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Abstract

Scalable deep Super-Resolution (SR) models are in-
creasingly in demand, whose memory can be customized
and tuned to the computational recourse of the platform.
The existing dynamic scalable SR methods are not memory-
friendly enough because multi-scale models have to be
saved with a fixed size for each model. Inspired by the suc-
cess of Lottery Tickets Hypothesis (LTH) on image classi-
fication, we explore the existence of unstructured scalable
SR deep models, that is, we find gradual shrinkage sub-
networks of extreme sparsity named winning tickets. In this
paper, we propose a Memory-friendly Scalable SR frame-
work (MSSR). The advantage is that only a single scalable
model covers multiple SR models with different sizes, in-
stead of reloading SR models of different sizes. Concretely,
MSSR consists of the forward and backward stages, the for-
mer for model compression and the latter for model expan-
sion. In the forward stage, we take advantage of LTH with
rewinding weights to progressively shrink the SR model and
the pruning-out masks that form nested sets. Moreover,
stochastic self-distillation (SSD) is conducted to boost the
performance of sub-networks. By stochastically selecting
multiple depths, the current model inputs the selected fea-
tures into the corresponding parts in the larger model and
improves the performance of the current model based on
the feedback results of the larger model. In the backward
stage, the smaller SR model could be expanded by recov-
ering and fine-tuning the pruned parameters according to
the pruning-out masks obtained in the forward. Extensive
experiments show the effectiveness of MMSR. The smallest-
scale sub-network could achieve the sparsity of 94% and
outperforms the compared lightweight SR methods.
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Figure 1. The flowchart of scalable SR network. S n and S w

denote the neurons and the neural connections (weights) of the

simplest subnetwork; M n and M w denote the intermediate neu-

rons and neural connections; Cur n and Cur w denote the specific

neurons and neural connections belonging to the current subnet-

work. Free n denotes the pruning-out neurons. The final model

(with 100% recovered parameters) reaches the original size. The

scalable model is adjustable to the memory resource allocation.

1. Introduction

Single image super-resolution (SISR) aims to reconstruct

a high-resolution (HR) image from the corresponding low-

resolution (LR) one. With the rising of deep learning, deep

SR methods have made incredible progress. However, the

existing SR models mostly require computational and mem-

ory resources, so they do not favor resource-limited devices

such as mobile phones, robotics, and some edge devices.

The lightweight SR methods are attracting more at-

tention for better application to resource-limited devices.

The existing lightweight SR methods mainly focus on de-

signing compact architectures [17, 20] with a fixed size,

such as multi-scale pyramid [20], multiple-level receptive

fields [17, 18], and recursive learning [19]. However, most

lightweight SR models with fixed sizes are not flexible in

applications. If one model does not match the resources of

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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the platform, it has to be retrained by compression methods

to match the resources and then reloaded onto the devices.

The urgent demand to customize models based on de-

ployment resources is increasing. Dynamic neural networks

for SR [14, 22] are proposed to adjust the network architec-

ture according to different computational resources. The

existing dynamic deep SR models often explore dynamic

depth or width [22, 26], but they either require large mem-

ory resources or are not convenient for users to wait for re-

training another SR model. The former leads to saving the

multi-scale SR models of different sizes and the latter leads

to retraining the model before being reused again. The lim-

itation lies in that they are not memory-friendly. In many

edge-device SR applications, the devices may be scalable,

that is, their memories may be small in the beginning and

be expanded later. Thus, we discuss two issues in this pa-

per: 1) how to make a scalable lightweight model for the

multi-scale computational recourse. 2) how to make the

lightweight model expand to a larger-size model for better

performance if the computational recourse is increased.

As for the first issue, inspired by the success of Lottery

Ticket Hypothesis [10] which points out that there could ex-

ist a properly pruned sub-network named winning tickets to

achieve comparable performance against the original dense

network in model compression of classification, it is used

to find the sub-network for SR. We are the first to study the

existence of scalable winning tickets for SR. Iterative prun-

ing and rewinding weights in LTH are beneficial to the scal-

able lightweight SR model. Iterative pruning may compress

the SR model according to an arbitrary size. It is observed

in [24] that the winning tickets are related to an insufficient

DNN, and rewinding LTH outperforms the original LTH.

That is, the initial weights in LTH are replaced with the T-

iteration weights during pruning and fine-tuning. The scal-

able deep SR model is shown in Fig. 1.

As for the second issue, the scalable SR model can cus-

tomize parameters to adapt to different memory resources

rather than load or offload different models for different de-

vices. In other words, during real applications, there will be

only one simple model to be employed for inference whose

size is decided by the computational resource.

In this paper, we propose a memory-friendly scalable

deep SR model (MSSR) via rewinding LTH. We use the

rewinding LTH [10] to generate our unstructured scalable

mask. MSSR is backtracking and contains forward and

backward stages. The former focuses on model compres-

sion by rewinding LTH with iterative pruning and fine-

tuning, and the latter focuses on iterative model expansion

until it goes back to its original size. Multi-scale winning

tickets together with the pruning-out masks are obtained by

rewinding LTH in the forward stage with the decrease in the

number of parameters. The pruning-out masks are nested.

In order to make the compressed SR model not degrade sig-

nificantly, stochastic self-distillation (SSD) is used to im-

prove the representation of the small-scale SR model, and

knowledge is transferred from the last-scale model to the

current scale model. In the backward stage, the smallest

model is expanded gradually to the model with the original

size with the expanded mask.

The main contributions of this work are three-fold:

• A memory-friendly scalable dynamic SR lightweight

model via rewinding LTH is proposed. MSSR is

re-configurable and switchable to sub-networks with

different sizes according to on-device resource con-

straints on the fly.

• MSSR is backtracking, which contains forward and

backward stages. Multi-scale winning tickets form

nested masks for the multi-scale models. SSD is con-

ducted by replacing the features in randomly selected

layers between Teacher and Student to improve the

performance of the scalable SR lightweight models.

• Extensive experiments demonstrate that MSSR can

generalize to different SR models as well as state-of-

the-art attention-based models, ENLCN [1].

2. Related work

2.1. Lightweight Deep Learning-based SR

SISR aims to generate a high-resolution image from the

low-resolution version. Recently, efficient and lightweight

SISR networks have attracted increasing interest in the com-

puter vision community. The lightweight SR methods con-

sist of static and dynamic neural networks for SR. The

earlier lightweight SR methods mainly focus on the static

network structure design. IDN [18] utilizes group con-

volution and combined the local long and short path fea-

tures effectively. CARN [19] utilizes a recursive cascading

mechanism for learning multi-level feature representations.

IMDN [17] introduces information multi-distillation blocks

for extracting hierarchical features. FALSR [6] applies neu-

ral architecture search for efficient network design automat-

ically. LatticeNet [27] designs a lattice block to combine

two residual blocks adaptively. However, the aforemen-

tioned lightweight SR models need elaborate designs.

Recently, dynamic lightweight SR models are demanded

increasingly whose size is adjustable according to different

computational resources. DS-Net [22] makes the width of

the SR model adjustable, and IKS [26] makes the sparsity

of individual kernels adjustable. However, they require sav-

ing lightweight SR models with different shrinkage sizes,

which is not convenient for users to offload the old model

and then load a new one. Our method uses a scalable SR

model adjustable to the changing computational recourse to

avoid the loading and offloading models.
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Figure 2. The architecture of memory-friendly scalable deep SR model (MSSR). It contains two stages: the forward stage for model

compression and the backward stage for model expansion. In the forward stage, the original SR network is firstly processed by IMP to

obtain winning tickets and the pruning-out mask 𝐿𝑀1, and then the winning tickets are processed by SSD and the lightweight subnetwork

is obtained. So do the other gradual shrinkage sub-networks and {𝐿𝑀𝑖} forms the nested sets. In the backward stage, according to the

pruning-out masks, the smaller lightweight SR model is gradually expanded and finely tuned to obtain a larger lightweight SR model.

2.2. Pruning and Lottery Ticket Hypothesis

Model pruning is to prune away the unimportant connec-

tions (parameters) [21] in the neural network which trades

off between the model size and performance. The exist-

ing pruning methods can be classified into unstructured [6,

13, 21] and structured methods [15, 25, 39]. The structured

pruning methods remove the substructures of the model,

such as channels, filters, and layers, while the unstructured

pruning methods are magnitude-based, where the weights

are removed below the threshold. However, magnitude-

based pruning methods are not hardware-friendly and com-

putationally efficient. Lottery Ticket Hypothesis (LTH) [10]

opened a pandora’s box of immense possibilities in the field

of pruning and sparse models. It assumes that there ex-

ist sparse sub-networks independently training from scratch

that can match the performance of dense networks. Some

literatures discuss the effectiveness of pruning, fine-tuning

[24], and rewinding weights [29] for LTH.

LTH has been widely applied in image classification [9–

12, 30, 32, 33], natural language processing [5, 28, 29, 34],

and so on. However, few works discuss the existence of

LTH in the deep model for image restoration. We are the

first to investigate the existence of scalable winning tickets

for lightweight deep SR models.

3. Method

3.1. Overview of MSSR

In this section, we introduce the memory-friendly scal-

able SR model which is an all-in-one model with multi-

scale SR models sharing a model. As shown in Fig. 2, our

MSSR consists of two stages: the forward stage for model

compression, and the backward stage for model expansion.

In the forward stage, we use rewinding LTH (RLTH) to

iteratively shrink a dense SR model to obtain a sub-network

with the small size not significantly scarifying the perfor-

mance. During pruning by LTH each time, we treat the cur-

rent lightweight SR model as Student and its last ancestor

lightweight SR model as Teacher, and conduct stochastic

self-distillation between Teacher and Student. In Fig. 2, the

dark-blue block denotes the winning tickets, and the white

block denotes the pruning part. We also record the mask

of pruning part and use a matrix with “1” to represent the

pruning-out weights and with “0” for others. It is observed

that the masks are nested and the initial mask is continu-

ously contained in the later mask. In the backward stage,

we iteratively expand the lightweight sub-network accord-

ing to the saved nested masks. The most lightweight net-

work marked by 1 is expanded iteratively to the gradual less
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lightweight network, the expanding order is shown as “1”,

“1-2 ”, “1-2-3”, and “1-2-3-4”.

3.2. The Forward Stage: Model Compression

The forward streamline is shown in Fig. 3. Let a net-

work denoted by 𝑓 (𝜃0; 𝑥) and the pruned masks which

form the “nested sets” denoted by 𝐿𝑀 = {}, where 𝜃0 de-

notes the initial weights. The flowchart shows a whole pro-

cess in an iteration for shrinking a model and it contains

three components: SR model pre-train, IMP with rewind-

ing weights, and SSD. Firstly, an SR network is trained to

reach a steady state, and its weights are named the first non-

pruning weights 𝜃. After that, Iterative Magnitude Prun-

ing is conducted on the SR model 𝜃, and the weights below

the pre-set threshold are pruned out which forms a pruning

mask 𝑚 ∈ {0, 1}𝑛. Following [24], we rewind the remain-

ing weights to their values in 𝜃, i.e., 𝜃′ = 𝜃 � 𝑚. Then, we

retrain the pruned weights 𝜃′ by SSD arriving at 𝜃. So do

the next more lightweight SR model with the model weights

𝜃 as the initiation.

LTH with Rewinding for SR. Benefiting from LTHs,

we implement iterative magnitude pruning with rewinding

to gradually shrink the SR model. The motivation lies in

the controllability and flexibility of LTH. We can shrink

the model arbitrarily by LTH, which favors the scalable

lightweight SR model.

We mainly consider two issues: the model pruning pro-

cess and the pruning rules. The pruning process corre-

sponds to the process of gradually shrinking the model, and

the pruning methods need to meet the following rules: 1)

the amount of prune-out parameters is arbitrarily adjustable;

2) the model is shrunk gradually, which leads to the nested

sets and the larger model contains its smaller descendant.

LTH fits well with the needs of our scalable mask generator

and the appropriate use of its task settings to implement the

model compression process, in particular discarding its over

parameterization, a feature that is not suitable for intensive

prediction tasks.

IMP is proven to be effective for LTH. In [24], it is

proved that weight rewinding is better than the original

weight initiation. That is, unpruned weights are rewound

to their values from 𝑇-iteration training and retrained from

there using the original training schedule.

Compared with one-shot magnitude pruning (OMP)

which reaches the goal model at one time, IMP does not

shrink a model to reach the pre-set size at one time but

shrinks a model with several iterations and the model size

is evenly decreased at each iteration. Let the network be

pruned for 𝑇 times and be expected to discard 𝑝% of the

parameters. The weights/parameters of the network are rep-

resented by 𝜔 ∈ R𝑛 and the pruning mask by 𝑚 ∈ {0, 1}𝑛
where 𝑛 represents all the capacity of the network.

Weight rewinding does not initiate the model with the

Initial
Pre-train

Trained
IMP

Pruned
mask

PrunedRe-trained

0θ mθ

θ̂ mθ

Figure 3. The flowchart of the whole process of IMP and SSD.

The initial model 𝜃0 is pre-trained to obtain a stable model 𝜃. IMP

is implemented on 𝜃 and the winning ticket (sub-network) is ob-

tained. The sub-network is initiated by 𝜃 � 𝑚 and is processed by

SSD for the better model 𝜃.

original initiation weights 𝜃0 � 𝑚, but with the 𝑡-iteration

𝜃𝑡 � 𝑚 where 0 < 𝑡 ≤ 𝑇 , resulting in weights 𝜃𝑡 and the

network function 𝑓 (𝑥; 𝜃𝑡 � 𝑚). We highlight that the orig-

inal LTH always chooses 𝜃0 as dense model, while in this

work we choose 𝜃𝑡 from the last pruning iteration. After

“Pruning” and “Rewinding and Retraining” , 𝜃 = 𝜃 is up-

dated and the mask at the 𝑡-th iteration is obtained which

is denoted as 𝐿𝑀𝑡 = 𝐿𝑀𝑡−1
⋃

{𝑚}. In other words, the

mask 𝐿𝑀𝑡 at 𝑡-th iteration is contained in the mask 𝐿𝑀𝑡−1
at (𝑡−1)-th. “Pruning” and “Rewinding and Retraining” are

repeated until the model reaches the end condition, which is

the iteration steps 𝑇 or target sparsity 𝑝.

Stochastic Self-distillation for SR. In the forward stage,

due to the progressive shrinking of the SR model, it is def-

initely difficult to maintain the performance as same as the

original model. Especially, when only 1% of the parameters

are kept, most magnitude-pruning methods do not work.

In order to mitigate the degradation of lightweight SR

models, we adopt self-distillation [36] to boost the per-

formance of the pruned model. Unlike the existing self-

distillation which uses the function of features obtained by

the model at previous iterations such as the average and

summation function, we introduce attribution analysis to

self-distillation. We randomly select several layers in Stu-

dent, and the feature maps of selected layers replace the

counterpart of Teacher, which is named Stochastic self-

distillation (SSD). Concretely, the current lightweight SR

model is regarded as the student network (Student), and

its last ancestor network is regarded as the teacher network

(Teacher), and Student is obtained by pruning Teacher. SSD

is conducted between Teacher and Student. Student is the

pruned model of Teacher. Let 𝑋 and 𝑌 denote the network

input and ground truth, respectively.

The architecture of SSD is shown in Fig. 4, which con-

tains two streamlines: Teacher and Student. The knowl-

edge in feature maps is transferred from Teacher to Student.
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Figure 4. The flowchart of SSD. Student is the sub-network by

pruning Teacher. Several layers of Student are selected randomly.

The feature maps in a selected layer replace the counterpart of

Teacher which outputs the SR result, and so do other selected lay-

ers. The total loss is the summation of the knowledge distillation

loss 𝐿𝑠𝑘𝑑 and the fidelity loss 𝐿1.

If Student contains 𝑑 layers, at each-iteration distillation,

𝑠 layers randomly are selected. In realization, a one-hot

vector is randomly generated, named Switch Vector, with a

length of 𝑑 in each training, 𝛼 ∈ {0, 1}𝑑 . If the element is

equal to 1 in 𝛼, the feature maps in the layer corresponding

to this position are selected, and are named Lucky feature

maps. Then, Lucky feature maps in the selected layers to

replace the counterparts of Teacher.

In details, Student firstly is trained for a stable SR model.

After that, SSD is conducted. At each iteration, Switch vec-

tor is dynamically generated, which is formulated as:

DC = [𝛼1, 𝛼2, ..., 𝛼𝑑] , (1)

where 𝛼𝑖 denotes the 𝑖-th element corresponding to the 𝑖-
th layer and 𝑑 is the layer number in Student. Then, lucky

feature maps of Student are selected according to 𝛼𝑖 , and

they are formulated as:

LF =
[
𝑓 𝑠𝛼1 , 𝑓

𝑠
𝛼2 , ..., 𝑓

𝑠
𝛼𝑑

]
, (2)

where 𝑓 𝑠𝛼 denotes the feature obtained from Student. Note

that all elements in Switch Vector are independent and iden-

tically distributed.

Lucky feature maps replace the counterpart of Teacher

each time, and the corresponding output of new Teacher

is denoted by 𝑌 𝑡
𝛼𝑖

, and the corresponding weights of new

Teacher are denoted by 𝜃𝑡 , which is formulated as:{
𝑌 𝑡
𝛼𝑖

= 𝐹 (𝜃𝑡 ; 𝑥, 𝑓 𝑠𝛼𝑖
), 𝑖 = 1, ..., 𝑑,

LY =
[
𝑌 𝑡
𝛼1 , 𝑌

𝑡
𝛼2 , ..., 𝑌

𝑡
𝛼𝑑

]
,

(3)

where 𝐿𝑌 denotes the set of SR outputs, 𝑌 𝑡
𝛼 is the SSD out-

put of lucky maps, 𝑓 𝑠𝛼. All the outputs between Student and

Teacher are supervised by HR image 𝑌 . The knowledge of

Teacher takes more rationality to be distilled into Student.

Therefore, the total loss function utilized to train the SR
model consists of the supervised loss 𝐿1 and self-distillation

Algorithm 1 Memory-friendly scalable lightweight frame-

work for image SR.

Data: HR and LR image datasets: 𝐷ℎ𝑟 , 𝐷𝑙𝑟

Input: Dense network with randomly initial weights:

𝑓 (𝜃0), pruning rounds: 𝑇 , and pruning target rate: 𝑝
Output: Scalable lightweight SR model

1: /* The forward stage: model compression */
2: Initializing: Pruned mask 𝑚 = {1}𝑛, lottery mask pool

𝐿𝑀 = {𝑚} and epochs of each training 𝑁
3: Pre-training: Train network for 𝑁 epochs

𝑓 (𝜃0; 𝑥) −→ 𝑓 (𝜃; 𝑥)
4: while 𝑖 < 𝑇 − 1 do
5: Prune bottom 𝑝% × 1

𝑇 of 𝑚 � 𝜃 and update 𝑚;

6: Re-train the pruned sub-network 𝜃′ = 𝑚 � 𝜃 for 𝑁
epochs 𝑓 (𝜃′; 𝑥) −→ 𝑓 (𝜃; 𝑥) with 𝑆𝑆𝐷 (𝜃, 𝜃′; 𝑥);

7: Update mask pool 𝐿𝑀 = 𝐿𝑀
⋃

{𝑚} and weights

𝜃 = 𝜃;

8: 𝑖 ←− 𝑖 + 1;

9: end while
10: Generate the sparse sub-network matching the target

sparsity, and the mask pool 𝐿𝑀;

11: /* The backward stage: model expansion */
12: Initializing: Current step 𝑡 = 𝑇 and sparsest

sub-network 𝜃𝑇 = 𝜃
13: while 𝑡 > 1 do
14: Calculate the grad mask 𝑚 = 𝐿𝑀𝑡−1 − 𝐿𝑀𝑡 to

determine the trainable weights;

15: Fine-tune/re-train the trainable weights for 𝑁
epochs 𝑓 (𝜃𝑡 ; 𝑥) −→ 𝑓 (𝜃′𝑡 ; 𝑥);

16: Update 𝜃𝑡 = 𝜃′𝑡 ;
17: 𝑡 ←− 𝑡 − 1;

18: end while

loss 𝐿𝑠𝑘𝑑 , which is formulated as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿1 + 𝜆𝐿𝑠𝑘𝑑 =
��𝑌 𝑠 − 𝑌

��
1 +

𝜆

𝑑

𝑑∑
𝑖=1

𝛼𝑖
��𝑌 𝑡

𝛼𝑖
− 𝑌

��
1 ,

(4)

where 𝜆 denotes the regularization parameter, which is em-

pirically set as 0.1 in our experiments. During inference,

the SR model 𝜃𝑝 can be customized for various resources

according to different sparsity 𝑝. After the network train-

ing, a lottery mask pool can be built for the backward stage.

3.3. The Backward Stage: Model Expansion

Our intention is to obtain a scalable network that can

deploy according to customized memory resources. In

this subsection, we introduce how to gradually recover a

lightweight SR model, which is a backtracking process of

IMP. We start from the most lightweight SR model and end

with the original SR model. Corresponding to gradually

shrinking the SR model with LTH, we solve two issues in
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IMP vs. OMP

Network Sparsity (% pruned)
Figure 5. Comparisons of IMP and OMP on various famous SR

methods, which are evaluated on Set14 for 4× SR. The perfor-

mance of the baseline dense network, the sparse sub-network ob-

tained by IMP, as well as the sub-network obtained by OMP. The

sub-network is with only 20% of the weights.

the model expansion: iterative model expansion (IME) and

the expansion rule, the former refers to the requirement of

the IME process and the latter refers to the requirement of

the learning rule.

Let’s focus on an expansion from the 𝑡-th lightweight

model to the (𝑡-1)-th lightweight model where 𝑡 comes from

the definition in the forward stage. The larger 𝑡 is, the

smaller model is. During IMP, we obtain two pruned-out

masks corresponding to the 𝑡-th and (𝑡-1)-th lightweight

models, denoted by LM𝑡 and LM𝑡−1, respectively. Their

difference represents the expanded positions, i.e., 𝑚 =
𝐿𝑀𝑡−1 − 𝐿𝑀𝑡 . Without changing the 𝑡-th model, we re-

cover the weights according to the mask 𝑚. After that, we

fine-tune the recovered model and obtain the (𝑡-1)-th model.

So do the next model expansion. The detailed procedure is

described in Algorithm 1.

4. Experiments
4.1. Datasets

DIV2K [2] is adopted to train the SR model, which is

a high-quality natural scene dataset widely used for image

SR tasks. The whole dataset includes 800 training images

and 100 validation images totally with abundant texture and

contents. The bicubic degraded LR images are synthesized

following the previous works [17, 37]. Besides, the trained

models are evaluated on four public SR benchmark datasets:

Set5 [4], Set14 [35], B100 [3], and Urban100 [16].

Table 1. Ablation studies about the iterative magnitude pruning

(IMP) and the stochastic self-distillation learning (SSD). All these

models are validated on Set14 for 4× image SR.

EDSR baseline IMP (LTH) IMP rewinding SSD Sparsity PSNR

� × × × 0% 28.55

� � × × 94% 27.66

� × � × 94% 28.12

� × � � 94% 28.33

Table 2. The performance of the sparse sub-network pruned by

IMP-SSD on Set14 for 2×, 3×, 4× image SR.

Scale Model Sparsity PSNR (dB) Params

2×
EDSR baseline 0% 33.63 1370K

EDSR IMP 94% 32.88 85K

EDSR IMP-SSD 94% 33.09 (+0.21) 85K

3×
EDSR baseline 0% 30.30 1558K

EDSR IMP 94% 29.73 97K

EDSR IMP-SSD 94% 29.92 (+0.19) 97K

4×
EDSR baseline 0% 28.55 1518K

EDSR IMP 94% 28.12 95K

EDSR IMP-SSD 94% 28.33 (+0.21) 95K

4.2. Implementation and Training Details
For training the proposed SR model, 48 × 48 image

patches with RGB channels are cropped as the model in-

put. The data augmentation is implemented by random flip-

ping and rotation. The Adam optimizer with 𝛽1 = 0.9,

𝛽2 = 0.999 is utilized to train the models. Besides, the

mini-batch size is set to 16. The learning rate is initialized

as 2𝑒-4. The pruned weights can be determined by IMP-

SSD each 300 epochs and the same setting is adopted in the

model expansion stage. We use PyTorch to implement our

models with a GTX TITAN GPU.

Objective criteria, i.e., peak signal-to-noise ratio (PSNR)

and structural similarity index (SSIM) are adopted to eval-

uate the model performance. The two metrics are both cal-

culated on the Y channel of the YCbCr space.

4.3. Ablation Study
Next, we mainly give a detailed analysis of the proposed

lottery-ticket stochastic self-distillation scalable framework

(IMP-SSD) for image SR. We adopt EDSR [23] as the back-

bone network to implement our experiments.

IMP 𝑣𝑠. OMP. To verify the superiority of IMP over

OMP on the compression task of image SR, we conduct

IMP and OMP on the forward stage of our method instanti-

ated with three popular SR methods: EDSR [23], RDN [38],

and RCAN [37]. As shown in Fig. 5, when the pruned net-

work reaches a very small model size, usually as the sparsity

of the model is higher than 80%, where the sparsity means

the ratio of the pruning-out parameters, IMP does not signif-

icantly scarify the SR performance while OMP degrades a

lot. Especially, it obtains 27.66dB in PSNR with 94% spar-

sity as shown in Table 1. OMP is obviously unable to make

the RCAN model reach a very small model similar to that

by IMP. That’s why we pick IMP as our pruning algorithm,

which demonstrates the advantages of LTH once again.

Effectiveness of IMP-SSD. To demonstrate the effec-

tiveness of IMP-SSD, we employ EDSR as the backbone

and compare MSSR with EDSR. As shown in Table 2, our

IMP-SSD method can not only compress a model to a very
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Table 3. Comparison of the quantitative results of average PSNR/SSIM with state-of-the-art efficient SR models.

Scale Method Params
Set5 Set14 B100 Urban100 DIV2K valid

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

4×

EDSR (CVPRW’ 2017) 1518K 32.09 / 0.8937 28.55 / 0.7806 27.54 / 0.7348 25.97 / 0.7819 30.38 / 0.8364
EDSR IMP-SSD 88% (ours) 190K 31.89 / 0.8911 28.44 / 0.7777 27.46 / 0.7326 25.71 / 0.7743 30.25 / 0.8336
EDSR IMP-SSD 94% (ours) 95K 31.74 / 0.8879 28.33 / 0.7749 27.39 / 0.7297 25.48 / 0.7657 30.12 / 0.8303
RCAN (ECCV’ 2018) 15592K 32.19 / 0.8950 28.63 / 0.7819 27.57 / 0.7355 26.21 / 0.7888 30.40 / 0.8331
RCAN IMP-SSD 88% (ours) 1949K 32.30 / 0.8963 28.72 / 0.7844 27.63 / 0.7379 26.32 / 0.7932 30.53 / 0.8396
RCAN IMP-SSD 94% (ours) 974K 32.02 / 0.8924 28.49 / 0.7788 27.51 / 0.7334 25.87 / 0.7800 30.30 / 0.8347
RDN (CVPR’ 2018) 5579K 32.24 / 0.8965 28.71 / 0.7841 27.64 / 0.7384 26.31 / 0.7928 30.55 / 0.8406
RDN IMP-SSD 88% (ours) 697K 31.87 / 0.8902 28.38 / 0.7766 27.42 / 0.7313 25.53 / 0.7681 30.15 / 0.8315
RDN IMP-SSD 97% (ours) 174K 31.36 / 0.8826 28.10 / 0.7695 27.23 / 0.7249 25.09 / 0.3116 29.86 / 0.8243
ENLCN (AAAI’ 2022) 1536K 32.14 / 0.8939 28.59 / 0.7812 27.56 / 0.7352 26.05 / 0.7845 30.36 / 0.8360
ENLCN IMP-SSD 88% (ours) 192K 31.97 / 0.8911 28.47 / 0.7731 27.47 / 0.7325 25.77 / 0.7313 30.22 / 0.8326
ENLCN IMP-SSD 97% (ours) 48K 31.41 / 0.8825 28.09 / 0.7690 27.24 / 0.7250 25.15 / 0.3133 29.84 / 0.8239

Table 4. Comparison between the performance (PSNR) of the

sparse sub-networks via IMP-SSD and the performance of the

sparse sub-networks of the scalable network (SCL) for 4× SR.

Prune (%)
Set5 Set14 B100 Urban100

IMP-SSD SCL IMP-SSD SCL IMP-SSD SCL IMP-SSD SCL
0 % 32.09 31.94 28.55 28.53 27.54 27.53 25.97 25.89
50 % 32.05 31.96 28.57 28.51 27.55 27.50 25.99 25.79
75 % 32.03 31.92 28.53 28.46 27.52 27.48 25.90 25.73
88 % 31.89 31.82 28.44 28.40 27.46 27.43 25.71 25.61
94 % 31.74 31.74 28.33 28.33 27.39 27.39 25.48 25.48

small size but also mitigate the degradation in performance

for different magnification factors (2×, 3×, and 4×). Be-

sides, the results in Table 1 also illustrate that IMP-SSD fur-

ther improves the PSNR to 28.33dB with the similar spar-

sity. Therefore, our method has significant effects on scal-

able model compression.

IMP-SSD SR 𝑣𝑠. Scalable SR. In order to show the ef-

fectiveness of MSSR, we compare the scalable lightweight

SR model obtained in the backward stage with the middle

result by IMP-SSD in the forward stage. We use EDSR

as the backbone, and make the comparison in five degrees

of sparsities: 0%, 50%, 75%, 88%, 94%. In Table 4, IMP-

SSD generates five pruned SR models corresponding to five

sparsities, while scalable SR only has one model. With the

increase of sparsity, the SR performance decreases, but the

gap between two neighbor sparsities is not more than 0.2dB.

Thus, the SR scalable model makes sense. As shown in Ta-

ble 4, it is observed that scalable SR achieves comparable

results to IMP-SSD on four datasets: Set5, Set14, B100, and

Urban100. It shows that our method uses only one scalable

model that can reach the level of the separately lightweight

SR models at different sparse degrees. Therefore, MSSR is

memory-friendly.

4.4. Instantiating with Other SR methods

To demonstrate the effectiveness of the proposed scal-

able lightweight framework (MSSR), we integrate it with

four representative SR methods: EDSR [23], RCAN [37],

RDN [38], and ENLCN [1]. All these SR models are re-

Table 5. The analysis about IMP-SSD on different methods for 4×
image SR validated on Set14.

Model

PSNR Sparsity
0% 50% 75% 88% 94% 97% 99%

EDSR IMP-SSD 28.55 28.57 28.53 28.44 28.33 28.05 20.36

RDN IMP-SSD 28.70 28.68 28.52 28.38 28.23 28.10 27.46

RCAN IMP-SSD 28.63 28.77 28.73 28.72 28.49 28.15 27.68

ENLCN IMP-SSD 28.59 28.62 28.56 28.47 28.30 28.09 27.60

trained under the same experimental settings. We show the

results in Table 3. It shows that our method is universally

applicable to the existing SR methods. Compared with the

original models with the magnification factor 4×, under the

sparsities of 88% and 94%/97%, the maximum decreases

of IMP-SSD instantiated with EDSR, RCAN, RDN, and

ENLCN are (0.2dB, −0.1dB, 0.8dB, 0.3dB), and (0.5dB,

0.4dB, 0.9dB, 0.9dB), respectively. Note that, in RCAN,

IMP-SSD is better than its original model. We guess that

SSD could improve the SR results.

In Table 5, we give more comparisons of the SR per-

formance with more different sparsity. It shows that all

methods except EDSR, with the decrease of the model size,

our method degrades gradually with not much range of

decrease, their ranges are 1.3dB, 1dB, 0.9dB in RCAN,

RDN, ENLCN, respectively. EDSR degrades significantly

by 8.2dB with the sparsity of 99%.

4.5. Comparison with State-of-the-art

To validate the effectiveness of MSSR, we com-

pare our approach (IMP-SSD) with several state-of-the-

art lightweight SR methods: SRCNN [7], FSRCNN [8],

CARN [19], and ESRN [31]. Note that IMP-SSD obtains

the gradually shrinking lightweight SR models. The com-

parison results for 2×, 3×, and 4× magnification factors are

shown in Table 6. PSNR and SSIM are adopted as metrics

to evaluate image quality by convention.

It shows that our IMP-SSD achieves the best results in

terms of the coordination of parameters and performance.
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Table 6. Comparison of the quantitative results of average PSNR/SSIM with state-of-the-art efficient SR models.

Scale Method Params
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

2×

SRCNN [7] (ECCV’ 2014) 57K 36.66 / 0.9542 32.42 / 0.9063 31.36 / 0.8879 29.50 / 0.8946
FSRCNN [8] (ECCV’ 2016) 12K 37.00 / 0.9558 32.63 / 0.9088 31.53 / 0.8920 29.88 / 0.9020
CARN [19] (ECCV’ 2018) 415K 37.68 / 0.9594 33.27 / 0.9149 31.97 / 0.8969 31.18 / 0.9186
ESRN [31] (AAAI’ 2020) 324K 37.85 / 0.9600 33.42 / 0.9161 32.10 / 0.8987 31.79 / 0.9248
EDSR [23] (CVPRW’ 2017) 1370K 37.98 / 0.9605 33.63 / 0.9180 32.17 / 0.8996 32.08 / 0.9280
EDSR IMP-SSD 88% (ours) 171K 37.82 / 0.9599 33.44 / 0.9167 32.09 / 0.8987 31.69 / 0.9244
EDSR IMP-SSD 94% (ours) 85K 37.51 / 0.9586 33.09 / 0.9137 31.88 / 0.8960 30.94 / 0.9163

3×

SRCNN [7] (ECCV’ 2014) 57K 32.75 / 0.9090 29.28 / 0.8209 28.41 / 0.7863 26.24 / 0.7989
FSRCNN [8] (ECCV’ 2016) 12K 33.16 / 0.9140 29.43 / 0.8242 28.53 / 0.7910 26.43 / 0.8080
CARN [19] (ECCV’ 2018) 415K 34.00 / 0.9240 30.07 / 0.8368 28.92 / 0.8007 27.53 / 0.8379
ESRN [31] (AAAI’ 2020) 324K 34.23 / 0.9262 30.27 / 0.8400 29.03 / 0.8039 27.95 / 0.8481
EDSR [23] (CVPRW’ 2017) 1558K 34.37 / 0.9267 30.31 / 0.8409 29.07 / 0.8043 28.05 / 0.8506
EDSR IMP-SSD 88% (ours) 195K 34.15 / 0.9252 30.20 / 0.8392 29.00 / 0.8028 27.81 / 0.8449
EDSR IMP-SSD 94% (ours) 97K 33.74 / 0.9216 29.92 / 0.8340 28.81 / 0.7976 27.16 / 0.8298

4×

SRCNN [7] (ECCV’ 2014) 57K 30.48 / 0.8628 27.49 / 0.7503 26.90 / 0.7101 24.52 / 0.7221
FSRCNN [8] (ECCV’ 2016) 12K 30.71 / 0.8657 27.59 / 0.7535 26.98 / 0.7150 24.62 / 0.7280
CARN [19] (ECCV’ 2018) 415K 31.78 / 0.8894 28.39 / 0.7762 27.42 / 0.7303 25.56 / 0.7674
ESRN [31] (AAAI’ 2020) 324K 31.99 / 0.8919 28.49 / 0.7779 27.50 / 0.7331 25.87 / 0.7782
EDSR [23] (CVPRW’ 2017) 1518K 32.09 / 0.8937 28.55 / 0.7806 27.54 / 0.7348 25.97 / 0.7819
EDSR IMP-SSD 88% (ours) 190K 31.89 / 0.8911 28.44 / 0.7777 27.46 / 0.7326 25.71 / 0.7743
EDSR IMP-SSD 94% (ours) 95K 31.74 / 0.8879 28.33 / 0.7749 27.39 /0.7297 25.48 / 0.7657

img075 in U100 HR Bicubic SRCNN [7](57k)

FSRCNN [8](12k) EDSR [23](1518k) EDSR 88%(190k)
(ours)

EDSR 94%(95k)
(ours)

Figure 6. Visual comparisons of IMP-SSD with other lightweight

SR models on Urban100 for 4× SR.

In particular, compared with other lightweight SR mod-

els such as CARN and ESRN, our IMP-SSD in EDSR

with the sparsity of 88% achieves comparable performance

while our model size is about half or two-thirds of those.

Compared with smaller SR models such as SRCNN and

FSRCNN, IMP-SSD with the sparsity of 94%, IMP-SSD

achieves significant gains in PSNR by at least 0.4dB, 0.3dB,

0.4dB for 2×, 3×, and 4× SR, respectively. The same con-

clusion is made in SSIM. Furthermore, compared with the

original EDSR, IMP-SSD makes the SR model shrink to

reach a very small size but their SR performance does not

degrade very much. Compared with the original EDSR, the

maximum decreases are 0.4dB, 0.2dB, 0.2dB for IMP-SSD

with the sparsity of 88% and 0.6dB, 0.9dB, 0.5dB for IMP-

SSD with the sparsity of 94%, respectively. It demonstrates

that our method is effective on scalable SR.

We also give the comparison of our method in visual ef-

fect in Fig. 6. It is observed that our method achieves a

better visual effect than other lightweight SR models even

with larger model sparsity.

5. Conclusions

In this paper, we propose a novel memory-friendly scal-

able lightweight framework (MSSR) with rewinding LTH,

which can be deployed on arbitrary computational resources

according to customization. MSSR is backtracking and in-

cludes two stages: the forward stage for model compres-

sion and the backward for model expansion. For the first

time, LTH with rewinding weights is implemented to ex-

plore the winning tickets of deep SR models. We use IMP

to gradually shrink the SR model and not only obtain the

scalable lightweight model but also obtain the pruning-out

masks which form the nested sets. In order to improve the

performance of the shrinking model, SSD is conducted. Un-

like the traditional SD, we replace the feature maps on sev-

eral layers of Teacher with the counterparts of Students and

conduct distillation. In the backward stage, we gradually re-

cover the lightweight SR models depending on the pruning-

out masks and then fine-tune the current model. We make

instantiation on several state-of-the-art SR models. The ex-

tensive experimental results are effective.
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