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Abstract

Detecting mirrors from static images has received signif-
icant research interest recently. However, detecting mirrors
over dynamic scenes is still under-explored due to the lack
of a high-quality dataset and an effective method for video
mirror detection (VMD). To the best of our knowledge, this
is the first work to address the VMD problem from a deep-
learning-based perspective. Our observation is that there
are often correspondences between the contents inside (re-
flected) and outside (real) of a mirror, but such correspon-
dences may not always appear in every frame, e.g., due to
the change of camera pose. This inspires us to propose a
video mirror detection method, named VMD-Net, that can
tolerate spatially missing correspondences by considering
the mirror correspondences at both the intra-frame level as
well as inter-frame level via a dual correspondence mod-
ule that looks over multiple frames spatially and tempo-
rally for correlating correspondences. We further propose
a first large-scale dataset for VMD (named VMD-D), which
contains 14,987 image frames from 269 videos with corre-
sponding manually annotated masks. Experimental results
show that the proposed method outperforms SOTA methods
from relevant fields. To enable real-time VMD, our method
efficiently utilizes the backbone features by removing the
redundant multi-level module design and gets rid of post-
processing of the output maps commonly used in existing
methods, making it very efficient and practical for real-time
video-based applications. Code, dataset, and models are
available at https:// jiaying.link/cvpr2023-vmd/

1. Introduction

Mirrors appear everywhere. They can adversely affect
the performance of computer vision tasks (e.g., depth esti-
mation [35], vision-and-language navigation [2], semantic
segmentation [49]), due to their fundamental property that
they reflect objects from their surroundings. Thus, it is nec-
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Figure 1. Although state-of-the-art single-image mirror detection
method VCNet [36] performs well on a single image (e.g., the first
row) by using implicitly intra-frame correspondence, it may fail
when the intra-frame cue is weak or even absent in some video
frames (e.g., the second and third rows). The lack in exploiting
inter-frame information causes the current mirror detection meth-
ods to produce inaccurate and inconsistent results when applied to
VMD. In contrast, our method can perform well in both situations
by utilizing the proposed dual correspondence module to exploit
intra-frame (spatial) and inter-frame (temporal) correspondences.

essary to build a robust computer vision model that can dis-
tinguish mirrors from their surrounding objects correctly.

Existing single-image mirror detection methods exploit
different cues, such as context contrast [42], explicity cor-
respondences [22], semantics association [14], and chirality
and implicit correspondences [36], to detect mirrors from
single RGB input images. Despite these recent efforts being
put into the mirror detection problem, none of them focuses
on detecting mirrors from videos. However, a lot of real-
world computer vision applications are video-based (e.g.,
robotic navigation, autonomous driving, and surveillance),
rather than image-based. Hence, solving the video mirror
detection (VMD) problem can benefit these applications.

In this paper, we aim to address the VMD problem.
There are two major challenges with this problem. First, to
the best of our knowledge, there are no existing large-scale
datasets that can be used for training and evaluation on the
VMD problem. Second, existing mirror detection methods,
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Figure 2. Quantitative comparison on the performance and effi-
ciency between existing mirror detection methods and our method
for VMD. All models are trained/tested on the proposed VMD-D
dataset, under a single RTX 3090 GPU. Our model has ⇠5 times
smaller network parameters and runs ⇠18⇥ faster than the state-
of-the-art image-based mirror detection method, VCNet [36], and
still outperforms it by a large margin.

which are all developed for the image-based mirror detec-
tion task, are all based on static cues. None of them take ad-
vantages of the dynamic nature of videos in the VMD prob-
lem. Figure 1 shows that the current state-of-the-art mirror
detection method, VCNet [36], may fail when correspon-
dences are missing in some challenging frames (e.g., second
and third rows) due to, for example, the change of camera
pose, even though it may perform well in some easy cases
(e.g., the first row). Besides, as the image-based mirror de-
tection task is already very challenging, existing methods
for this task often adopt heavy network design and time-
consuming post-processing techniques [19] to improve their
results. Figure 2 shows that existing image-based mirror
detection models run at about 1fps, even on one of the lat-
est GPUs, which cannot support real-time VMD. All these
drawbacks motivate us to develop a large-scale dataset and
an effective/efficient method for video mirror detection.

In this paper, we address the VMD problem in two ways.
First, we construct the first large-scale video mirror detec-
tion benchmark dataset (VMD-D). It contains 14,987 im-
age frames in 269 videos, coming from diverse scenes. The
constructed VMD-D dataset provides large-scale and high-
diversity data for training and evaluation on the VMD prob-
lem. Second, we propose an effective and efficient method,
called VMD-Net, for the VMD problem. The proposed
method exploits multi-frame correspondences at both intra-
frame (spatial) and inter-frame (temporal) levels. Compared
with state-of-the-art image-based mirror detection methods,
which typically adopt heavy pipelines, our method uses a
light-weight network architecture without the need for any

post-processing techniques. As a result, our method is effi-
cient for real-time applications. In particular, our method
has ⇠5 times fewer network parameters and runs ⇠18⇥
faster than the latest state-of-the-art image-based mirror de-
tection method, VCNet [36]. We conduct comprehensive
experiments to demonstrate the effectiveness and efficiency
of our proposed method. Experimental results show that our
method outperforms state-of-the-art methods from relevant
tasks on the proposed large-scale VMD-D dataset.

Our key contributions can be summarized as follows:

• We construct the first large-scale video mirror detec-
tion dataset, called VMD-D. The new dataset contains
14,988 image frames from 269 videos with precise an-
notated masks.

• We propose a novel network, called VMD-Net, to
exploit both intra-frame and inter-frame correspon-
dences via a dual correspondence (DC) module. This
DC module allows VMD-Net to tolerate occassionally
missing correspondences in the temporal dimension.

• Extensive evaluations show that our method outper-
forms existing state-of-the-art methods from relevant
tasks on our proposed VMD-D dataset.

2. Related Work

Image-based Mirror Detection. Recently, Yang et al. [42]
propose the first mirror detection dataset and the first mir-
ror detection network to detect mirrors by modeling con-
textual contrasted information. Lin et al. [22] then pro-
pose a more diverse and larger mirror detection benchmark,
and a correspondence-aware method for mirror detection,
which correlates the contents inside and outside of the mir-
ror. Mei et al. [27] further consider using RGB-D data for
detecting mirrors, and construct the first RGB-D dataset
for mirror detection. Tan et al. [35] address the depth re-
finement problem on mirror surfaces by proposing another
RGB-D mirror dataset and a detect-and-refine method for
mirror detection. Most recently, Tan et al. [36] propose an
image-based method for mirror detection based on the chi-
rality cue and implicit correspondences.

Despite their success, none of these methods focuses on
the VMD problem. They also have high computational
costs, thus not practical for real-time applications. In this
paper, we aim to address the VMD problem by construct-
ing a benchmark dataset and proposing an efficient/effective
method for the problem.
Video Object Segmentation Video object segmentation
(VOS) aims to segment the target object(s) from the input
videos. Currently, it can be categorized into two main in-
dividual tasks: the unsupervised video object segmentation
(UVOS) [32, 38–40, 43, 45] and the semi-supervised video
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Figure 3. Snapshots of the proposed Video Mirror Detection dataset, VMD-D, with pixel-level annotations.

object segmentation (SVOS) [7, 8, 23–25]. The main dif-
ference between UVOS and SVOS is that UVOS does not
require annotation for the first frame of the input video dur-
ing the inference phase, while SVOS needs to do it. Thus,
UVOS is more related to the video mirror detection prob-
lem since we do not use the first-frame ground truth mir-
ror label to infer the location of mirrors in the rest of the
video frames. UVOS focuses on automatically detecting the
primary foreground object without using the ground truth
mask of the first frame during testing. Early UVOS meth-
ods use handcrafted features [30, 34] to detect foreground
objects in the input videos. Recent CNN-based UVOS mod-
els [38–40] focus on exploring different cues like mem-
ory [38], graph neural network [39] and visual attention [40]
for better performance. The latest UVOS methods [32, 45]
take optical flow as auxiliary information to help segment
videos, thanks to the rapid evolution on optical flow estima-
tion [37].

However, UVOS methods cannot directly address the
video mirror detection problem, since mirrors are not al-
ways the primary foreground objects while having changing
appearance patterns during motion.

Video Salient Object Detection Video salient object detec-
tion (VSOD) is related to the UVOS task. It aims to auto-
matically detect the most visually distinctive objects from
an input video without indicating where the salient object
is in the first frame. Unlike the methods for single-image
salient object detection [29, 48], VSOD methods require
building a model with a thorough understanding of dynamic
attention. Most earlier VSOD methods detect the salient ob-
jects using handcrafted features [4,15,16]. With the help of
deep neural networks, recent VSOD methods achieve great
progress. Fan et al. [11] take attention shift into account.
Gu et al. [12] expolit self-attention models to detect salient
objects from videos efficiently. Zhang et al. [46] proposes a
dynamic strategy of context fusion for VSOD.

Similar to UVOS, the methods for video salient object
detection are not directly applicable to video mirror detec-
tion since mirrors are not always distinctive.

3. Video Mirror Detection Dataset (VMD-D)

To facilitate research on the video mirror detection prob-
lem, we first contribute a large-scale video mirror detection
dataset (named VMD-D). It consists of 269 videos in 14,988
image frames with corresponding precise annotations from
diverse scenes. Figure 3 shows some example video frames
in our proposed VMD-D dataset. The details of our VMD
are discussed below.

3.1. Dataset Construction

To construct the first large-scale video mirror detection
dataset, we use a smartphone to collect high-resolution
videos (e.g., 1920⇥1080 resolution) with mirrors in daily-
life scenes. Following a common practice [6] used to con-
struct datasets for video-based problems, we manually trim
the collected videos to make sure that each video frame has
at least one mirror region. After that, we obtain 269 video
clips and then randomly split them into a training set with
143 videos (containing 7,835 images) and a test set with
126 videos (containing 7,152 images). We then label pixel-
level mirror masks by annotators. The total duration of our
videos is 502 seconds for covering long-temporal scenarios.
The frame rate is 30 fps for all collected videos.

3.2. Dataset Analysis

Table 1 shows the comparison of different datasets from
the relevant areas, including image mirror detection [22,42]
(top group), video object segmentation [20, 28, 33] (second
group), and video shadow detection [6] (third group), and
ours. Our dataset reflects good video quality (i.e., high-
resolution videos) and quantity (i.e., a large number of an-
notated frames), and is practical for being the first step for
large-scale video mirror detection.
Area Distribution. Figure 4(a) shows the ratio of mirror
area over the image area (mirror area distribution). We can
see that our dataset contains mirrors covering a wide range
of area ratios. We also note that it consists of a lot of small
mirrors (< 0.1), which makes our dataset very challenging.
Contrast Distribution. We analyze the contrasts between
the mirror regions and non-mirror regions by computing �2
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Dataset #Videos #Annos. #Time (s). #FPS Max Reso.

MSD [42] - 4,018 - - 640⇥512
PMD [22] - 6,461 - - 4000⇥3000

FBMS [28] 59 720 - - 640⇥480
STV2 [20] 14 947 - - 640⇥360
DAVIS [33] 50 3455 144 24 1920⇥1080

ViSha [6] 120 11,685 390 30 1280⇥720

Ours 269 15,066 502 30 1920⇥1080

Table 1. Comparison of different video datasets for relevant tasks.

(a) mirror area distribution (b) color contrast distribution

Figure 4. Statistics of our VMD dataset.

distance between their RGB histograms. We also compare
the distribution between MSD [42] and PMD [22], as shown
in Figure 4(b). In general, VMD-D has more images with
extremely low color contrasts (< 0.1) compared with exist-
ing mirror datasets MSD and PMD. This indicates our im-
ages are collected from very diverse scenes, making them
more challenging to detect.

4. Method

4.1. Overview

We observe that there are often spatial correspondences
between the contents inside (reflected) and outside (real) of
a mirror. However, such spatial correspondences may not
always appear in every frame. The lack in exploiting tem-
poral correspondence may cause current image-based mir-
ror detection methods to fail in the VMD task. Hence, in
this paper, we propose a method that is able to tolerate tem-
porally missing correspondences by considering mirror cor-
respondences at both the intra-frame level (spatial) as well
as the inter-frame level (temporal).

Figure 5 shows the overall structure of our proposed
method VMD-Net. The key idea of our network design is
to leverage the intra-frame and the inter-frame correspon-
dences for video mirror detection. Our VMD-Net takes
three images from the same video clips as inputs. The first
two images It and It+1 are from adjacent video frames,
while the third image In is randomly selected from other
frames. We first apply a shared backbone network ResNext-

Dual Correspondence Module

ASPPASPP

Back 
bone

ASPP

Back 
bone

Back 
bone

Figure 5. The framework of our proposed method. It, It+1, In
are input images. In particular, It and It+1 are two adjacent video
frames, and In is a video frame randomly selected from the same
video of It. Pt, Pt+1, Pn are intermediate maps and the final out-
puts maps are Mt,Mt+1,Mn for the corresponding input images.

101 [41] to extract multi-scale features from the input im-
ages. Unlike existing single-image mirror detection meth-
ods, which make full usage of the features at all stages (i.e.,
from the 1st to the 5th scales), for each input image i, our
VMD-Net only utilizes the low-level features at the 2nd

scale (denoted as F
i

low
) and the high-level features at the 5th

scale. Following the design of DeepLabV3 [5], the high-
level features from the backbone network are then fed to an
atrous spatial pyramid pooling module to obtain enhanced
semantic features (denoted as F

i

high
). Taking image It as an

example, we then assign a dual correspondence module to
both low-level features F

t

low
and high-level features F

t

high

to produce the intermediate map Pt and the final output Mt.
Similarly, the dual correspondence module takes the low-
level features and high-level features from It+1, In to pro-
duce the intermediate maps Pt+1, Pn and the final outputs
Mt+1,Mn.

4.2. Dual Correspondence (DC) Module

Figure 6 shows the structure of the proposed DC module.
It consists of two stages. The first stage of the DC module
aims to learn intra-frame correspondences for all input
images and the short-term inter-frame correspondences

inside mirrors in the adjacent input image It and It+1. The
second stage of the DC module focuses on extracting long-

term inter-frame correspondences across all input im-
ages to enhance the learning of temporal correspondence.
This enables our VMD-Net to exploit correspondences at
both intra-frame and inter-frame levels at different tempo-
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Figure 6. Our DC module. It consists of two stages. The first stage in the DC module aims to extract intra-frame and short-term temporal
correspondences from two adjacent video frames It, It+1, while the second stage in the DC module focuses on learning long-term temporal
correspondences from all input frames It, It+1, In.

ral scales.
Stage 1. Our DC module takes the low-level features

Flow and high-level features Fhigh as input. In the first
stage, we first extract the intra-frame correspondences from
the high-level features Fhigh of each image by the global
relation (GR) block proposed in [22]. The GR block can ef-
fectively and efficiently extract the correspondence between
the content inside and outside of the mirrors by modeling
spatial corresponding relations in a single image. The high-
level correspondence-aware features from the randomly se-
lected frame In are directly concatenated with the corre-
sponding low-level features F

n

low
in the decoder to output an

intermediate map Pn, while the high-level correspondence-
aware features extracted from the two adjacent frames It
and It+1 are forwarded to a cross-attention (Cross-Att.)
module to learn short-term temporal correspondences. To
compute short-term temporal correspondences between It
and It+1, we also feed their low-level features F

t

low
,F

t+1
low

to another cross-attention module.
Our cross-attention module is inspired by [17], but we

extend it from self-attention (single-input and single-out
features) to cross-attention with two-input and two-output
features and also enhance its ability to model spatial cor-
respondences. Our module first applies two convolutional
layers with 1⇥1 filters to the two input features Ft and Ft+1

and further generates a spatially enhanced affinity matrix
Ase 2 R(2H+2W�1)⇥(W⇥H). Different from the original
affinity matrix A 2 R(H+W�1)⇥(W⇥H) in [17], which is
computed by extracting local contextual information in the

horizontal and vertical directions of the input features, our
spatially enhanced affinity operation also computes global
contextual information by taking the diagonal items of the
input features into our design. Formally, our cross-attention
process can be described as:

K = Conv1⇥1(Ft);Q = Conv1⇥1(Ft+1), (1)
Ase = Ase(K,Q), (2)
V = Conv1⇥1(Ft), (3)

C
t = K + !t

(2H+2W�1)⇥(W⇥H)X

i

AseV, (4)

C
t+1 = Q+ !t+1

(2H+2W�1)⇥(W⇥H)X

i

AseV, (5)

where C is the output of the cross-attention module. !t

and !t+1 are learnable parameters. Ase is our spatially
enhanced affinity operation. C

t and C
t+1 are the out-

put correspondence-aware features. We apply the cross-
attention module to both F

t

low
,F

t+1
low

and F
t

high
,F

t+1
high

to obtain correspondence-aware features C
t

low
,C

t+1
low

and
C

t

high
,C

t+1
high

. We then concatenate the correspondence fea-
turesfrom the same input image but at different levels. The
concatenated features [Clow;Chigh] are forwarded to a de-
coder to obtain an intermediate prediction Pt for It. Sim-
ilarly, we obtain the intermediate predictions Pt+1 and Pn

for It+1 and In.
Stage 2. The second stage of our DC module takes all in-
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termediate prediction maps Pt, Pt+1, Pn and high-level fea-
tures F

t

high
,F

t+1
high

,F
n

high
as inputs. The input features and

prediction maps are forwarded to a reverse cross-attention
module. This module aims at explicitly exploiting the cor-
respondence between the contents inside and outside of the
mirrors in different frames for long-range temporal corre-
spondences. In particular, we need to explicitly model the
correspondences between input frame It and the randomly
selected frame In. To do this, we first multiply Fhigh by
their corresponding intermediate prediction map P , which
are normalized by a sigmoid function. We then reverse P to
obtain the reversed prediction map P̂ , which indicates the
potential non-mirror regions. We also notice that the mir-
rors will potentially flip the real object horizontally in its
content. Thus, we conduct a horizontal flip to the input non-
mirror features to model the potential relation of mirror re-
flection. Similarly, we compute temporal correspondences
between It and It+1 with this strategy. In the second stage
of the DC module, we also use our cross-attention module
to extract the inter-frame correspondences. The process of
our reverse cross-attention module can be formulated as fol-
lows:

⌦n, = CA(PnF
n

high
, (P̂tF

t

high
)>), (6)

⌦t, = CA(PtF
t

high
, (P̂t+1F

t+1
high

)>), (7)

⌦t+1, = CA(Pt+1F
t+1
high

, (P̂tF
t

high
)>), (8)

where CA is our cross-attention module. > is a horizontal
flip operation. ⌦ is the final output feature. Note that we
omit the second output of the cross-attention modules used
in the 2nd stage for convenience. We then forward the out-
put features to individual decoders to obtain the final output
predictions Mt,Mt+1,Mn for the input images It, It+1, In,
respectively.

4.3. Loss Functions

We adopt the Lovász-Softmax loss function [3] to super-
vise our network training. The final loss function is:

L =

i2{t,t+1,n}X

i

Lh(Pi, Gi) + Lh(Mi, Gi), (9)

where Lh(·, ·) denotes the lovasz-hinge loss. Pi,Mi, Gi are
the intermediate output from the DC module, the final out-
put of our network, and the ground truth label of image Ii,
respectively.

5. Experiments

5.1. Experimental Settings and Evaluation Metrics

We have implemented VMD-Net in Pytorch [31] and
trained it on a PC with an RTX3090 GPU card. Dur-
ing training, we resize the input images to 384⇥384. We

use ResNext-101 [41] pre-trained on ImageNet [9] as our
backbone network to extract image features. We adopt
Adam [18] as the optimizer with a momentum of 0.9 and
a weight decay of 5 ⇥ 10�4. The base learning rate, batch
size, and the number of training epochs are 0.0001, 8, and
15, respectively. We use the cosine learning rate decay with
3-epoch warm-up period to adjust the learning rate during
training. Note that we do NOT apply any post-processing
techniques to refine our predictions.

We employ four popular metrics, intersection over union
(IoU), pixel accuracy, F-measure (F�) [1], and mean ab-
solute error (MAE) to evaluate the performance of tested
methods quantitatively. F� is defined as:

F� =
1 + �2(Precision⇥Recall)

�2Precision+Recall
,

where � is set to 0.3 as suggested in [1]. It evaluates the
overall performance between precision and recall.

5.2. Comparison to the State-of-the-art Methods

Due to the lack of methods for video mirror detection, we
compare our method with 14 state-of-the-art methods from
relevant fields, including GateNet [48] and MINet [29] for
salient object detection; PCSA [13] for video salient object
detection; DeepLabV3 [5], PSPNet [47] and OCRNet [44]
for semantic segmentation; TVSD [6], STICT [26] and Sc-
Cor [10] for video shadow detection; HFAN [32] for video
object segmentation; GlassNet [21] for glass surface detec-
tion; MirrorNet [42], PMDNet [22] and VCNet [36] for
single-image mirror detection. We train and test all base-
line methods on our video mirror detection dataset VMD-D
using their released codes on the same platform. Table 2
shows the quantitative results. Our method achieves the best
performance with a large margin on all four metrics.

Figure 7 visually compares the results of our method
with the selected state-of-the-art methods from relevant
fields. We can see that when compared with image-based
mirror detection methods PMDNet [22] and VCNet [36],
which produce inaccurate and incoherent results both in a
short-term temporal interval (e.g., the 1st and 2nd rows;
the 3rd and the 4th rows) and a long-term temporal inter-
val (e.g., the 5th and 6th rows; the 7th and 8th rows), our
method can precisely predict the mirror regions by exploit-
ing inter-frame and intra-frame correspondences in both
situations. We attribute the superior performances of our
method to the design of the DC module, which enables the
modeling of spatial, short-range, and long-range temporal
correspondences.

In particular, we also compare the efficiency of our
method with most existing mirror detection methods. Ta-
ble 3 shows the quantitative results in the number of net-
work parameters and FPS. Our model has significantly
fewer network parameters and runs much faster than the
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Image GateNet [48] DeepLabV3 [5] Sc-Cor [10] HFAN [32] GlassNet [21] PMDNet [22] VCNet [36] Ours Ground Truth

Figure 7. Visual comparison between the proposed VMD-Net and selected state-of-the-art methods from relevant fields.

Methods IoU" Accuracy" F�" MAE#
GateNet [48] 0.429 0.851 0.665 0.153
MINet [29] 0.412 0.854 0.676 0.148

PCSA [13] 0.193 0.803 0.464 0.198

DeepLabV3 [5] 0.481 0.846 0.681 0.157
PSPNet [47] 0.464 0.850 0.665 0.152
OCRNet [44] 0.394 0.786 0.640 0.175

TVSD [6] 0.480 0.875 0.746 0.125
STICT [26] 0.164 0.809 0.530 0.198
Sc-Cor [10] 0.512 0.863 0.696 0.137

HFAN [32] 0.459 0.876 0.706 0.124

GlassNet [21] 0.552 0.864 0.718 0.137

MirrorNet [42] 0.505 0.855 0.681 0.145
PMDNet [22] 0.532 0.872 0.749 0.128
VCNet [36] 0.539 0.877 0.749 0.123

Ours 0.567 0.895 0.787 0.105

Table 2. Quantitative comparison between the proposed VMD-
Net and 14 state-of-the-art methods from relevant fields. The best
results are shown in bold.

state-of-the-art image-based mirror detection method, VC-
Net [36]. Specifically, our model has ⇠5 times fewer net-
work parameters and runs ⇠18⇥ faster than VCNet [36].
Furthermore, our model outperforms VCNet [36] by a large
margin. These results demonstrate the superior practicality
and suitability of our model for the VMD problem.

Methods Params. (M) # FPS " F� "
MirrorNet [42] 121.77 1.16 0.681
PMDNet [22] 147.66 1.28 0.749
VCNet [36] 333.17 0.89 0.749

Ours 62.24 17.06 0.787

Table 3. Quantitative comparison on the performance and effi-
ciency between existing mirror detection methods and our method
for VMD. All models are trained/tested on the proposed VMD-D
dataset, on a single RTX 3090 GPU.

5.3. Ablation Study

We have conducted ablation experiments to verify the ef-
fectiveness of our design. First, we replace the proposed DC
module with a convolution layer and restrict the network to
take a single image as input to form the image-based base-
line (“I-Base”) for comparison. We then modify I-Base to
take three images as input as our video-based baseline (“V-
Base”). Our method (“Ours”) is V-Base with the full DC
module (i.e., DC with its first stage and its second stage).
To test the effectiveness of each stage in the proposed DC
module, we also construct two ablated models, which re-
move the first stage (“Ours w/o DC 1st”) or the second stage
(“Ours w/o DC 2nd”) in the proposed DC module. Note
that for “Ours w/o DC 1st” ablated model, since the sec-
ond stage of the DC module requires intermediate predic-
tion maps Pt, Pt+1, Pn to compute the reverse attention, we
directly concatenate the low-level features Flow with high-
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Ablation IoU" Accuracy" F�" MAE#
I-Base 0.424 0.854 0.686 0.146
V-Base 0.446 0.866 0.719 0.134

Ours w/o DC 1st 0.524 0.876 0.743 0.124
Ours w/o DC 2nd 0.533 0.878 0.736 0.122
Ours (Isame only) 0.525 0.871 0.740 0.123
Ours (Iadj only) 0.539 0.876 0.745 0.124
Ours 0.567 0.895 0.787 0.105

Table 4. Ablation Study. “Ours (Isame only)” / “Ours (Iadj only)”
is the ablation model that takes three same/adjacent image frames
as input, respectively. DC 1st and DC 2nd are the first and the
second stage of the DC module, respectively.

level features Fhigh, and then forward them to a decoder to
predict Pt, Pt+1, Pn without computing intra-frame corre-
spondences and short-term inter-frame correspondences.

Table 4 shows the performances of different ablated
models. As shown in the last row, our final proposed net-
work with the full DC module outperforms other baselines
on all metrics. In particular, even the ablated models with
only a single-stage DC module (3rd row and 4th row) can
perform better than the baseline networks without the full
DC module (“I-Base” and “V-Base”). This indicates the
importance of correspondence learning for the VMD task.
Also, the effective combination of the two stages in the
DC module (“Ours”) can boost the overall performance
compared with the single-stage DC module. This shows
that learning “dual” correspondences outperforms learning
“sole” correspondences in our network.

To further investigate the role of different types of cor-
respondences in our network, we replace the input images
(i.e., two adjacent frames and one randomly selected frame)
with three adjacent frames (Iadj only) or three video frames
from the same frame (Isame only). The “Iadj only” model
focuses on short-term temporal correspondences while the
“Isame only” model can only learn intra-frame correspon-
dences, due to their limited input information. The results
are listed in the last three rows and show that our method,
which exploits intra-frame as well as both short-term and
long-term temporal correspondences, outperforms these ab-
lated models. Figure 8 shows the visual results of differ-
ent ablated models. Our method with sufficient learning of
spatial and temporal correspondences can locate the mirrors
precisely in both frames. In particular, the results in the last
row show that our method can still detect the mirrors by ex-
ploiting long-range temporal correspondences even though
intra-frame correspondences are missing in the image.

Image I-Base V-Base Ours Ground Truth

Figure 8. Visual comparison of different ablated models.

6. Conclucsion

In this paper, we have investigated the video mirror
detection (VMD) problem. To the best of our knowl-
edge, we are the first to address the VMD problem from
a deep-learning-based perspective. We have constructed the
first large-scale video mirror dataset (VMD-D). It contains
14,988 image frames from 269 videos with corresponding
masks. We have also proposed a novel network, called
VMD-Net, to leverage both intra-frame and inter-frame cor-
respondences for video mirror detection. Experimental re-
sults show that our VMD-Net outperforms state-of-the-art
methods from relevant tasks on our VMD-D dataset.

Our method does have limitations. Figure 9 shows that
our method tends to produce results with coarse bound-
aries. Unlike existing image-based mirror detection meth-
ods [22, 36], which often explicitly adopt edge supervision
in their network training, our method does not leverage such
auxiliary information since we do not plan to focus this in-
cremental cue in this first work for VMD. As a future work,
we are working on improving our method by leveraging ad-
ditional information like boundaries to help detect mirrors
more precisely in videos.

Image Ours Ground Truth

Figure 9. Failure cases. Our method may not be good at boundary
extraction, due to the lack of explicit supervision of edges.
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[19] Philipp Krähenbühl and Vladlen Koltun. Efficient infer-
ence in fully connected crfs with gaussian edge potentials.
NeurIPS, 24, 2011. 2

[20] Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai, and
James M Rehg. Video segmentation by tracking many figure-
ground segments. In ICCV, pages 2192–2199, 2013. 3, 4

[21] Jiaying Lin, Zebang He, and Rynson WH Lau. Rich context
aggregation with reflection prior for glass surface detection.
In CVPR, pages 13415–13424, 2021. 6, 7

[22] Jiaying Lin, Guodong Wang, and Rynson W. H. Lau. Pro-
gressive mirror detection. In CVPR, 2020. 1, 2, 3, 4, 5, 6, 7,
8

[23] Zhihui Lin, Tianyu Yang, Maomao Li, Ziyu Wang, Chun
Yuan, Wenhao Jiang, and Wei Liu. Swem: Towards real-
time video object segmentation with sequential weighted
expectation-maximization. In CVPR, pages 1362–1372,
2022. 3

[24] Yong Liu, Ran Yu, Jiahao Wang, Xinyuan Zhao, Yitong
Wang, Yansong Tang, and Yujiu Yang. Global spectral filter
memory network for video object segmentation. In ECCV,
pages 648–665. Springer, 2022. 3

[25] Yong Liu, Ran Yu, Fei Yin, Xinyuan Zhao, Wei Zhao, Wei-
hao Xia, and Yujiu Yang. Learning quality-aware dynamic
memory for video object segmentation. In European Con-
ference on Computer Vision, pages 468–486. Springer, 2022.
3

[26] Xiao Lu, Yihong Cao, Sheng Liu, Chengjiang Long, Zipei
Chen, Xuanyu Zhou, Yimin Yang, and Chunxia Xiao. Video
shadow detection via spatio-temporal interpolation consis-
tency training. In CVPR, pages 3116–3125, 2022. 6, 7

[27] Haiyang Mei, Bo Dong, Wen Dong, Pieter Peers, Xin Yang,
Qiang Zhang, and Xiaopeng Wei. Depth-aware mirror seg-
mentation. In CVPR, pages 3044–3053, 2021. 2

[28] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmenta-
tion of moving objects by long term video analysis. IEEE
transactions on pattern analysis and machine intelligence,
36(6):1187–1200, 2013. 3, 4

[29] Youwei Pang, Xiaoqi Zhao, Lihe Zhang, and Huchuan Lu.
Multi-scale interactive network for salient object detection.
In CVPR, pages 9413–9422, 2020. 3, 6, 7

[30] Anestis Papazoglou and Vittorio Ferrari. Fast object segmen-
tation in unconstrained video. In ICCV, pages 1777–1784,
2013. 3

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

9117



Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
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