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Abstract

Dynamic neural network is an emerging research topic
in deep learning. With adaptive inference, dynamic mod-
els can achieve remarkable accuracy and computational
efficiency. However, it is challenging to design a power-
ful dynamic detector, because of no suitable dynamic ar-
chitecture and exiting criterion for object detection. To
tackle these difficulties, we propose a dynamic framework
for object detection, named DynamicDet. Firstly, we care-
fully design a dynamic architecture based on the nature of
the object detection task. Then, we propose an adaptive
router to analyze the multi-scale information and to de-
cide the inference route automatically. We also present a
novel optimization strategy with an exiting criterion based
on the detection losses for our dynamic detectors. Last, we
present a variable-speed inference strategy, which helps to
realize a wide range of accuracy-speed trade-offs with only
one dynamic detector. Extensive experiments conducted
on the COCO benchmark demonstrate that the proposed
DynamicDet achieves new state-of-the-art accuracy-speed
trade-offs. For instance, with comparable accuracy, the
inference speed of our dynamic detector Dy-YOLOv7-W6
surpasses YOLOv7-E6 by 12%, YOLOv7-D6 by 17%, and
YOLOv7-E6E by 39%. The code is available at https:
//github.com/VDIGPKU/DynamicDet.

1. Introduction
Object detection is an essential topic in computer vision,

as it is a fundamental component for other vision tasks,
e.g., autonomous driving [26, 40, 56], multi-object track-
ing [52,57], intelligent transportation [36,55], etc. In recent
years, tremendous progress has been made toward more ac-
curate and faster detectors, such as Network Architecture
Search (NAS)-based detectors [10,25,48] and YOLO series
models [2, 9, 11, 21, 44, 45]. However, these methods need
to design and train multiple models to achieve a few good
trade-offs between accuracy and speed, which is not flexible
enough for various application scenarios. To alleviate this
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Figure 1. Comparison of the proposed dynamic detectors and other
efficient object detectors. Our method can achieve a wide range
of state-of-the-art trade-offs between accuracy and speed with a
single model.

“Easy” image “Hard” image

Figure 2. Examples of “easy” and “hard” images for the object
detection task.

problem, we focus on dynamic inference for the object de-
tection task, and attempt to use only one dynamic detector
to achieve a wide range of good accuracy-speed trade-offs,
as shown in Fig. 1.

The human brain inspires many fields of deep learning,
and the dynamic neural network [12] is a typical one. As
two examples shown in Fig. 2, we can quickly identify
all objects on the left “easy” image, while we need more
time to achieve the same effect for the right one. In other
words, the processing speeds of images are different in our
brains [18, 34], which depend on the difficulties of the im-
ages. This property motivates the image-wise dynamic neu-
ral network, and many exciting works have been proposed
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(e.g., Branchynet [43], MSDNet [17], DVT [50]). Although
these approaches have achieved remarkable performance,
they are all designed specifically for the image classifica-
tion task and are not suitable for other vision tasks, espe-
cially for the object detection [12]. The main difficulties in
designing an image-wise dynamic detector are as follows.

Dynamic detectors cannot utilize the existing dy-
namic architectures. Most existing dynamic architectures
are cascaded with multiple stages (i.e., a stack of multiple
layers) [17, 20, 33, 54], and predict whether to stop the in-
ference at each exiting point. Such a paradigm is feasible
in image classification but is ineffective in object detection,
since an image has multiple objects and each object usu-
ally has different categories and scales, as shown in Fig. 2.
Hence, almost all detectors depend heavily on multi-scale
information, utilizing the features on different scales to de-
tect objects of different sizes (which are obtained by fusing
the multi-scale features of the backbone with a detection
neck, i.e., FPN [27]). In this case, the exiting points for
detectors can only be placed behind the last stage. Con-
sequently, the entire backbone module has to be run com-
pletely [58], and it is impossible to achieve dynamic infer-
ence on multiple cascaded stages.

Dynamic detectors cannot exploit the existing exiting
criteria for image classification. For the image classi-
fication task, the threshold of top-1 accuracy is a widely
used criterion for decision-making [17, 50]. Notably, it
only needs one fully connected layer to predict the top-1
accuracy at intermediate layer, which is easy and costless.
However, object detection task requires the neck and the
head to predict the categories and locations of the object in-
stances [3, 14, 27, 39]. Hence, the existing exiting criteria
for image classification is not suitable for object detection.

To deal with the above difficulties, we propose a dynamic
framework to achieve dynamic inference for object detec-
tion, named DynamicDet. Firstly, We design a dynamic ar-
chitecture for the object detection task, which can exit with
multi-scale information during the inference. Then, we pro-
pose an adaptive router to choose the best route for each
image automatically. Besides, we present the correspond-
ing optimization and inference strategies for the proposed
DynamicDet.

Our main contributions are as follows:

• We propose a dynamic architecture for object detec-
tion, named DynamicDet, which consists of two cas-
caded detectors and a router. This dynamic architec-
ture can be easily adapted to mainstream detectors,
e.g., Faster R-CNN and YOLO.

• We propose an adaptive router to predict the difficulty
scores of the images based on the multi-scale features,
and achieve automatic decision-making. In addition,
we propose a hyperparameter-free optimization strat-
egy and a variable-speed inference strategy for our dy-

namic architecture.
• Extensive experiments show that DynamicDet can ob-

tain a wide range of accuracy-speed trade-offs with
only one dynamic detector. We also achieve new state-
of-the-art trade-offs for real-time object detection (i.e.,
56.8% AP at 46 FPS).

2. Related work
2.1. Backbone design on object detection

Backbones play a crucial role in object detectors since
the performance of detectors highly relies on the multi-
scale features extracted by the backbones [4]. ResNet [15]
and its variants (e.g., ResNeXt [51], Res2Net [8]) intro-
duce the residual connection to neural networks, providing
a high-quality backbone architecture family for all vision
tasks. Further, to reduce the calculation load, CSPNet [46]
cuts down the duplicate gradient information to reduce the
heavy inference, improving the efficiency significantly. Its
effective architecture also inspires many lightweight de-
tectors (e.g., YOLO series models [2, 9, 11, 21, 44, 45]).
Then, some transformer-based backbones (e.g., PVT [47],
Swin Transformer [31]) are proposed to learn the global
information better. In addition, many auto-designed back-
bones [4,6,19,41] for object detection are proposed. For ex-
ample, DetNAS [4] utilizes the one-shot supernet to search
the optimal backbone, with the guidance of the object de-
tection task.

Although many kinds of backbones have been proposed,
almost all of them are single-pass architectures, which se-
quentially produce one set of multi-scale features. Thus, all
stages of them cannot be skipped. Fortunately, some works
propose the architectures of multiple cascaded backbones,
which have the potential to be converted as a dynamic back-
bone for object detection. For example, CBNet [24, 30]
groups multiple identical backbones with composite con-
nections, constructing a more powerful composite back-
bone. Since these backbones have multiple sub-backbones
and each of them can produce intermediate multi-scale
features, we can add some exiting points after each sub-
backbone for dynamic inference.

2.2. Accuracy-speed trade-off on object detection
Almost all detection methods are designed for a bet-

ter accuracy-speed trade-off, i.e., more accurate and faster.
With a given detector, the simplest way to obtain an
accuracy-speed trade-off is to adopt the model scaling tech-
niques [42, 44, 45] (e.g., increasing the channel size or re-
peating the layers). EfficientDet [42] uniformly scales the
resolution, depth, and width for all modules simultane-
ously, achieving remarkable efficiency on real-time detec-
tors. Scaled-YOLOv4 [44] modifies not only the depth,
width, and resolution but also the structure of the net-
work to pursue a better trade-off. YOLOv7 [45] designs a
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Figure 3. Illustration of the architecture of DynamicDet. The first backbone extracts the multi-scale features from the input image firstly.
Then, the router will be fed with these multi-scale features to predict the difficulty of image and to decide the inference route. Notably, the
“easy” images will be processed by only one backbone, while the “hard” images will be processed by two.

compound scaling method for concatenation-based models,
achieving new state-of-the-art trade-offs. EAutoDet [48]
constructs a supernet and adopts Network Architecture
Search (NAS) to automatically search for suitable scaling
factors under different hardware constraints. However, all
the above methods need to train multiple detectors for the
best trade-offs (e.g., one tiny model for real-time detection
and another large model for accurate detection), leading to
colossal training resources. In this paper, we focus on dy-
namic inference, aiming to achieve a wide range of best
accuracy-speed trade-offs with only one dynamic detector.

2.3. Dynamic neural network
The dynamic neural network can achieve adaptive com-

putation for different images (i.e., image-wise [17, 20, 22,
23, 43, 49, 50, 54]) or pixels (i.e., spatial-wise [7, 13, 37]).
SACT [7] is a classic spatial-wise dynamic network, which
adaptively adjusts the number of executed layers for the
regions of the image, to improve the efficiency of net-
works. Its practical speed-up performance highly relies on
the hardware-software co-design [12]. However, the cur-
rent deep learning hardware and libraries [1, 35] are not
friendly to these spatial-wise dynamic networks [12]. On
the contrary, image-wise dynamic networks do not rely on
sparse computing and can be easily accelerated on the con-
ventional CPUs and GPUs [5]. Branchynet [43] introduces
the early exiting strategy, which enables the model to exit
from the intermediate layer whenever the model is confi-
dent enough. MSDNet [17] and its variants [23, 54] de-
velop a multi-classifier architecture for the image classifi-
cation task. DVT [50] cascades multiple transformers with
increasing numbers of tokens and activates them sequen-
tially to achieve dynamic inference. However, these meth-
ods are all designed specifically for the image classification
task and cannot be applied to other vision tasks, such as
object detection.

The closest work to our DynamicDet is Adaptive Feed-

ing [58]. In Adaptive Feeding [58], each image is detected
by a lightweight detector (e.g., Tiny YOLO [38]) and then
classified as easy or hard by a linear support vector ma-
chine (SVM) with those detected results. Then, the easy
images will go through a fast detector (e.g., SSD300 [29]),
while the hard images will go through a more accurate but
slower one (e.g., SSD500 [29]). Adaptive Feeding [58]
introduces the above multi-stage process for dynamic in-
ference, which is inefficient and not elegant. In compari-
son, the proposed DynamicDet cascades two detectors and
a classifier (i.e., the router), yielding a more unified and ef-
ficient dynamic detector.

3. Approach
In the following, we elaborate on our dynamic archi-

tecture for object detection. We first introduce the over-
all architecture in Sec. 3.1. Then, we state the proposed
adaptive router, i.e., the decision maker of DynamicDet in
Sec. 3.2. Finally, we introduce the optimization strategy and
a variable-speed inference strategy in Secs. 3.3 and 3.4.

3.1. Overall architecture
The overall architecture of our dynamic detector is

shown in Fig. 3. Inspired by CBNet [24, 30], our dynamic
architecture consists of two detectors and one router. For an
input image x, we initially extract its multi-scale features
F1 with the first backbone B1 as

F1 = B1(x) = [f
{1}
1 , f

{2}
1 , . . . , f

{L}
1 ], (1)

where L denotes the number of stages, i.e., the number of
multi-scale features. Then, the router R will be fed with
these features F1 to predict a difficulty score ϕ ∈ (0, 1) for
this image as

ϕ = R(F1). (2)

Generally speaking, the “easy” images exit at the first back-
bone, while the “hard” images require the further process-
ing. Specifically, if the router classifies the input image as
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an “easy” one, the followed neck and head D1 will output
the detection results y as

y = D1(F1). (3)

On the contrary, if the router classifies the input image as
a “hard” one, the multi-scale features will need further en-
hancement by the second backbone, instead of immediately
decoded by D1. In particular, we embed the multi-scale fea-
tures F1 into H by a composite connection module G as

H = G(F1) = [h{1}, h{2}, . . . , h{L}], (4)

where G is the DHLC of CBNet [24, 30] in our implemen-
tation. Then, we feed the input image x into the second
backbone and enhance the features of the second backbone
via summing the corresponding elements of H at each stage
sequentially, denoted as

F2 = B2(x, H) = [f
{1}
2 , f

{2}
2 , . . . , f

{L}
2 ], (5)

and the detection results will be obtained by the second head
and neck D2 as

y = D2(F2). (6)

Through the above process, the “easy” images will be
processed by only one backbone, while the “hard” images
will be processed by two. Obviously, with such an archi-
tecture, trades-offs between computation (i.e., speed) and
accuracy can be achieved.

3.2. Adaptive router
In mainstream object detectors, different scale features

play different roles. Generally, the features of the shallow
layers, with strong spatial information and small receptive
fields, are more used to detect small objects. In contrast,
the features of the deep layers, with strong semantic infor-
mation and large receptive fields, are more used to detect
large objects. This property makes it necessary to consider
multi-scale information when predicting the difficulty score
of an image. According to this, we design an adaptive router
based on the multi-scale features, that is, a simple yet effec-
tive decision-maker for the dynamic detector.

Inspired by the squeeze-and-excitation (SE) mod-
ule [16], we first pool the multi-scale features F1 indepen-
dently and concatenate them all as

F̃1 = C([P(f
{1}
1 ),P(f

{2}
1 ), . . . ,P(f

{L}
1 )]), (7)

where P denotes the global average pooling and C denotes
the channel-wise concatenation. With this operation, we
compress the multi-scale features F1 into a vector F̃1 ∈ Rd

of dimension d. Then, we map this vector to a difficulty
score ϕ ∈ (0, 1) via two learnable fully connected layers as

ϕ = σ(W2(δ(W1F̃1 + b1)) + b2), (8)

where δ, σ denote the ReLU and Sigmoid activation func-
tions respectively, and W1,W2, b1, b2 are learnable param-
eters. Following [59], we reduce the feature dimension to

⌊d/4⌋ in the first fully connected layer, and exploit the sec-
ond fully connected layer with a Sigmoid function to gen-
erate the predicted score. It is worth noting that the compu-
tational burden of our router can be negligible since we first
pool all multi-scale features to one vector.

3.3. Optimization strategy

In this section, we describe the optimization strategy for
the above dynamic architecture.

Firstly, we jointly train the cascaded detectors, and the
training objective is

min
Θ1,Θ2

(L{1}
det (x,y|Θ1) + L{2}

det (x,y|Θ2)), (9)

where x,y denote the input image and the ground truth re-
spectively, Θi denotes the learnable parameters of the detec-
tor i and L{i}

det denotes the training loss for detector i (e.g.,
bounding box regression loss and classification loss). After
the above training phase, these two detectors will be able
to detect the objects, and we freeze their parameters Θ1,Θ2

during the later training.
Then, we train the adaptive router to automatically dis-

tinguish the difficulty of the image. Here, we assume the
parameters of the router are ΘR and the predicted difficulty
score obtained from the Eq. (8) is ϕ. We hope the router can
assign the “easy” images (i.e., with lower ϕ) to the faster
detector (i.e., the first detector) and the “hard” images (i.e.,
with higher ϕ) to the more accurate detector (i.e., the second
detector).

However, it is non-trivial to implement that in practice.
If we directly optimize the router without any constraints as

min
ΘR

((1− ϕ)L{1}
det (x,y|Θ1) + ϕL{2}

det (x,y|Θ2)), (10)

the router will always choose the most accurate detector as it
allows for a lower training loss. Furthermore, if we naively
add hardware constraints to the training objective as

min
ΘR

((1−ϕ)L{1}
det (x,y|Θ1)

+ ϕL{2}
det (x,y|Θ2)+λϕ),

(11)

we will have to adjust the hyperparameter λ by try and error,
leading to huge workforce consumption.

To overcome the above challenges, we propose a
hyperparameter-free optimization strategy for our adaptive
router. First, we define the difficulty criterion based on the
corresponding training loss difference between two detec-
tors of an image, as shown in Fig. 4. Specifically, we as-
sume that if the loss difference of an image between two
detectors is small enough, this image can be classified as an
“easy” image. Instead, if the loss difference is large enough,
it should be classified as a “hard” image. Ideally, for a bal-
anced situation, we hope the easier half of all images go
through the first detector, and the harder half go through the
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Figure 4. Illustration of the difficulty criterion based on the training loss difference between two cascaded detectors. For the top image,
the loss difference between the first detector and the second detector is very small, so it should be classified as an “easy” image. On the
contrary, the loss difference of the bottom image is large, so it should be classified as a “hard” image.

Loss
First Detector

DynamicDet

Easy HardMedium
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Figure 5. Qualitative analysis of the loss of two cascaded detec-
tors on the images with different difficulties. With the proposed
adaptive offset in our optimization strategy, the loss curves of two
detectors intersect and reveal the optimal curve of DynamicDet.

second one. To achieve this, we introduce an adaptive off-
set to balance the losses of two detectors and optimize our
router via gradient descent. In practice, we first calculate
the median of the training loss difference ∆ between the
first and the second detector on the training set. Then, the
training objective of our router can be formulated as

min
ΘR

((1−ϕ)(L{1}
det (x,y|Θ1)−∆/2)

+ ϕ(L{2}
det (x,y|Θ2)+∆/2)),

(12)

where ∆/2 is used to reward the first detector and punish
the second detector, respectively. As the qualitative anal-
ysis shown in Fig. 5, without this reward and penalty, the
losses of the second detector are always smaller than the
first detector. When the reward and penalty are conducted,
their loss curves intersect and reveal the optimal curve.

Our training objective provides a means to optimize
the adaptive router by introducing the following gradient
through the difficulty score ϕ to all parameters ΘR of the

router as
∂L
∂ΘR

=
∂L
∂ϕ

∂ϕ

∂ΘR
= − ∂ϕ

∂ΘR
(L{1}

det −L{2}
det −∆). (13)

To distinguish between “easy” and “hard” images better, we
expect the optimization direction of the router to be related
to the difficulty of the image, i.e., the difference in loss be-
tween the two detectors. Obviously, the gradient at Eq. (13)
enable such expectation.

3.4. Variable-speed inference

We further propose a simple and effective method to de-
termine the difficulty score thresholds to achieve variable-
speed inference with only one dynamic detector. Specifi-
cally, our adaptive router will output a difficulty score and
decide which detector to go through based on a certain
threshold during inference. Therefore, we can set different
thresholds to achieve different accuracy-speed trade-offs.
Firstly, we count the difficulty scores Sval of the valida-
tion set. Then, based on the actual needs (e.g., the target
latency), we can obtain the corresponding threshold for our
router. For example, assuming the latency of the first detec-
tor is lat1, the latency of the cascaded two detectors is lat2
and the target latency is latt, we can calculate the maximum
allowable proportion of the “hard” images k as

k =
latt − lat1
lat2 − lat1

, lat1 ≤ latt ≤ lat2, (14)

and then the threshold τval will be

τval = percentile(Sval, k), (15)

where percentile(·, k) means to compute the k-th quantile
of the data. It is worth noting that this threshold τval is
robust in both validation set and test set because these two
sets are independent and identically distributed (i.e., i.i.d.).

6286



Model Size FLOPs FPS AP

EAutoDet-X [48] 640 225.3G 41† 49.2

YOLOX-L [9] 640 155.6G 69† 50.1
YOLOX-X [9] 640 281.9G 58† 51.5

YOLOv5-L (r6.2) [11] 640 109.1G 114 49.0
YOLOv5-X (r6.2) [11] 640 205.7G 100 50.9

YOLOv6-M [21] 640 82.2G 109 49.6
YOLOv6-L [21] 640 144.0G 76 52.4

PP-YOLOE+-M [53] 640 49.9G 123† 50.0
PP-YOLOE+-L [53] 640 110.1G 78† 53.3
PP-YOLOE+-X [53] 640 206.6G 45† 54.9

YOLOv7 [45] 640 104.7G 114 51.4
Dy-YOLOv7 / 10 640 112.4G 110 52.1
Dy-YOLOv7 / 50 640 143.2G 96 53.3
Dy-YOLOv7 / 90 640 174.0G 85 53.8
Dy-YOLOv7 / 100 640 181.7G 83 53.9

YOLOv7-X [45] 640 189.9G 105 53.1
Dy-YOLOv7-X / 10 640 201.7G 98 53.3
Dy-YOLOv7-X / 50 640 248.9G 78 54.4
Dy-YOLOv7-X / 90 640 296.1G 65 55.0
Dy-YOLOv7-X / 100 640 307.9G 64 55.0

YOLOv5-M6 (r6.2) [11] 1280 200.0G 96 51.4
YOLOv5-L6 (r6.2) [11] 1280 445.6G 65 53.8
YOLOv5-X6 (r6.2) [11] 1280 839.2G 39 55.0

YOLOv7-W6 [45] 1280 360.0G 78 54.9
YOLOv7-E6 [45] 1280 515.2G 52 56.0
YOLOv7-D6 [45] 1280 806.8G 41 56.6
YOLOv7-E6E [45] 1280 843.2G 33 56.8

Dy-YOLOv7-W6 / 10 1280 384.2G 74 55.2
Dy-YOLOv7-W6 / 50 1280 480.8G 58 56.1
Dy-YOLOv7-W6 / 90 1280 577.4G 48 56.7
Dy-YOLOv7-W6 / 100 1280 601.6G 46 56.8
1 The FPS marked with † are from the corresponding papers, and others

are measured on the same machine with 1 NVIDIA V100 GPU.

Table 1. Comparison with the state-of-the-art real-time object de-
tectors on COCO test-dev.

Based on the above strategy, one dynamic detector can
directly cover the accuracy-speed trade-offs from the sin-
gle to double detectors, avoiding redesigning and training
multiple detectors under different hardware constraints.

4. Experiments
In this section, we evaluate our DynamicDet through ex-

tensive experiments. In Sec. 4.1, we detail the experimental
setups. In Sec. 4.2, we compare our DynamicDet with the
state-of-the-art real-time detectors. In Sec. 4.3, we present
the experimental results on two-stage detectors with CNN-
and transformer-based backbones to demonstrate the gen-
erality of DynamicDet over different backbones and detec-
tors. In Sec. 4.4, we ablate each component of DynamicDet

in detail. In Sec. 4.5, we visualize the “easy” and the “hard”
images determined by the adaptive router.

4.1. Experimental setups
We conduct experiments on the COCO [28] benchmark.

All the models presented are trained on the 118k training
images, and tested on the 5k minival images and 20k test-
dev images. We choose the YOLOv7 [45] series models as
the real-time detector baseline, and the Faster R-CNN [39]
(ResNet [15]) and the Mask R-CNN [14] (Swin Trans-
former [31]) as the two-stage detector baselines. All dy-
namic detectors are trained with the same hyper-parameters
of their corresponding baselines. We use brief notation to
indicate the easy-hard proportion for each dynamic detec-
tor: for instance, “Dy-YOLOv7-X/10” means the dynamic
YOLOv7-X model with 10% images are classified as “hard”
and the rest are classified as “easy”. The training of the
adaptive router is conducted on a single GPU with batch-
size 1 and two epochs, utilizing the AdamW [32] optimizer
with a constant learning rate 1 × 10−5 and weight decay
5 × 10−3. The reported FLOPs for dynamic detectors are
the average FLOPs on the corresponding dataset. The speed
performance is measured on a machine with 1 NVIDIA
V100 GPU unless otherwise stated. The implementation of
Dy-YOLOv7 is developed by the YOLOv7 [45] framework,
with two identical detectors. The implementation of dy-
namic two-stage detectors is developed by the open-source
CBNet [24] framework, with two identical backbones and a
shared neck and head.

4.2. Comparison with the state-of-the-arts
As shown in Tab. 1, compared with the state-of-the-

art high-performance real-time object detectors, our dy-
namic detectors obtain better results and achieve the new
state-of-the-art accuracy-speed trade-offs. Specifically, Dy-
YOLOv7-W6 / 50 achieves 56.1% AP with 58 FPS, which
is 0.1% more accurate and 12% faster than YOLOv7-E6.
Dy-YOLOv7-W6 / 100 achieves 56.8% AP with 46 FPS,
which is 39% faster than YOLOv7-E6E with a similar ac-
curacy. It is worth noting that these trade-offs are obtained
by only one dynamic detector instead of multiple indepen-
dent models.

4.3. Generality for two-stage detectors
We conduct experiments on two classic two-stage detec-

tors (i.e., Faster R-CNN [39], Mask R-CNN [14]) to show
the generality of our DynamicDet. As shown in Tab. 2,
our method is compatible with two-stage detectors and can
also improve the accuracy-speed performance of baselines.
For example, Dy-Faster R-CNN ResNet50 / 90 boosts the
bbox AP by 1% with the comparable inference speed for
Faster R-CNN ResNet101. Furthermore, DynamicDet is
also compatible with transformer-based backbones (e.g.,
Swin Transformer [31]). Dy-Mask R-CNN Swin-T / 90 im-
proves the bbox AP to 49.9% with the comparable inference
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Model FLOPs FPS APbox APmask

Faster R-CNN ResNet50 [15, 39] 207.1G 23 37.4 -
Faster R-CNN ResNet101 [15, 39] 283.1G 18 39.4 -
Dy-Faster R-CNN ResNet50 / 50 245.4G 20 39.5 -
Dy-Faster R-CNN ResNet50 / 90 276.0G 17 40.4 -

Mask R-CNN Swin-T [14, 31] 263.8G 15 46.0 41.6
Mask R-CNN Swin-S [14, 31] 353.8G 12 48.2 43.2
Dy-Mask R-CNN Swin-T / 50 310.6G 12 48.7 43.6
Dy-Mask R-CNN Swin-T / 90 348.0G 11 49.9 44.2

Table 2. Comparison with two-stage detectors on COCO minival.
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Figure 6. Bounding box mAP v.s. inference speed for two-stage
detectors on COCO minival.

speed of Mask R-CNN Swin-S. Notably, our two-stage dy-
namic detector can also perform variable-speed inference as
illustrated in Fig. 6.

4.4. Ablation study

4.4.1 Lightweight adaptive router
The FLOPs ratios for the adaptive router in different mod-
els are presented in Tab. 3. We can find that this ratio is
less than 0.002% in all models, demonstrating that the com-
putational burden of the adaptive router can be negligible.
This lightweight router avoids slowing down the detection
process and ensures the fast decision-making for dynamic
inference.

4.4.2 Effective training strategy for adaptive router
We ablate the effectiveness of the proposed training and
optimization strategy for adaptive router. We first train a
Mask R-CNN [14] with cascaded Swin-T [31] as our base-
line detector. Then, we apply three strategies to achieve the
decision-making for router: random, AP-based (i.e., divid-
ing “easy” and “hard” images based on the validation ac-
curacy and using them to train the router, similar to Adap-
tive Feeding [58]), and our proposed strategy. As shown
in Fig. 7, we compare the bbox AP on the test-dev set of
different training strategies. It is shown that our optimiza-
tion strategy outperforms another two strategies under all
latency constraints. Taking the detector with 84.5 ms la-

Model Router Total Ratio

Dy-YOLOv7 2.1M 104.7G 0.0020%
Dy-YOLOv7-W6 1.9M 360.0G 0.0005%

Dy-Faster R-CNN ResNet50 3.7M 283.7G 0.0013%
Dy-Mask R-CNN Swin-T 0.5M 357.4G 0.0001%

Table 3. Comparison of the adaptive router’s FLOPs and the total
FLOPs in different dynamic models.
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Figure 7. Comparison of the proposed strategy and other two
decision-making strategies.

tency (i.e., 50% easy and 50% hard) as an example, our
strategy exceeds random selection 0.9% AP and AP-based
strategy 0.7% AP. This proves that our optimization strat-
egy effectively improves the discrimination accuracy of the
router and outperforms AP-based strategy [58].

4.4.3 Robust variable-speed inference strategy
To achieve variable-speed inference for a dynamic detec-
tor, we count the difficulty scores on the validation set and
directly adopt the corresponding thresholds for the test set.
This strategy requires the validation set to be large enough.
However, with custom datasets, this is not always sufficient.
To demonstrate the robustness of our variable-speed infer-
ence strategy, we analyze the impact of the validation set
size on the threshold consistency between the validation
set and test set. Taking the Dy-Mask R-CNN Swin-T on
COCO [28] dataset as an example, its threshold for 50%
quantile on the test set is 0.62. Then, we count the thresh-
olds for 50% quantile on the validation set of different sizes
(i.e., 0.5k, 1k, . . . , 5k). As shown in Fig. 9, the threshold
obtained from 5k validation images is consistent with the
threshold of the test set, which confirms our assumption in
Sec. 3.4. Later, as the data size decreases, the thresholds
of the validation set change within a small range. How-
ever, when the data size is less than 1.5k, the threshold of
the validation set and the test set will occur a large devia-
tion (i.e., 0.11 at 1k). Overall, our variable-speed inference
strategy is stable when the validation set size is relatively
sufficient (e.g., about 2k validation images for the 20k test
set on COCO [28]).
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Figure 8. Visualization of the “easy” and the “hard” images. The horizontal direction corresponds to the difficulty scores predicted by our
adaptive router in Dy-Mask R-CNN Swin-T.
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Figure 9. Comparison of the thresholds obtained from the test set
and the validation sets of different sizes.

4.4.4 Comparison with the trade-offs obtained by ad-
justing the input resolution

For a well-trained detector, changing its input resolution can
also quickly obtain a series of accuracy-speed trade-offs.
Here we compare this method with our dynamic detector.
As shown in Fig. 10, we compare our Dy-YOLOv7-W6
and the YOLOv7-D6 with different input resolutions (i.e.,
640∼1280), and we observe that our dynamic detector
achieves better accuracy-speed trade-offs. For example, our
Dy-YOLOv7-W6 achieves 55.2% AP at 74 FPS (13.5 ms),
while YOLOv7-D6 with 640 input resolution only achieves
52.2% AP at an even slower inference speed.

4.5. Visualization of images with different difficulty
scores

We depict the images with different predicted difficulty
scores in Fig. 8, ascending from left to right. That is, the
images on the left are considered as the “easy” images,
while those on the right are considered as the “hard” im-
ages. We can observe that the “easy” images usually con-
tain fewer objects, with the usual camera viewpoint and the
clean background. In contrast, the “hard” images usually
have more complex scenes with severe occlusion and much
more small objects.
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Figure 10. Comparison of the trade-offs obtained from our Dy-
YOLOv7-W6 and YOLOv7-D6 with different resolutions.

5. Conclusion
In this paper, we present a unified dynamic architecture

for object detection, DynamicDet. We first design a dy-
namic architecture to support dynamic inference on main-
stream detectors. Then, we propose an adaptive router to
predict the difficulty score of each image and determine the
inference route. With the above architecture and router, we
then propose a hyperparameter-free optimization strategy
with an adaptive offset to training our dynamic detectors.
Last, we present a variable-speed inference strategy. With
the settable threshold for dynamic inference, we can achieve
a wide range of accuracy-speed trade-offs with only one
dynamic detector. Extensive experimental results demon-
strate the superiority of the proposed DynamicDet in accu-
racy and efficiency, and new state-of-the-art accuracy-speed
trade-offs are achieved.
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