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Abstract

Machine unlearning can fortify the privacy and security
of machine learning applications. Unfortunately, the ex-
act unlearning approaches are inefficient, and the approxi-
mate unlearning approaches are unsuitable for complicated
CNNs. Moreover, the approximate approaches have serious
security flaws because even unlearning completely different
data points can produce the same contribution estimation
as unlearning the target data points. To address the above
problems, we try to define machine unlearning from the
knowledge perspective, and we propose a knowledge-level
machine unlearning method, namely ERM-KTP. Specifi-
cally, we propose an entanglement-reduced mask (ERM)
structure to reduce the knowledge entanglement among
classes during the training phase. When receiving the un-
learning requests, we transfer the knowledge of the non-
target data points from the original model to the unlearned
model and meanwhile prohibit the knowledge of the tar-
get data points via our proposed knowledge transfer and
prohibition (KTP) method. Finally, we will get the un-
learned model as the result and delete the original model
to accomplish the unlearning process. Especially, our pro-
posed ERM-KTP is an interpretable unlearning method be-
cause the ERM structure and the crafted masks in KTP
can explicitly explain the operation and the effect of un-
learning data points. Extensive experiments demonstrate
the effectiveness, efficiency, high fidelity, and scalability of
the ERM-KTP unlearning method. Code is available at
https://github.com/RUIYUN-ML/ERM-KTP

1. Introduction
In recent years, many countries have raised concerns

about protecting personal privacy. The privacy legislation,
e.g., the well-known European Union’s GDPR [19], have
been promulgated to oblige information service providers
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to remove personal data when receiving a request from
the data owner, i.e., the right-to-be-forgotten. Besides, the
GDPR stipulates that the service providers should remove
the corresponding impact of the data requested by the data
owner, in which the machine learning models are the most
representative. Many kinds of research demonstrate that the
machine learning models can memorize knowledge of the
data points, e.g., the membership inference attack [7,14,15]
can infer whether a data point is in the training set or not.

A naive approach is retraining the model after remov-
ing the target data points from the training set, but the hu-
man resources and materials consumed are costly. Thus,
aiming to efficiently remove data as well as their gener-
ated contribution to the model, a new ML privacy protec-
tion research direction emerged, called machine unlearning.
A good deal of related work attempted to solve the data-
removing challenge of inefficient retraining, and there are
two representative research fields, including exact unlearn-
ing [1] and approximate unlearning [3–5]. Unfortunately,
these approaches usually require huge computational, stor-
age overhead, and memory requirements for class-specific
machine unlearning tasks on the complicated convolutional
neural networks (CNNs). Furthermore, they may compro-
mise the model’s performance and even cause disastrous
forgetting. Most significantly, Thudi et al. [18] believed that
such approximate unlearning approaches have serious secu-
rity flaws because they usually define machine unlearning
as the distribution difference between the unlearned model
and the retrained model. According to this definition, even
unlearning completely different data points can produce the
same contribution estimation as unlearning the target data
points.

Unlearning algorithms are difficult to implement on deep
learning models because these models are often seen as
a black box and lack interpretability, which makes data
points’ contributions challenging to estimate. Though many
related works [2, 10, 16, 21] attempted to improve the inter-
pretability of deep learning models, they can not apply to
machine unlearning directly. For example, Zhou et al. [22]
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leveraged the global average pooling (GAP) in CNNs to
generate a class activation mapping (CAM) to indicate the
discriminative image regions used by the CNNs to identify
the class. Liang et al. [12] proposed class-specific filters
to transform the complex representations in convolutional
layers into interpretable graphs.

To address the above problems, for the first time, we con-
sider the need for subsequent unlearning tasks during the
model training phase. We define machine unlearning in the
knowledge perspective, i.e., a reliable machine unlearning
approach should satisfy that the knowledge of the unlearned
model should be identical to the retrained model. Further-
more, we propose an interpretable unlearning method, i.e.,
ERM-KTP. The ERM structure can interpret the relation be-
tween data points and channels in the activation maps. Such
a relationship can describe which filters the data points con-
tribute to the convolutional layer. Then, KTP utilizes the re-
lation to transfer the knowledge from corresponding filters
to the unlearned model. Furthermore, the crafted masks in
KTP interpret the operation of the knowledge transfer. With
these interpretable methods, we can precisely unlearn data
points and enhance the reliability of our proposed unlearn-
ing approach. We summarize our contributions of this paper
as follows:

• We give a novel definition of machine unlearning from
the knowledge perspective, and we further propose
an interpretable knowledge-level machine unlearning
method, i.e., ERM-KTP. Especially, the interpretabil-
ity of ERM-KTP enhances the reliability of the un-
learning operation.

• We introduce an ERM structure that reduces the
knowledge entanglement among classes to get a pre-
trained model. When receiving the unlearning re-
quests, we use the proposed KTP method to transfer
the knowledge of the remaining set from the original
model to the unlearned model and, meanwhile, pro-
hibit the knowledge of the unlearning set. Finally, we
will get the unlearned model as the result and delete
the original model to complete the unlearning process.

• We conduct experiments on three different scales of
image classification datasets and three complicated
CNNs. Extensive experimental results demonstrate the
effectiveness, efficiency, high fidelity, and scalability
of ERM-KTP.

2. Problem Formulation
In this paper, we primarily consider a class-specific ma-

chine unlearning scenario. We assume a sample space
X ⊆ Rd and corresponding labels Y = {1, 2, · · · , C},
where d is the number of dimensions and C is the num-
ber of classes. The training set can be represented as

D = {D1,D2, · · · ,DC}. To unlearn the target class’s data
pointsDu ⊆ D exactly, we need to apply a removal method,
which should be equivalent to applying the training algo-
rithm to the dataset without target data points.
Definition 1. We define a learning algorithm,A : D →W ,
as a function from a dataset to a model in hypothesis space
W . A removal method, R : A(D) × D × Du → W , is
a function from an original model A(D), training dataset
D, an unlearning dataset Du to remove from the training
dataset D to an unlearned model in W , and a remaining
datasetDr = D\Du. We define equivalence as having iden-
tical knowledge for each model inW:

K(A(Dr)) = K(R(A(D),D,Du)), (1)

in which K(·) is a knowledge measuring function. If an
exact unlearning method satisfy the above definition, it can
be defined as a knowledge-level unlearning method.

3. Related Work

Exact unlearning. The exact unlearning approaches can
provide algorithmic unlearning proof. The most repre-
sentative exact unlearning approach is retrain-from-scratch
(RfS), i.e., remove the target data points from the train-
ing set and retrain the model. Bourtoule et al. proposed
SISA to improve efficiency by retraining the sub-model in-
stead of retrain-from-scratch. These exact unlearning ap-
proaches are knowledge-level because they remove all tar-
get data points in the input phase so that the model can not
learn any knowledge of them. However, their computational
overhead is still significant because they need to relearn the
remaining set’s knowledge through retraining.
Approximate unlearning. The main idea of approximate
unlearning approaches is to estimate the target data points’
contribution to the model and update the parameters for un-
learning. For example, Graves et al. [4] leveraged gradi-
ents to estimate the contributions. They stored gradients
of batches consisting of target data points and then sub-
tracted the target gradients to update the model’s parame-
ters. For class-specific unlearning tasks or large-scale un-
learning requests, it needs to store gradients of almost every
batch, and the model will degenerate to the initialization
state. Guo et al. [5] utilized the Influence Theory [8], and
Golatkar et al. [3] used the Fisher Information [13] to es-
timate the contributions. However, the above two methods
need to calculate the hessian matrix, which is very expen-
sive in deep learning models. Besides, they may compro-
mise the model’s performance due to imprecise estimates
of contributions on CNNs and even cause disastrous forget-
ting. Most significantly, Thudi et al. [18] pointed out that
different data points can also generate the same network,
making approximate unlearning approaches unable to pro-
vide an algorithmic unlearning proof.
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4. Proposed Method
In this section, we will explain the ERM-KTP unlearning

method in detail. We will describe how the proposed ERM
structure reduces the entanglement of knowledge in Section
4.1. Then, we will explain how the proposed KTP method
transfers knowledge in Section 4.2. Finally, we will explain
how we combine the ERM and the KTP method to construct
the ERM-KTP unlearning method in Section 4.3.

4.1. Entanglement-Reduced Mask (ERM) Struc-
ture

The most representative knowledge the ML models learn
is the features extracted by the convolutional layers. How-
ever, the features of different classes are entangled, so the
key features of different classes are always highly overlap-
ping. As a result, it is difficult to transfer the knowledge of
target classes without affecting others.

Figure 1. An overview of our proposed ERM structure.

In order to reduce the entanglement of knowledge, we
propose an Entanglement-Reduced Mask (ERM) structure
as a learnable layer of the CNNs inspired by the model in-
terpretability work [12]. The learnable ERM structure can
be represented as a matrix G ∈ RC×K , where C is the num-
ber of classes and K is the number of filters. Each element
Gk

c ∈ [0, 1] represents the relevance between the k-th filter
and the c-th class, and a higher value of Gk

c denotes a closer
correlation. Given a data point (x ∈ X , y ∈ Y) as an input,
we use the y-th row Gy ∈ R1×K as a mask vector multi-
plied to the activation mapsM = (M1, · · · ,MK) of the
last convolution layer (before the fully connected layer) to
shut down irrelevant channels. Formally, we can define the
above multiply operation as

A ◦B = (A1B
1, · · · , Ad1

Bd1), (2)

in which A ∈ Rd1×d2×d3 , B ∈ R1×d1 , Ai ∈ Rd2×d3 , and
Bi ∈ R.

For a CNN with an ERM structure (ERM-CNN), we set
two forward propagation paths of an ERM-CNN with pa-
rameters θ: (1) the STD path with the predicting probability

vector ỹθ; (2) the ERM path with mask matrix G predicting
ỹGθ , as shown in Fig. 1. In the training phase, we train the
network alternately through the STD and ERM paths, while
only the STD path is used in the validation phase.

Then, we will discuss the details of training an ERM-
CNN. We first define an ideal ERM structure in which each
row of the matrix G is at least one element equal to 1, and
each row is orthogonal. In this ideal state, the knowledge
of each class learned by the model is not entangled and in-
dependent of each other. Thus, the training objectives are
to train an ERM-CNN with an ideal ERM structure, and
its classification performance is comparable to the STD-
CNNs. To train a model with the ideal ERM, we first con-
sider its validation accuracy through two paths and ensure
that at least one element of each row of G equals 1, i.e.,
∥Gc∥∞ = 1. We can get the following formulation:

min
θ,G

L0(θ) = CE(y||ỹθ) + λ1CE(y||ỹGθ ) s.t. G ∈ VG,

(3)
where CE denotes the cross entropy loss and VG = {G ∈
RC×K : ∥Gc∥∞ = 1}. Furthermore, we introduce a reg-
ulation term to encourage the sparsity of the matrix G, and
encourage the L1-norm of G not to exceed the preset upper
bound α and has no effect when ∥G∥1 < α. Apparently, we
should set α ⩾ K because ∥Gc∥∞ = 1 ensures ∥G∥1 ⩾ K.
As described above, we can formulate the regulation term as

min
G

L1(θ) = ∥ReLU(∥G∥1 − α)∥p s.t. G ∈ VG, (4)

in which ∥ · ∥p indicates p-norm. Moreover, we introduce
the inner product regulation to encourage each row of G to
be orthogonal to the other as

InP =

C∑
c1=0

C∑
c2=0,
c1<c2

(Gc1 ·Gc2). (5)

To facilitate the solution in practice, we replace Eq. (5) with
the following equivalent form as our inner product regula-
tion term:

min
G

L2(θ) =

C∑
c1=0

C∑
c2=0,
c1<c2

(GGT )c2c1 s.t. G ∈ VG, (6)

in which (GGT )c2c1 denotes the c1-th row and the c2-th col-
umn of the matrix (GGT ). When we minimize L2(θ), it
will tend to 0 if Gk

c ∈ [0, 1], i.e., each row of G will
be orthogonal to the other. Essentially, the inner product
describes the similarity between two vectors as a⃗ · b⃗ =
∥a⃗∥∥⃗b∥cos⟨⃗a, b⃗⟩. When we minimize L2(θ), the cosine
value and their L2-norm are minimized simultaneously.

To sum up, we formulate an optimization problem to
train an ERM-CNN by combining Eq. (3), (4), and (6):
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min
θ,G

L(θ) = CE(y||ỹθ) + λ1CE(y||ỹGθ )

+ λ2∥ReLU(∥G∥1 − α)∥p

+ λ3

C∑
c1=0

C∑
c2=0,
c1<c2

(GGT )c2c1 s.t. G ∈ VG,

(7)

in which the first and the second term ensure the classifica-
tion performance, the third term ensures the sparsity of the
matrix G, and the last term imposes a rigorous constraint on
each row of G.

Algorithm 1: Alternate Training (AT)

1 for e in epochs do
2 if e ∈ ERM ′s epoch then
3 ỹGθ ← prediction through the ERM path
4 L ← λ1CE(y||ỹGθ ) + λ2L1 + λ3L2

5 G← G− η ∂L
∂G

6 Gc ← Gc/∥Gc∥∞
7 G← G.clip(0, 1)

8 else
9 ỹθ ← prediction through the STD path

10 L ← CE(y||ỹθ)
11 end
12 θ ← θ − η ∂L

∂θ

13 end

To solve the above optimization problem in Eq. (7), we
apply an approximate projected gradient descent (PGD) al-
gorithm. After the matrix G is updated, Gc will be nor-
malized by Gc/∥Gc∥∞ to ensure ∥Gc∥∞ = 1, and then
each element of Gc will be clipped into the range [0, 1].
However, the joint training scheme may have some diffi-
culties due to poor convergence. The forward propagation
through the ERM path can make most features block, lead-
ing to a much poorer convergence than the STD path be-
cause of the weaker gradient. Therefore, we propose an
alternate training (AT) scheme instead of the normal joint
training scheme in that the forward propagation uses the
STD path and ERM path alternately in different epochs.
Specifically, we update G and θ by descend the gradient of
λ1CE(y||ỹGθ ) + λ2L1 + λ3L2 in the epoch for ERM path,
and we update θ with the gradient of CE(y||ỹθ) in the STD
path, as shown in Algorithm 1.

4.2. Knowledge Transfer and Prohibition (KTP)

After training an ERM-CNN as a pre-trained model, dif-
ferent classes’ knowledge (features and parameters) is in-
dependent. When receiving the unlearning requests, we
can transfer the knowledge of a single class separately via
our proposed knowledge transfer and prohibition (KTP)
method. Specifically, KTP transfers the knowledge of the

non-target class of data in the origin model θT to the un-
learned model θS while prohibiting the knowledge of the
target data points. We can describe the KTP method as the
following three processes: (1) convolution layers (θcvS and
θcvT ) knowledge transfer (CKT); (2) fully connected layers
(θfcS and θfcT ) knowledge transfer (FKT); (3) matrix G (GS

and GT ) knowledge transfer (GKT). Formally, we can de-
fine the KTP method as

CKT :θcvS
trans←− θcvT ,

FKT :θfcS
trans←− θfcT ,

GKT :GS
trans←− GT .

(8)

In the CKT process, we transfer the knowledge of features
extracted by the convolutional layers by a crafted channel
mask Ḡc ∈ R1×K . For the single target class c unlearning
task, the mask can be defined as

Ḡc,i =

{
0, Gc,i = 1

1, Gc,i = 0
. (9)

For the multiple target classes c = {c0, · · · , c|c|} unlearn-
ing task, we calculate Ḡc

j
for each class j and then aggre-

gate them as

Ḡc,i =


1, (

|c|∑
j

Ḡc
j
)i = |c|

0, (

|c|∑
j

Ḡc
j
)i < |c|

. (10)

Formally, the CKT process can be formulated as an opti-
mization problem:

min
θcv
S

L3(θ
cv
S ) = MSE(f(x; θcvT ), g(x; θcvS ) ◦ Ḡc), (11)

where MSE(·) is Mean Square Error, x is data points, ◦ is
the multiply operation (Eq. (2)), and f(; θcvS ) and g(; θcvS )
denote the output of the origin model’s last convolution
layer with parameters θcvS and the output from unlearned
model’s last convolution layer with parameters θcvS , respec-
tively. Note that the knowledge of the corresponding chan-
nels in the feature maps multiplied by the matrix G where
the value equals one has been transferred. In contrast, the
knowledge associated with values equal to 0 has been pro-
hibited.

For the FKT process, we transfer the knowledge of pa-
rameters in fully connected (FC) layer θfc = {θfcβ , θfcγ }, in
which θfcβ ∈ RK×C denotes the weight, and θfcγ ∈ R1×C

denotes the bias. The FKT process can be executed by di-
rectly modifying the original model’s parameters of fully
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connected layers as

θfcS,β = θfcT,β ∗ Aβ , Aβ = ((Ḡc)
T , · · · , (Ḡc)

T︸ ︷︷ ︸
C

),

θfcS,γ = θfcT,γ ∗ Aγ , Aγ ∈ [0, 1]1×C ,

(12)

where all elements of Aγ are equal to 1 except the c-th
column, (·)T denotes the matrix transpose operation, and
∗ denotes the hardamad product operation. Similar to the
channel mask Ḡc, the FC mask A = {Aβ ,Aγ} prohibits
the knowledge of the FC layer related to the target class of
data points.

Finally, we update the matrix GS of the unlearned model
through the GKT process by the following equation:

GS = GT ∗ AG, AG ∈ [0, 1]C×K , (13)

where only the c-th row of the mask matrix AG is equal to
0, and the others are equal to 1. The updated matrix GS can
visualize which classes of data points have been removed
by checking which rows are equal to 0. We summarize the
KTP method in Algorithm 2.

Algorithm 2: Knowledge Transfer and Prohibition
(KTP)
// CKT

1 for e in epochs do
2 f(x; θcvT )← forward propagation through θT
3 g(x; θcvS )← forward propagation through θS
4 L ← MSE(f(x; θcvT ) ◦ Ḡc, g(x; θ

cv
S ))

5 θcvS ← θcvS − η ∂L
∂θcv

S

6 end
// FKT

7 θfcS,β = θfcT,β ∗ Aβ

8 θfcS,γ = θfcT,γ ∗ Aγ

9 θfcS = {θfcS,β , θ
fc
S,γ}

// GKT
10 GS = GT ∗ AG

// Unlearned Model

11 θS = {θcvS , GS , θ
fc
S }

4.3. Machine Unlearning via ERM-KTP

Here, we will explain how we combine the ERM
structure and KTP method to construct a class-specific
knowledge-level machine unlearning approach. We first
train the original ERM-CNNs by Algorithm 1. When re-
ceiving unlearning requests, we then transfer the remaining
dataset’s knowledge to the unlearned model by Algorithm
2. Finally, we complete the unlearning process by delet-
ing the original model. The detailed ERM-KTP unlearning
algorithm is shown in Algorithm 3.

Algorithm 3: ERM-KTP Unlearning

1 θT ← AT(θ)
2 while receiving unlearning requests do
3 θS ← KTP(θT )
4 Delete θT
5 θT = θS
6 end

5. Experiments
In this section, we empirically evaluate the performance

of the proposed unlearning method on three popular im-
age classification benchmarks. All experiments are imple-
mented with Python 3.8 and PyTorch 1.10.1 on a machine
with Intel(R) Core(TM) i9-10980XE CPU, 32GB RAM,
and a Nvidia 3090 GPU.

5.1. Datasets & Models

We evaluate the proposed unlearning method in three
public image classification datasets, i.e., CIFAR10, CI-
FAR100 [9], and Tiny-ImageNet [11]. The input size of
CIFAR-10 and CIFAR-100 is 32 × 32, and they both con-
tain 50, 000 training images and 10, 000 for validation. For
Tiny-ImageNet, the size of image samples is 224 × 224.
It contains 200 classes of samples, and each class has 500
samples for training, 50 for validation, and 50 for testing.

Moreover, the model structure is three common image
classification deep neural networks, ResNet-20, ResNet-50
[6], and ResNeXt-50 [20]. The original models are trained
for 200 epochs using Stochastic Gradient Descent (SGD)
optimizer with a momentum of 0.9, weight decay of 5e-4,
and an initial learning rate of 0.1, divided by 10 after 100
and 150 epochs, respectively.

5.2. Effectiveness of the ERM Structure

In order to evaluate the effectiveness of ERM structure,
we propose the following metrics:

• Cosine similarity (CSI) to analyze the orthogonality
of each row of the matrix G as follows,

CSI =
C∑

c1=0

C∑
c2=0,
c1 ̸=c2

(
Gc1 ·Gc2

∥Gc1∥∥Gc2∥
). (14)

• L1-density to evaluate the sparsity of the matrix G as

L1-density =
∥G∥1
CK

. (15)

Table 1 shows that the CNNs with the ERM structure
have slightly better classification performance than the STD
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CNNs. Moreover, the L1-density convergences to α, and
CSI convergences close to 0, meaning each class of data
is independent to the other. These metrics quantitatively
demonstrate ERM’s effectiveness in learning a sparse mask
matrix to reduce the entanglement for the following un-
learning task without sacrificing classification accuracy.

Table 1. Metrics of the STD-CNNs and ERM-CNNs. The first
row of each two stand for STD-CNNs and the second one stand
for ERM-CNNs. Accval is the original model’s classification ac-
curacy on the validation dataset.

Dataset Model C K CSI L1-density Accval

CIFAR10 ResNet-20 – – – – 89.6%
10 64 0.0 0.1 92.6%

CIFAR100 ResNeXt-50 – – – – 76.2%
100 2,048 0.0 0.01 77.6%

Tiny-ImageNet ResNet-50 – – – – 49.3%
200 2,048 0.0 0.005 53.4%

Moreover, we evaluate if the ERM structure can reduce
or eliminate the knowledge entanglement across classes by
prohibiting each class’s knowledge successively during the
ERM path’s forward propagation. As shown in Table 2,
the classification accuracy will degrade into 0.0% for the
knowledge-prohibited classes, while the accuracy will re-
main the same for the knowledge-permitted classes.

Table 2. Accuracy of the data points with prohibited or per-
mitted Knowledge. Accpro(·) and Accper(·) denote the accuracy of
the knowledge-prohibited classes and the knowledge-permitted
classes, respectively.

Dataset Model Accprotrain Accpertrain Accproval Accperval

CIFAR10 ResNet-20 0.0% 97.1% 0.0% 91.8%
CIFAR100 ResNeXt-50 0.0% 99.9% 0.0% 78.1%

Tiny-ImageNet ResNet-50 0.0% 99.9% 0.0% 53.4%

We also evaluate the time overhead and memory require-
ments of the ERM CNNs in the training phase. The com-
putation overhead is the activation map multiplied by the
corresponding y-th row of the matrix G and computing the
regulation terms L1 and L2. As shown in Table 3, the time
overhead of the ERM structure is comparable to the stan-
dard (STD) CNNs, and the additional memory requirements
are negligible, which demonstrates that ERM structure has
great scalability and can be applied to any CNN structures.

5.3. Effectiveness of the ERM-KTP Unlearning
Method

We utilize some common metrics to evaluate the effec-
tiveness of the ERM-KTP unlearning method as follows.

• AccDr is the original model’s classification accuracy
on the training set of the remaining classes.

• Accval is the original model’s classification accuracy
on the validation dataset of the remaining classes.

• Acc′Dr
measures the unlearned model’s performance

on the training set of the remaining classes.

• ∆AccDr
= Acc′Dr

− AccDr
indicates the difference

between the accuracy of the remaining set before and
after the unlearning operation.

• ∆Accval = Acc′val − Accval indicates the difference
between the accuracy of the validation set before and
after the unlearning operation.

Table 3. Time overhead and memory requirements of the ERM-
CNNs and the STD-CNNs in the training phase.

Dataset Model Structure Time Memory

CIFAR10 ResNet-20 STD 1206s 2867MiB
ERM 1541s 2867MiB

CIFAR100 ResNeXt-50 STD 9447s 19223MiB
ERM 9983s 19275MiB

Tiny-ImageNet ResNet-50 STD 5025s 6769MiB
ERM 6164s 6803MiB

Then, we conduct experiments in the case of unlearn-
ing 10%, 40%, and 80% of classes, respectively. Table 4
shows that AccDu

equals 0.0% in all cases, demonstrating
that ERM-KTP can effectively unlearn target data points.
Furthermore, ∆AccDr

are close to 0.0% and ∆AccDr
is

greater than 0.0% in most cases. These show that ERM-
KTP can unlearn target data without affecting the model
classification performance, demonstrating the high fidelity
of ERM-KTP. In summary, ERM-KTP performs well on all
these datasets and model structures, demonstrating the scal-
ability of ERM-KTP.

5.4. Comparison with Baselines

To further prove the advantage of ERM-KTP, we com-
pare ERM-KTP with the following baseline approaches:

• Retrain from scratch (RfS): Retrain model from
scratch with remaining data points Dr.

• SISA: Retrain the sub-model whose training set con-
tains the target data points [1].

• Fine-tune: Fine-tune the model on the remaining data
Dr using a slightly larger learning rate.

• Random Labels (RL): Fine-tune the model on D by
randomly resampling labels corresponding to images
belonging to the remaining data points Dr.

• Amnesiac Unlearning: Track gradient in every train-
ing batch. Then, update the model by subtracting the
gradients when the batch is marked for removal [4].
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Table 4. Performance evaluation of ERM-KTP unlearning method. #Classes denotes the number of the unlearned classes of data points

Dataset Model #Classes AccDr Accval AccDu Acc′Dr
∆AccDr ∆Accval

CIFAR10 ResNet-20 0 96.8% 92.6% – – – –
1 96.6% 91.3% 0.0% 95.3% -1.3% -1.3%
4 97.4% 96.1% 0.0% 97.3% -0.1% +3.5%
8 98.4% 97.8% 0.0% 98.5% +0.1% +3.1%

CIFAR100 ResNeXt-50 0 99.9% 77.6% – – – –
10 99.9% 76.1% 0.0% 98.1% -1.8% -0.6%
40 99.9% 79.4% 0.0% 98.4% -1.5% +1.1%
80 99.9% 86.4% 0.0% 99.8% -0.1% +7.6%

Tiny-ImageNet ResNet-50 0 99.9% 53.4% – – – –
20 99.9% 52.6% 0.0% 97.6% -2.3% -0.3%
80 99.9% 53.8% 0.0% 98.3% -1.6% +1.5%

160 99.9% 59.3% 0.0% 97.6% -2.3% +4.4%

• Fisher Unlearning: Perform a corrective Newton step
using the Fisher Information Matrix. Add fisher noises
sampled from Gaussian distribution to the weight to
scrub the information [3].
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Figure 2. Train the unlearned model with the training datasets,
and ∆AccDu denotes the difference between the accuracy of the
unlearning dataset on the relearned model and the accuracy on the
original model on CIFAR10 and ResNet-20.

Then, we conduct the comparison experiments for 40%
classes of data points removed. As shown in Table 5, the
Amenesiac method [4] stores the gradients of almost ev-
ery batch, and the model’s performance degrades to ran-
dom guess because it makes the model return to its initial
state. For SISA [1], we need to retrain all shards to unlearn
target classes of data points because every shard contains
the target data points. Also, SISA’s validation accuracy is
lower by about 6% than STD CNNs due to the aggregation
operation. Though the literature [3] reports that the Fisher
method performs well on All-CNN [17] and CIFAR-10, our
experimental results show that it is not suitable for compli-
cated CNNs, e.g., ResNet-20, ResNet-50 [6], and ResNeXt-
50 [20].

Note that fine-tune and random labels (RL) methods
show great performance on ∆AccDr

and ∆Accval. How-

ever, these two methods are only an output-level unlearn-
ing, i.e., they only change the model’s output of the tar-
get data points but not remove the corresponding knowl-
edge. To prove that, we fine-tune the unlearned model to
observe how long the model can relearn the forget knowl-
edge. As shown in Fig. 2, the Fine-tune and RL method re-
store the performance on the unlearning dataset at about the
50th epoch, while the relearn time of ERM-KTP method is
similar to the RfS method, i.e., they both recover the perfor-
mance around the 100th epoch. It demonstrates that ERM-
KTP can completely remove the target data points like the
RfS method, i.e., ERM-KTP is a knowledge-level unlearn-
ing method.
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Figure 3. Ablation experiments of our proposed regulation terms
on CIFAR100 and ResNet-50.

For the efficiency comparison, we conduct the exper-
iments on CIFAR10 and ResNet-20 because some meth-
ods can not be implemented on the other two settings,
e.g., Fisher method needs more than 200 hours in Tiny-
ImageNet. As shown in Table 6, ERM-KTP improves by
5× compared to RfS, 5.4× compared to SISA, and 42×
compared to Fisher. Though the time overhead of Fine-
tune is less than ERM-KTP, Fine-tune method is only an
output-level unlearning method, as mentioned above. In
summary, compared with these baseline approaches, ERM-
KTP is more effective, more efficient, and has better scala-
bility.
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Table 5. Unlearning performance comparison with baseline approaches when unlearning 40% classes of data points.

Dataset Model Approach AccDr Accval AccDu Acc′Dr
∆AccDr ∆Accval

CIFAR10 ResNet-20 STD 99.9% 93.7% – – – –
RfS 99.9% 96.3% 0.0% 99.8% -0.1% +2.6%

Fine-tune 99.9% 97.0% 0.0% 99.8% -0.1% +3.3%
RL 99.9% 97.0% 0.0% 99.8% -0.1% +3.3%

SISA 92.4% 91.0% 0.0% 92.8% +0.4% +0.2%
Fisher 99.9% 54.0% 48.4% 53.0% -46.9% -25.1%

Amnesiac 99.9% 9.0% 0.0% 15.4% -84.5% -84.7%
ERM-KTP (ours) 97.4% 96.1% 0.0% 97.3% -0.1% +3.5%

CIFAR100 ResNeXt-50 STD 99.9% 78.9% – – – –
RfS 99.9% 79.6% 0.0% 99.9% 0.0% +0.7%
RL 99.9% 78.1% 0.0% 99.7% 0.0% -0.8%

Fisher 99.9% 1.0% 0.0% 1.0% -98.9% -77.9%
Fine-tune 99.9% 83.4% 0.0% 99.9% 0.0% +4.5%
Amnesiac 99.9% 0.89% 0.0% 1.0% -98.9% -77.8%

ERM-KTP (ours) 99.9% 79.4% 0.0% 98.4% -1.5% +1.1%
Tiny-ImageNet ResNet-50 STD 99.9% 48.3% – – – –

RfS 99.9% 45.1% 0.0% 99.9% 0.0% -3.2%
RL 99.9% 43.4% 0.0% 96.7% -3.2% -4.9%

SISA 67.6% 52.8% 0.0% 68.0% +0.4% -1.3%
Fine-tune 99.9% 50.0% 0.0% 99.9% 0.0% +1.7%
Amnesiac 99.9% 0.3% 0.8% 0.7% -99.2% -48.0%

ERM-KTP (ours) 99.9% 53.8% 0.0% 98.3% -1.6% +1.5%

Table 6. Unlearn time comparison with baselines on CIFAR10 and
ResNet-20.

Approach Time ∆AccDr ∆Accval

RfS 668s -1.7% +1.7%
SISA 672s +0.4% +0.2%

Fine-tune 492s -0.2% +2.4%
RL 68s -1.5% +1.4%

Fisher 5162s -46.9% -25.1%
ERM-KTP (ours) 124s -1.6% +2.0%

5.5. Ablation Experiments

To further demonstrate that our proposed regulation
terms are effective, we conduct an ablation experiment on
CIFAR100 and ResNet-50 by setting the hyper-parameters
as: (1) λ1 = 1, λ2 = 1 × 10-3, and λ3 = 0; (2) λ1 = 1,
λ2 = 0, and λ3 = 5 × 10-4; (3) λ1 = 1, λ2 = 1 × 10-3,
and λ3 = 5 × 10-4. Fig. 3 demonstrates that applying both
L2 and L3 achieves the best performance and convergence
to the optimal value. Only using the L2 regulation term
(Eq. (4)), the L1-density tends to 0.01, but the CSI con-
vergences to around 3,500. It illustrates that the L1-norm
regulation term can find the spars solution, but the L1-norm
does not constrain the relative position, which leads to the
high value of CSI. However, the L1-norm can make both
CSI and L1-density convergence to a lower value when the

inner-product regulation term (Eq. (6)) is used. Further-
more, the inner-product can make both two values descend
more quickly.

6. Conclusion
In this paper, we propose an interpretable knowledge-

level unlearning method, ERM-KTP, for the class-specific
unlearning task. We propose the ERM structure to tackle
the challenge of high knowledge entanglement. Then, we
transfer the knowledge of the remaining set from the orig-
inal model to the unlearned model via our proposed KTP
method. Finally, we delete the original model to accomplish
the unlearning task. The interpretability brought by the
EMR structure and the crafted masks in KTP enhances the
reliability of the unlearning. Extensive experiments demon-
strate the effectiveness, fidelity, efficiency, and scalability
of our proposed ERM-KTP unlearning method. For future
work, we attempt to solve the entanglement of each single
data point to tackle the sample-specific unlearning task.
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