervised [12,15,16] settings. Constructing beneficial
positive-negative pairs forms the basis of contrastive learn-
ing. Existing works [6, 7, 16, 28] prefer to create positive

pairs based on data augmentation. Interestingly, a recent
work [28] introduced the use of different modalities of one
instance as a positive pair, showing great potential. How-
ever, the large discrepancy between the different modalities
may still limit the performance.

Pose estimation works [26, 40] use contrastive learn-
ing with unlabelled RGB images during pre-training. In
contrast, we target labelled multi-modal synthetic data and
create positive pairs based on the features of stand-alone
RGB and attention-fused RGB. This approach avoids the
large discrepancy of using different modalities during pre-
training and facilitates better RGB features.

2.2. Semi-Supervised Learning

Due to the difficulty in obtaining real-world 3D ground
truth, pose estimation works often study how to learn with
limited annotations. Consistency constraints and pseudo-
labelling strategies, including shape consistency [9, 13],
temporal consistency [5], temporal pseudo-labels [21],
and multiview consistency [25, 30] can exploit unlabelled
data. Template-corrected pseudo-labels [32] and photomet-
ric consistency [8] based on model-fitting can further re-
move sequence or multi-view requirements.

A special case of semi-supervised learning learns from
only labelled synthetic data and unlabelled real-world data.
This new setting is more challenging due to the additional
domain gap. As such, recent works [14, 20] add domain
adaptation strategies in addition to training with consistency
or pseudo-labels [22,32]. In this paper, we emphasize using
multi-modal data in a semi-supervised setting and leverage
the different modalities via feature fusion and alignment. In
contrast to [3], which uses ground truth 2D pose and real-
world depth maps, we generate other modalities exclusively
from real RGB images as pseudo-labels.

3. Architecture

We first introduce our proposed attention module in
Sec. 3.1 before presenting the pre-training and fine-tune ar-
chitectures in Sec. 3.2 that incorporate the attention module
for multi-modal learning (see Fig. 2).

3.1. Attention Module

We propose an attention module Att(·) to estimate local
attention weights that capture relationships between local
and global feature responses. Suppose fR and fD are a
pair of corresponding intermediate feature maps from RGB
images and depth maps respectively.Given a depth map fea-
ture map fD ∈ Rc×h×w, fD

ij ∈ Rc×1×1 is the feature vec-
tor at position [i, j]. The average 2D spatial values on fD

are defined as f̄D = pool(fD) ∈ Rc×1×1, where pool(·)
is a channel-wise average pooling operation. The attention
weight w is defined as the scale-normalized inner product
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(a) Pre-training on labeled synthetic multi-modal data (b) Fine-tuning on unlabelled real-world RGB data

Figure 2. ER and ED are encoders for RGB and depth maps; D is a common multi-modal decoder that predicts segmentation masks,
depth maps and 2.5D poses. If RGB and depth maps are available (like in pre-training (a)), attention maps derived from the depth encoding
in ED (orange arrows) are applied to the RGB encoder ER to produce fused features sF . If there are no depth maps (like in the first pass
of fine-tuning (b)), the RGB encoder ER works stand-alone to produce RGB features sR. After the first pass in fine-tuning, the decoder D
predicts a depth map, which gets applied together with the original RGB input for a second pass to enable self-distillation.

⟨·⟩ of f̄D and fD
ij :

wij =
⟨f̄D,fD

ij ⟩∑h
i=1

∑w
j=1 ⟨f̄D,fD

ij ⟩
(h× w). (1)

The scaling factor (h×w) ensures that the attention weights
remain within an effective range. The weight wij is large
when the response of position [i, j] is highly correlated with
the global response.

Note we do not compute attention weights on RGB
image because of inherent ambiguities in the RGB atten-
tion weights (see Fig. 1). As such, there are two types
of attention-activated outputs: attention-fused RGB fea-
tures Att(fD) ⊙ fR, or self-attended depth map features
Att(fD) ⊙ fD, where ⊙ is a channel-wise multiplication
and Att(fD) denotes the weight wij after inflating along
the channel dimension. Additional details are given in the
Supplementary.

3.2. Dual-Modality Network

As shown in Fig. 2, the depth map and RGB inputs each
have their own encoders, namely ED and ER, while sharing
a common decoder D. The ED takes depth maps d as input
and outputs latent features sD. The ER takes RGB images
x as input and outputs latent features sR. With the attention
from depth maps, the ER also outputs attention-fused fea-
tures sF . Two fully-connected layers project {sD, sR, sF },
to 128-dimensional normalized features {zD, zR, zF }. The
decoder D is multimodal and makes a joint predict y that
includes depth maps, segmentation masks, etc., from any of
the latent features sD, sR or sF .

The two encoders use a ResNet-101 backbone; the
shared decoder features three deconvolution layers with BN
and ReLU. Between the two encoders, we embed our pro-
posed attention modules at the end of downsampling lay-
ers conv1 and conv2 x to conv5 x. The first set of atten-
tion modules are applied for self-attention on the depth en-

coder, i.e. to produce Att(fD) ⊙ fD. The second set of
attention modules are applied from the depth encoder to
the RGB encoder, to produce attention-fused RGB features
Att(fD)⊙ fR. If depth inputs are not available e.g. during
testing, or the first pass of the fine-tuning, the original RGB
latent features sR are used to generate outputs.

Training consists of a pre-training and fine-tuning stage.
Pre-training is done with paired synthetic RGB and depth
map images (Fig. 2 (a)), while fine-tuning is done with real-
world RGB images that do not have accompanying depth
maps (Fig. 2 (b)). Fine-tuning requires two passes. In the
first pass, the input RGB is applied through ER and D to
predict a depth map. In the second pass, the same RGB in-
put is then applied together with the predicted depth map for
a second pass. As the attention module activates RGB fea-
tures in relevant regions, the two passes can be considered
a denoising process that refines predictions. During testing,
we use RGB images with RGB features only for prediction.

4. Method
4.1. Preliminaries

Suppose we have a set of synthetic data Ds =
{(xs

i ,yi)}Ns
i=1, where each synthesized RGB image xs

i ∈
R3×H×W has a multi-modal label yi = (pi,di,mi) in
the form of a 2.5D pose pi ∈ RJ×3, a depth map
di ∈ R1×H×W , and a binary segmentation mask mi ∈
R1×H×W . Note that the 2.5D pose p is expressed as
a triplet of the 2D pose and the metric depth relative to
the root. Additionally, we have real-world data Dr =
{(xr

j)}
Nr
j=1, where the real RGB image xr

j ∈ R3×H×W has
no labels of any form.

Synthetic-Only Baseline A straightforward approach is
to train a model on synthetic data Ds and then use the
model to make predictions on the real-world data Dr. We
consider this a ‘baseline’, and use a multi-modal pose es-
timation pipeline similar to [11] to simultaneously predict
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Figure 3. Multi-modal contrastive learning. The triangle and the
square represent the normalized features of different poses. In
each modality, specific augmentations are used for creating pos-
itive pairs, each represented by the same shape but different col-
ors, e.g., triangles in green and blue form a positive pair in RGB.
And the augmented sample is denoted with “+”. We construct
attention-fused RGB features from the raw and augmented RGB-
depth map pairs, whose source features can be distinguished from
the outline and fill colors. For clarity, we visualize only the com-
plete set of pairwise relationships between the triangular RGB fea-
tures and attention-fused RGB features. In the top right-hand cor-
ner, we provide an example to show the relationship.

the 2.5D representations p, segmentation masks m and
depth maps d from a given RGB input. For learning, the
supervised multi-modal loss is applied with ground truth
ygt = (pgt,mgt,dgt) and the corresponding predictions
yR = (pR,mR,dR):

M(ygt,yR) = ℓ(pR,pgt) + λm||mR −mgt||1
+ λd||dR − dgt||1,

(2)

where λm and λd are weighting hyperparameters. ℓ is the
2.5D pose distance, which is the sum of the weighted Eu-
clidean distance between two 2D poses and that between
two metric depths relative to the root keypoint, defined
in [32].

Unsurprisingly, models which only train with Eq. 2 do
not perform well on real-world data due to the inherent do-
main gap. As such, we design a dual-modality network with
the designed attention module and introduce a pre-training
and fine-tuning strategy to overcome the domain gap.

4.2. Pre-training with Multi-level Alignment

Our model is pre-trained with labelled synthetic data Ds

which has ground truth RGB images, masks, depth maps
and 2.5D poses. To further leverage the task-specific infor-
mation in the synthetic depth maps, we align the features
from the two encoders with the multi-modal contrastive
learning and attention-fused supervision.

Multi-modal Contrastive Learning Based on multi-
modal data, we simultaneously perform intra-modal and

inter-modal contrastive learning. Intra-modal contrastive
learning encourages a discriminative feature space in each
modality and is applied to RGB and depth modalities in-
dividually. Inter-modal contrastive learning however per-
forms alignment across the RGB and depth modalities.

For intra-modal contrastive learning, we adopt an aug-
mentation strategy to construct contrastive pairs for the
RGB modality and the depth map modality individually.
Specifically, let TRGB(·), GRGB(·), TDM(·) and GDM(·) de-
note texture and geometric augmentations for RGB and
depth respectively. Texture augmentations do not affect
the labels, i.e., the hand pose, while geometric augmenta-
tions require the labels or hand poses to be adjusted ac-
cordingly. These augmentations yield the positive pairs
(x,TRGB(x)) or (GRGB(x),TRGB(GRGB(x))) for the RGB
image x and similarly for the depth maps. The positive pair
is passed through the encoder and the projection layers, to
yield normalized features {zR, z+

R} for RGB and {zD, z+
D}

for depth maps. For better understanding, we visualize all
push-and-pull operations for intra-domain contrastive learn-
ing of the depth map in Fig. 3.

For inter-modal contrastive learning, the naive approach
is to form positive samples from each RGB and depth map
pair and negative samples from cross-pair combinations.
However, there is a large visual difference between RGB
images and depth maps. As such, bringing correspond-
ing zR and zD close together is not only difficult but ul-
timately unhelpful for uniformity purposes, i.e., preserving
maximal information [31]. Therefore, instead of making
each RGB-depth map pair as positive, we use their normal-
ized fused feature zF for inter-modal contrastive learning
with RGB modality. Meanwhile, if the input pair is aug-
mented, the generated normalized fused feature is z+

F . As
shown in Fig. 3, we only optimize distances between RGB
and attention-fused RGB features (i.e., zR and zF , z+

R and
z+
F ), under the rationale that the attention-fused features are

easier to align.
In practice, we adopt the normalized temperature-scaled

cross-entropy (NT-Xent) loss as below:

η(z, z+) =

−
B∑
i=1

log
esim(zi,z

+
i )/τ∑B

k=1 1[k ̸=i](e(sim(zi,zk)/τ) + e(sim(zi,z
+
k )/τ))

,

(3)
where B is the batch size and z and z+ comprise a positive
pair of the same sample. The temperature is set to τ=0.5,
sim(·, ·) is the cosine similarity, and 1 is the indicator func-
tion. Based on the NT-Xent loss, we define the contrastive
loss for RGB, depth map and fusion as:

LRGB
c = η(zR, z

+
R), LDM

c = η(zD, z+
D)

LFusion
c = η(zR, zF ) + η(z+

R , z
+
F ).

(4)
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We formulate the final multi-modal contrastive loss as

Lc = LRGB
c + LDM

c + LFusion
c . (5)

Attention-Fused Supervision As RGB image-depth map
pairs have pixel-level correspondences, we propose aligning
those features with their attention-fused features that share
the same encoder with RGB features. The alignment helps
RGB encoder limit its sensitivity to non-informative cues
such as background or irrelevant texture. To that end, we ap-
ply multi-modal supervision for RGB images, depth maps,
and their fusion simultaneously, which propagates the la-
bel supervision to the alignment of feature maps. The final
attention-fused multi-modal supervised loss is

Ls=M(yR,ygt) +M(yD,ygt) +M(yF ,ygt), (6)

where yR,yD,yF are the predictions of RGB features,
depth map features and attention-fused RGB features, re-
spectively and M is the multi-modal supervised loss defined
in Eq. 2.

Overall, we pre-train the model on synthetic data with
the following objective function and a hyper-parameter λc:

Lpretrain = Ls + λcLc. (7)

4.3. Fine-tuning with Noisy Pseudo-Labels

Fine-tuning with real-world data Dr improves model
generalization. As Dr is unlabelled, we rely on noisy
pseudo-labels generated by the pre-trained model. The fine-
tuning requires two passes of the data to enable the self-
distillation procedure.

4.3.1 Pseudo-Labelling

A standard approach to incorporate real-world data is to
predict the unlabelled samples’ pseudo-labels, refine the
pseudo-labels and add the samples with high confidence
into the training set. We follow this approach and use the
pseudo-labelling strategy of [32], which features a pose cor-
rection to refine the pose labels. The pose correction ρ(·)
rectifies bone lengths and joint angles to guarantee biome-
chanical feasibility of the hand poses.

As shown in Fig. 2 (b), our dual-modality network works
in a two-pass manner. We are given yR = (pR,mR,dR)
from the first pass and yF = (pF ,mF ,dF ) from the sec-
ond pass. The pseudo-labels r are generated by averaging
the poses before and after pose correction from pR and pF :

r =
1

4
(pR + ρ(pR) + pF + ρ(pF )). (8)

Then, we use the pseudo-labels r to supervise all the
pose predictions p, as below

Ll = 1(C(r) ≤ ε)ℓ(p, r), (9)

Algorithm 1 Dual-Modality Network.

Require: Synthetic data Ds and real data Dr

Ensure: Final model
1: for t = 1, . . . , Tpretrain epochs do
2: Generate augmented samples based on xs, dgt from

Ds for ER and ED

3: Calculate sR, and sF from ER and ED; Calculate
self-attended sD from ED

4: Calculate zR,z+
R ,zD,z+

D,zF , z+
F for contrastive loss

via sR, sD, sF and their projection layers
5: Calculate yR,yD,yF for attention-fused supervision

via sR, sD, sF and D
6: Update the model via gradient descent of Eq. 7
7: end for
8: for t = 1, . . . , Tfinetune epochs do
9: Calculate yR with dR via xr from Dr and (ER, D)

10: Calculate yF and yD via xr, dR, (ER, D) and (ED,
D)

11: Generate r in Eq. 8 via yR, yF and ρ(·)
12: Update the model via gradient descent of Eq. 11
13: end for

where C(·) provides the confidence of the pseudo-labels
based on the variance of the poses before and after pose
correction in Eq. 8 and ε is a confidence threshold. See
Supplementary for more details.

4.3.2 Self-Distillation

Pseudo-labels are inevitably noisy and may change dramat-
ically during fine-tuning, all of which hurt model perfor-
mance [20]. To address noisy pseudo-labels, our goal is
to improve pseudo-labels gradually. As the two-pass dual-
modality network can be considered a denoising process,
that refines predictions, we exploit RGB images with the
predicted depth maps as input to construct a self-distillation
structure [17, 20] (See Fig. 2 (b)). By encouraging the re-
fined prediction to be consistent with its original prediction,
we distill the knowledge to obtain a softer prediction and
generate a pseudo-label accordingly. This strategy helps
distill knowledge within the network itself and improves
pseudo-labels gradually. Concretely, we apply consistency
to the outputs by using multi-modal supervised loss:

Ld = M(yR,yF ), (10)

where yR are the predictions from RGB and yF are the
predictions from attention-fused RGB features which take
as input RGB images and predicted depth maps dR.

Overall, we fine-tune the pre-trained model using RGB
images of real-world data based on self-distillation Ld and
pseudo-labelling Ll, together with supervision from syn-
thetic data Ls. The overall objective of this stage with
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hyper-parameters λd and λl is as follows:

Lfinetune = Ls + λdLd + λlLl. (11)

The entire pre-training and fine-tuning procedures of our
dual-modality network are summarized in Algorithm 1.

5. Experiments

5.1. Datasets & Evaluation

For the model training, we use the synthetic RHD [41],
and four real-world hand datasets: STB [38], Frei-
HAND [42], H3D [39] and MVHand [36]. RHD is a large-
scale synthetic hand dataset containing 20 characters per-
forming 39 actions. STB has 12 video sequences with a
total of 15k frames for training and 3k frames for testing.
FreiHAND is a challenging hand dataset with 130k train-
ing images and 4k testing images. In H3D, we consider the
subset of one-handed gestures for our experiments, which
comprises 11k training data and 2k testing data. MVHand
is a newly released hand dataset which has 42k images for
training and 42k images for testing.

We evaluate 2D keypoint detection with the percentage
of correct keypoints (PCK) and regard an estimation as cor-
rect when its distance to the ground truth is within 0.05 of
the output size. For 3D pose estimation, we evaluate accu-
racy via the mean end-point-error (EPE) and the area under
the curve (AUC) of the 3D PCK.

5.2. Implementation Details

We adopt ResNet-101 initialized from ImageNet as the
backbone. The input data is cropped around the hand and
resized to 256 × 256, while the resolution for the output is
64 × 64. We pre-train on synthetic data using the Adam
optimizer with a momentum of (0.9, 0.99) and a learning
rate of 2.5e-4 that gets decreased by a factor of 0.1 after
40 epochs and 50 epochs. We then fine-tune on synthetic
and real data with a learning rate of 2.5e-5 for 6 epochs.
Batch size is 140 for pre-training and 20 for fine-tuning.
The hyper-parameters of Eqs. 2 and 7-11 are set empirically
with λm = 100, λd = 50, λc = 0.1, λf = 0.2, λl = 1 and
ε = 1.5.

For synthetic data Ds and pre-training, we use RHD. The
other real-world datasets are considered for Dr; as per [32],
we fine-tune with a single real-world dataset’s training data
and report results on the evaluation data. On FreiHAND
and MVHand, we select only a subset of the training to
match the size of the STB training set. The results of fine-
tuning using the full training set are described in the Supple-
mentary Material regarding the impact of real-data volume.
Empirical results of the compared methods are directly re-
ported if available; otherwise, they are generated based on
officially released code.

PCK@0.05 STB FreiHAND H3D MVHand
Baseline 0.547 0.511 0.555 0.515
RegDA [14] 0.613 0.622 0.720 0.601
CC-SSL [22] 0.655 0.631 0.717 0.602
AnimalDA [20] 0.631 0.629 0.676 0.640
SemiHand [32] 0.668 0.564 0.672 0.563
Ours 0.775 0.658 0.749 0.689
Improvement ↑16.0% ↑4.3% ↑4.0% ↑7.7%

Table 1. The performance comparisons for 2D keypoint detection.
The relative performance boost between 1st and 2nd best methods
can be seen in Improvement. Our approach brings consistent im-
provements over previous state-of-the-art methods. Bold numbers
indicate the best performance.

EPE(mm) STB FreiHAND H3D MVHand
Baseline 19.66 21.56 27.77 21.21
SemiHand [32] 14.60 19.33 19.19 19.75
+DM weak labels 13.74 18.71 19.02 18.95
+DM encoder 13.17 18.32 18.65 18.53

Ours 11.99 15.61 17.08 16.45
Improvement ↑9.0% ↑14.8% ↑8.4% ↑11.2%

Table 2. The performance comparisons with SemiHand and its
variants for 3D keypoint estimation. The relative performance
boost between 1st and 2nd best methods can be seen in Improve-
ment. Adding a depth map (DM) yields improvements for Semi-
Hand, but cannot surpass our method. Bold numbers indicate the
best performance.

5.3. 2D Keypoint Detection

Table 1, compares our approach with state-of-the-art
methods [14,20,22,32] for 2D keypoint detection tasks. All
compared methods outperform the multi-modal supervision
baseline (Eq. 2) trained with only RHD supervision, though
ours is the best for all four benchmarks. Compared to Semi-
Hand [32], which is the most related work, we improve
the performance for FreiHAND and MVHand by 16.6%
(SemiHand’s 0.564 vs. our 0.658) and 22.4% (SemiHand’s
0.563 vs. our 0.689), respectively. Our results verify that
2D keypoint detection benefits from learning with depth
maps to focus on areas with rich geometric information and
semantic meaning.

5.4. 3D Keypoint Estimation

SemiHand is the only comparable published work. For
fairness of comparison, we also add depth maps to Semi-
Hand baseline, either as weak supervision on the output
or as depth map encoder. Table 2 shows that both Semi-
Hand and our approach outperform the baseline, though
our method further decreases the best variant of Semihand’s
EPE up to 2.7mm (18.32mm vs. 15.61mm). The decrease is
larger for the datasets with complex backgrounds and more
camera views (i.e., FreiHAND and MVhand) confirming
our aim of forcing the model to focus on semantically mean-
ingful areas.
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Figure 4. Comparisons with state-of-the-art on STB. Our method
achieves the highest AUC score among weakly/semi-supervised
methods (green lines), while having comparable performance to
other supervised learning methods.

Method STB FreiHAND H3D MVHand
Baseline 19.66 21.56 27.77 21.21
ℓ1 alignment [37] 16.38 21.58 26.00 21.58
Intra-CL [6] 17.32 19.95 26.33 20.40
Intra-/inter-CL [28] 18.01 19.49 26.61 19.71

Ours 16.37 19.19 25.94 19.62
Baseline 20.47 23.57 34.42 23.84
PeCLR [26] 18.84 22.17 31.69 21.96

Ours 17.73 19.94 26.91 20.65

R
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10
1

R
es

50

Table 3. Comparison for 3D keypoint estimation for pre-training
strategies for RHD. Our model leverages the depth map modality
and achieves the best cross-domain performance. Bold numbers
indicate the best performance.

Fig. 4 shows the AUC curves on 3D PCK to compare
with other state-of-the-art. Our proposed method surpasses
all weakly- and semi-supervised methods [2, 24, 32] by a
large margin on STB dataset. Our performance is compara-
ble to other supervised learning methods [23,27,33,35,41].

5.5. Analysis on Pre-training

Table 3 compares our pre-training strategy with state-of-
the-art methods. We first apply ℓ1 alignment between fea-
ture maps of RGB and depth maps [37]. The results show
that it fails to handle FreiHAND and MVHand. We further
explore contrastive learning to align features across modal-
ities in low-dimensional latent spaces. There is a slight im-
provement when using intra-CL [6, 40], i.e., LRGB

c + LDM
c

in each modality. Additionally, we follow [28] and apply
intra-CL with direct inter-CL (denoted as intra-/inter-CL),
i.e. LRGB

c +LDM
c +η(zR, zD), but this causes accuracy drops

on STB and H3D compared to intra-CL. It is likely that the
large visual differences between the RGB and depth map re-
sult in negative latent feature pairs which are already distant
and lead to invalid uniformity effects [29].

In contrast, our multi-modal contrastive learning is not

Method STB FreiHAND H3D MVHand
M(yR,ygt) 19.66 21.56 27.77 21.21
+M(yD,ygt) 17.83 20.14 26.56 20.30
+M(yF ,ygt) 16.92 19.69 26.27 19.91

+Lc 16.37 19.19 25.94 19.62
+Ll 12.59 16.27 17.45 16.91
+Ld 11.99 15.61 17.08 16.45

Table 4. Ablation study for the input modalities and the compo-
nents of our approach. Adding (+) the modalities and the compo-
nents incrementally improves performance. Bold numbers indi-
cate the best performance.

compromised by the large discrepancy between the RGB
image and depth map since we contrast with the attention-
fused RGB features. Compared to depth map features,
attention-fused RGB features are considerably closer to
RGB features. This is because attention-fused RGB fea-
tures are only refined RGB features with the geometric in-
formation of depth maps, and the network can learn this
information by aligning the two features. As such, our con-
structed feature pairs with specific properties are more suit-
able for contrastive learning.

The experimental results on model pre-training also ver-
ify the effectiveness of our method which consistently out-
performs the state-of-the-art methods [28, 40] on all the
benchmarks.

We also compare PeCLR [26] that targets equivariant
contrastive learning with geometric augmentations for pose
estimation. For a fair comparison, we use a ResNet-50
backbone as per PeCLR, and pre-train both PeCLR and
our network on RHD according to our supervised con-
trastive learning setting. Our method consistently outper-
forms PeCLR in the four datasets, confirming the effective-
ness of our multi-level alignment in pre-training.

5.6. Ablation Study

In Table 4, we ablate the impact of input modalities and
our proposed components. Due to the architectural depen-
dencies, we can only perform the ablation study in an in-
cremental manner. The importance of adding depth maps
for learning is verified by the significant accuracy boost
when comparing “M(yR,ygt)” with “+M(yD,ygt)”. Ap-
plying the multi-modal supervised loss on their fusion
(+M(yF ,ygt)) further improves the accuracy. The contri-
butions of multi-modal contrastive learning (+Lc), pseudo-
labelling (+Ll), and self-distillation (+Ld) are outlined in
Table 4. The incremental addition of the components suc-
cessively decreases the mean EPE for all four datasets.

5.7. Qualitative Results

Fig. 5 (a) compares examples of the 2D keypoint detec-
tion on STB, H3D and MVHand. Our predictions are most
similar to the ground truth, while the other methods have
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(a) Comparison of 2D keypoint detection (b) Visualization before and after fine-tuning

Figure 5. (a) 2D keypoint visualization on STB, H3D and MVHand. We compare our method with four state-of-the-art methods and
highlight the differences between the predictions and the ground truth poses with red boxes. (b) visualization of two examples before fine-
tuning (first row) and after fine-tuning (second row). From left to right: RGB images, multi-modal predictions (depth maps, segmentation
masks, poses), attention weights from depth maps and attention weights on RGB images. Figure best viewed in color.

RGB With self-distillation Without self-distillation

Figure 6. Comparisons of attention with and without self-
distillation. The proposed self-distillation can optimize the gen-
erated attention map to encourage better activation on the hand.

wrong predictions, especially at the fingertips.
Fig. 5 (b) visualizes the predicted depth maps and the at-

tention weights from conv1 layers before and after model
fine-tuning. The FreiHAND sample (top) features object
occlusion, while the STB sample (bottom) has extreme
lighting. In both cases, the pre-trained model can only es-
timate the depth values for a few areas, e.g., the fingers, or
misses the palm. But after fine-tuning, the model success-
fully estimates depth maps with complete hands. The atten-
tion weights before and after directly reveal the activation
of missing areas after fine-tuning.

In Fig. 6, we also show the comparison of attention
maps with and without self-distillation. If we exclude self-
distillation in our method, the attention map cannot promise
high activation on full hand. After adding self-distillation,
we can alleviate the problem of low activation caused by
occlusion. See the Supplementary Material for more quali-
tative results.

5.8. Failure Cases

The first row of Fig. 7 shows some failure cases where
the multi-modal outputs are inconsistent, e.g., despite com-
plete depth maps, the 2D pose is still incorrect. The second
row of Fig. 7 shows failure cases when estimating occluded

Figure 7. Failure cases with inconsistent cross-modal predictions
(first row) and self-occlusion (second row). The samples are taken
from H3D (left), MVHand (middle) and FreiHAND (right). Fig-
ure best viewed in color.

keypoints; this challenging setting occurs commonly for
hand gestures with self-occlusion and is an ill-posed prob-
lem from a single view. As such, multi-modal and multi-
view consistencies are possible extensions for future work.

6. Conclusion

In this paper, we propose a dual-modality network to ad-
dress the cross-domain pose estimation problem in a semi-
supervised setting. By leveraging the multiple data modali-
ties of synthetic data, we explore multi-level alignment dur-
ing pre-training, including multi-modal contrastive learn-
ing and attention-fused supervision. During fine-tuning,
we explore self-distillation based on our proposed dual-
modality network and provide a unified fine-tuning scheme
for real data with noisy pseudo-labels. Our experiments
show that our approach significantly outperforms state-of-
the-art methods on four datasets. In the future, we intend to
dive deeper into contrastive learning and self-distillation for
semi-supervised hand pose estimation and explore multi-
modal multi-view consistency for hand sequences.
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