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Abstract

The ability to quickly learn a new task with minimal in-

struction – known as few-shot learning – is a central as-

pect of intelligent agents. Classical few-shot benchmarks

make use of few-shot samples from a single modality, but

such samples may not be sufficient to characterize an entire

concept class. In contrast, humans use cross-modal infor-

mation to learn new concepts efficiently. In this work, we

demonstrate that one can indeed build a better visual dog

classifier by reading about dogs and listening to them bark.

To do so, we exploit the fact that recent multimodal founda-

tion models such as CLIP are inherently cross-modal, map-

ping different modalities to the same representation space.

Specifically, we propose a simple cross-modal adaptation
approach that learns from few-shot examples spanning dif-

ferent modalities. By repurposing class names as additional

one-shot training samples, we achieve SOTA results with an

embarrassingly simple linear classifier for vision-language

adaptation. Furthermore, we show that our approach can

benefit existing methods such as prefix tuning, adapters, and

classifier ensembling. Finally, to explore other modalities

beyond vision and language, we construct the first (to our

knowledge) audiovisual few-shot benchmark and use cross-

modal training to improve the performance of both image

and audio classification. Project site at link.

1. Introduction
Learning with minimal instruction is a hallmark of hu-

man intelligence [86, 91, 98], and is often studied under the
guise of few-shot learning. In the context of few-shot visual
classification [18, 20, 29, 46, 79, 82], a classifier is first pre-
trained on a set of base classes to learn a good feature repre-
sentation and then adapted or finetuned on a small amount
of novel class data. However, such few-shot setups often
face an inherent ambiguity – if the training image contains a
golden retriever wearing a hat, how does the learner know if

*Equal contribution.

Figure 1. Human perception is internally cross-modal. When
we perceive from one modality (such as vision), the same neu-
rons will be triggered in our cerebral cortex as if we are perceiv-
ing the object from other modalities (such as language and au-
dio) [24, 67, 70]. This phenomenon grants us a strong ability to
learn from a few examples with cross-modal information [52, 67].
In this work, we propose to leverage cross-modality to adapt mul-
timodal models (such as CLIP [81] and AudioCLIP [27]), that en-
code different modalities to the same representation space.

the task is to find dogs, golden retrievers, or even
hats? On the other hand, humans have little trouble under-
standing and even generalizing from as few as one example.
How so?

We argue that humans make use of multimodal sig-
nals and representations (Figure 1) when learning concepts.
For example, verbal language has been shown to help tod-
dlers better recognize visual objects given just a few ex-
amples [42, 90]. Indeed, there exists ample evidence from
neuroscience suggesting that cognitive representations are
inherently multimodal. For instance, visual images of a
person evoke the same neurons as the textual strings of the
person’s name [80] and even audio clips of that person talk-
ing [70]. Even for infants as young as 1-5 months old, there
is a strong correspondence between auditory-visual [52] as
well as visual-tactile signals [67]. Such cross-modal or
inter-modal representations are fundamental to the human
perceptual-cognitive system, allowing us to understand new
concepts even with few examples [24].
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Cross-modal adaptation (our approach). In this paper,
we demonstrate that cross-modal understanding of different
modalities (such as image-text or image-audio) can improve
the performance of individual modalities. That is, reading
about dogs and listening to them bark can help build a better
visual classifier for them! To do so, we present a remark-
ably simple strategy for cross-modal few-shot adaptation:
we treat examples from different modalities as additional

few-shot examples. For example, given the “1-shot” task
of learning a dog classifier, we treat both the textual dog
label and the single visual image as training examples for
learning a (visual) dog classifier. Learning is straightfor-
ward when using frozen textual and visual encoders, such
as CLIP [81], that map different modalities to the same rep-
resentational space. In essence, we have converted the “n-
shot” problem to a “(n+1)-shot” problem (Figure 2)! We
demonstrate that this basic strategy produces SOTA results
across the board with a simple linear classifier, and can be
applied to existing finetuning methods [100,111,113] or ad-
ditional modalities (e.g. audio).

Why does it work? From one perspective, it may not
be surprising that cross-modal adaptation improves accu-
racy, since it takes advantage of additional training exam-
ples that are “hidden” in the problem definition, e.g. a
label name [104] or an annotation policy [68] for each
class. However, our experiments demonstrate that multi-
modal cues are often complementary since they capture dif-
ferent aspects of the underlying concept; a dog label paired
with a single visual example is often more performant than
two images! For example, Figure 3 demonstrates a one-
shot example where the target concept is ambiguous, but
becomes clear once we add information from other modali-
ties like language and sound.

Multimodal adaptation (prior art). In contrast to our
cross-modal approach, most prior works simply follow the
popular practice of finetuning uni-modal foundation mod-
els, such as large vision [12, 31, 32] or language mod-
els [8, 17, 62]. For example, CoOp [113] and other prompt-
ing methods [63,112,114] finetune CLIP via prefix tuning to
replace hand-engineered prompts such as "a photo of
a {cls}" with learned word tokens. Similarly, inspired
by parameter-efficient tuning of language models [39],
adapter-based methods [21,111] finetune CLIP by inserting
lightweight multi-layer-perceptrons (MLPs). However, we
aim to study the fundamental question of how to finetune
multi-modal (as opposed to uni-modal) models. A crucial
difference between prior art and ours is the use of textual in-
formation, as all existing methods [41,100,111,113] repur-
pose additional text features as classifier weights instead of
training samples. We demonstrate in this paper that cross-
modal adaptation is not only more performant but can also
benefit prior uni-modal approaches.

Problem setup. We begin by replicating the existing

Figure 2. Adding additional modalities helps few-shot learn-
ing. Adding textual labels to a 2-shot cat-vs-dog classification
task leads to better test performance (by turning the problem into
a 3-shot cross-modal task!). We visualize cross-modal CLIP [21]
features (projection to 2D with principal component analysis) and
the resulting classifier learned from them, and observe a large shift
in the decision boundary. See Figure 5 for more examples.

evaluation protocol of other works [81, 111, 113] on few-
shot adaptation of vision-language models, and report per-
formance on 11 diverse downstream datasets. We produce
state-of-the-art accuracy with an embarrassingly simple lin-
ear classifier that has access to additional “hidden” train-
ing examples in the form of textual labels, resulting in a
system that is far more lightweight than prior art. Interest-
ingly, we show that existing approaches [100,111,113], de-
spite already repurposing text features as classifier weights,
can still benefit from cross-modal learning. Finally, we ex-
tend our work to the audio domain by taking advantage of
AudioCLIP [27] that maps audio to the same frozen CLIP
representation space. We construct the first (to our knowl-
edge) cross-modal few-shot learning benchmark with audio

by intersecting ImageNet [15] and the ESC-50 audio clas-
sification dataset [77]. We show that cross-modal audiovi-
sual learning helps for both downstream image and audio
classification; in summary, one can train better dog image
classifiers by listening to them bark!

2. Related Works
Webly-supervised pre-training. Learning founda-

tion models [5] from large-scale web data is becoming
a predominant paradigm in AI. In NLP, models such as
BERT [17] and GPT-3 [8] are pre-trained on a massive
web text corpus with language-modeling objectives and
can be transferred to a wide range of downstream tasks,
even without explicit supervised finetuning [61, 94]. Self-
supervision [11, 12, 32] is also a trending topic in the vi-
sion community, and recent methods [26, 31] demonstrate
even stronger visual representations than fully-supervised
pre-trained ones such as on ImageNet [15].

Multimodal foundation models. Recently, founda-
tion models have shifted towards a multimodal supervi-
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Figure 3. Cross-modality reduces the ambiguity of few-shot
learning. Classic (uni-modal) few-shot learning is often un-

derspecified. Even for binary classification, when given only a
single image per class (left), it is unclear whether the target class
is the animal, the hat, or the background scene. Adding an extra
modality, such as text or audio, helps clarify the problem setup
(right). Notably, language usually comes “for free” in classifica-
tion datasets in the form of a textual label per class.

sion paradigm. For visual representation learning, early
works transform web image captions into structured out-
puts for supervised learning, such as multi-label targets [47]
or visual n-grams [56]. More recently, CLIP [81] and
ALIGN [43] propose a simple contrastive-based approach
to embed images and captions into the same representa-
tion space, and demonstrate impressive “zero-shot” perfor-
mance on downstream tasks. Follow-up works enhance
multimodal pre-training by incorporating generative-based
objectives [2, 57, 106], consistency regularization [60, 69],
stronger visual priors [107], phrase-grounding tasks [58,
109], and audiovisual information through videos [27]. In
this work, we focus on adapting CLIP [81] and Audio-
CLIP [27] for few-shot classification because contrastive-
based multimodal models are stronger classifiers [2].
Adopting other multimodal models [2, 106] or adapting to
tasks other than classification [92, 109] can be interesting
future directions.

Adaptation of foundation models. As multimodal pre-
trained models have excelled at classic vision tasks [81,
109], there has been surging interest in developing more
efficient adaptation methods. However, we observe that
most of the trending techniques are built upon successful
recipes crafted for uni-modal foundation models. For ex-
ample, CLIP [81] adopts linear probing [12,31,32,109] and
full-finetuning [25, 31, 48, 99, 101, 109] when transferring
to downstream tasks. Prompt adaptation of CLIP [63, 81,
105, 112, 114] is motivated by the success of prefix-tuning
for language models [16,22,30,45,61,78,84,85,89]. Simi-
larly, CLIP-Adapter [21] and Tip-Adapter [111] are inspired
by parameter-efficient finetuning methods [39, 44, 110] that
optimize lightweight MLPs while freezing the encoder. Yet,
all aforementioned methods including WiSE-FT [100] use

Figure 4. Uni-modal (left) vs. cross-modal adaptation (right).
Prior work [21, 100, 111, 113] performs uni-modal adaptation by
calculating the loss over a single modality. Cross-modal adapta-
tion makes use of additional training samples from other modali-
ties, exploiting pre-trained encoders that map different modalities
to the same representation space. We show that cross-modal learn-
ing can also improve prior art and even extends to audio modalities
with AudioCLIP [27].

the other modality, e.g. textual labels, as classifier weights

and still calculate a uni-modal softmax loss on the few-shot
images. We instead show that incorporating other modali-
ties as training samples is far more effective.

Few-shot classification. Prior successful few-shot
learning methods leverage meta learning [20, 82], metric
learning [4, 91, 95], transfer learning [29, 79], and trans-
ductive learning [18, 46]. These classic algorithms usually
assume a large meta-training set for pre-training the net-
work, and then evaluate on multiple episodes of few-shot
train (support) and test (query) sets. In this work, we instead
follow the new evaluation protocol implemented by recent
works on few-shot adaptation with CLIP [81, 111, 113]: (1)
the meta-training phase is replaced with pre-trained CLIP
models, and (2) the test sets are the official test splits of
each dataset (thus not few-shot). Notably, none of the
prior works [111, 113] we compare to in this paper per-
form optimization with test set samples, and we follow
this practice to ensure a fair comparison. We leave semi-
supervised [97] or transductive finetuning [18, 40] tech-
niques as future work.

Cross-modal machine learning. Inspired by cross-
modal human cognition [9, 49, 70], cross-modal learn-
ing [68, 104] is a subfield of multimodal machine learn-
ing [1,3,10,38,54,59,64,73,74,88,108] that aims to use data
from additional modalities to improve a uni-modal task.
Cross-modal learning does not require instance-wise align-
ment; for example, existing algorithms [68,104] can benefit
from class-level descriptions as opposed to image-level cap-
tions. In this work, we propose a lightweight cross-modal
learning method by treating data from other modalities as
additional training samples. Furthermore, we encourage fu-
ture works to embrace cross-modal few-shot learning as op-
posed to the underspecified uni-modal setup (Figure 3).
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3. Cross-Modal Adaptation
In this section, we mathematically formalize our ap-

proach to cross-modal few-shot learning.
Uni-modal learning. We begin by reviewing standard

uni-modal few-shot classification, which learns a classifier
from a small dataset of (xi, yi) pairs and pre-trained feature
encoder �(·):

Luni�modal =
X

i

H(yi,�(xi)) (1)

where H is typically the softmax loss

H(y, f) = � log
⇣
p(y|f)

⌘
= � log

⇣ ewy·f
P

y0 ewy0 ·f

⌘
. (2)

Our notation separates the feature extractor � from the final
class weights wy , since the former is typically pre-trained
on a massive source dataset and the latter is trained on
the few-shot target dataset. However, sometimes the rep-
resentation � can also be finetuned on the few-shot dataset
(as we explore in our experiments). Importantly, both the
class weights and feature extractor must live in the same N -
dimensional space in order to compute their inner product:

wy,�(·) 2 RN . (3)

Though we focus on classification, class models could be
learned via other losses (such as centroid prototypes [91]).

Cross-modal learning. Our extension to multiple
modalities is staightforward; we assume each training ex-
ample is accompanied by a discrete label m denoting its
modality:

(xi, yi) ! (xi, yi,mi), xi 2 Xmi , mi 2 M. (4)

For example, one may define the set of modalities to be
M = {visual, language} or {visual, audio} (Figure 4). We
can then define an associated loss:

Lcross�modal =
X

i

H(yi,�mi(xi)), (5)

where we crucially assume access to modality-specific fea-
ture encoders �m for m 2 M . While the individual data-
points xi may come from different modalities with different
dimensions, our formulation requires that the encoders map
all modalities to the same fixed-dimensional space.

wy,�m(·) 2 RN . (6)

Note that this requirement is satisfied by many multimodal
foundation models such as CLIP [81] and ALIGN [43] since
they map different modalities into the same N -dimensional

embedding. We provide training pseudocode for vision-
language adaptation (section 3) in algorithm 1 for clarity.

Inference: The learned classifier can produce a label
prediction for a test example x from any modality m 2 M :

ŷ = argmax
y0

wy0 · �m(x). (7)

This means we can use the same classifier to classify differ-
ent test modalities (e.g. images and audio clips). In this pa-
per, we mainly evaluate on a single modality (like images)
to emphasize that multimodality helps unimodality.

Cross-modal ensembles. We now show that cross-
modal learning produces classifiers that are ensembles of
modality-specific classifiers, exposing a connection to re-
lated approaches for ensembling (such as WiSE-FT [100]).
We begin by appealing to the well-known Representer The-

orem [87], which shows that optimally-trained classifiers
can be represented as linear combinations of their training
samples. In the case of a cross-modal linear probe, weights
for class y must be a weighted combination of all i training
features, across all modalities:

wy =
X

i

↵iy�mi(xi) =
X

m2M

wm
y , where

wm
y =

X

{i:mi=m}

↵iy�m(xi). (8)

Linear classification via cross-modal adaptation solves for
all weights ↵iy jointly, so as to minimize the empirical risk
(or training loss). In contrast, prior art optimizes for image-
specific ↵iy’s independently of the text-specific ↵iy’s, lin-
early combining them with a single global ↵ (as in WiSE-
FT [100]) or via text-based classifier initialization [21,111].
Our analysis suggests that the joint optimization enabled by
cross-modal learning may help other adaptation methods,
as our experiments do in fact show.

Extensions. Although we focus on uni-modal inference
tasks (e.g. image classification), the above formulation al-
lows the learned classifier to be applied to multimodal test
sets, such as classifying videos by training on image and au-
dio, and then ensembling predictions across the two modal-
ities with Equation 7. Or, one can extend image classifi-
cation by providing additional data such as captions and/or
attributes. We leave these scenarios as future work. Finally,
just as one can optimize uni-modal losses (1) by finetuning
the encoder �, one can similarly finetune modality-specific
encoders �m in the cross-modal setting (5). We explore this
finetuning method in the next section.

4. Vision-Language Adaptation
We now explore our cross-modal formulation for a par-

ticular multimodal setting. Many prior works [68, 104, 111,
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113] explore the intersection of vision and language, and
thus that is our initial focus. Interestingly, the influen-
tial “zero-shot” and “few-shot” evaluation protocols intro-
duced by prior work [81, 102] can be mapped to our cross-
modal setting, with one crucial difference; the textual la-
bel of each class can be treated as an explicit training sam-
ple (xi, yi,mi). From this perspective, “zero-shot” learning
may be more naturally thought of as one-shot cross-modal
learning that learns a few-shot model on text and then infers
with it on images.

Few-shot evaluation protocol. To ensure a fair com-
parison, we strictly follow the protocol of CoOp [113] by
reporting test performance on 11 public image datasets (Ta-
ble 5), with ResNet50 [33] as the image encoder back-
bone. For maximal reproducibility, we use CoOp’s dataset
splits [113] and the three-fold few-shot train sets sampled
with the same random seeds. We adopt the given test split
of each dataset as the test set. Some prior works [63, 111]
apparently use the large-scale test set to tune hyperparam-
eters for few-shot learning; we instead exercise due dili-
gence by tuning hyperparameters (such as the learning rate,
weight decay, and early stopping) on the given few-shot val-
idation set with min(n, 4) examples, where n is the number
of training shots. We include PyTorch-style pseudocode (al-
gorithm 1) and hyperparameter details (section 8).

Cross-modal adaptation outperforms SOTA. Table 1
shows the effectiveness of our proposal: we surpass all prior
art with an embarrassingly simple linear classifier that re-
quires significantly less training time than other carefully-
crafted algorithms. In addition, partial finetuning of the last
attentional pooling layer from �image sets the new SOTA.
To ensure a fair comparison, we augment the class names
into sentences using hand-engineered templates selected by
Tip-Adapter [111] (Table 5) and follow their practice to ini-
tialize the linear layer with text features. Furthermore, we
perform minimal image augmentation with a center crop
plus a flipped view instead of random crops as in prior
art [111, 113]. As such, we can pre-extract features before
training the classifier, leading to significantly less training
time as shown in Table 8. We also show that our method
can benefit from both image and text augmentation in Ta-
ble 6. In the appendix, we provide more ablations on clas-
sifier initialization (Table 12), partial finetuning (Table 13),
and ViT-based backbone (Table 14). Per-dataset results are
also in appendix Table 10.

Why does cross-modal learning help? As stated ear-
lier, one reason that cross-modal learning helps is that it
turns the original n-shot problem to an (n + 1)-shot one.
However, Table 1 shows that 1-shot cross-modal linear
probing outperforms the 2-shot results of most prior meth-
ods. This suggests that training samples from other modal-
ities tend to contain complementary cues [68, 100, 104].
One can loosely observe this in Figure 2 and Figure 5,

Algorithm 1: An example of PyTorch-style pseu-
docode for cross-modal (vision-language) adapta-
tion. Notably, the image and text samples do not
need to be paired and one may sample different
numbers of them per batch. For simplicity, we
omit linear classifier initialization and early stop-
ping with validation performance. One can also
disable the corresponding grad field of the en-
coders for partial finetuning, or pre-extract interme-
diate features to speed up training.
# w: linear layer initialized with text features
# T: temperature scaling (default is 100)
for in iteration:

# Randomly sample images and texts
im, im labels = image loader.next()
tx, tx labels = text loader.next()

# Extract image and text features
im f = image encoder(im)
tx f = text encoder(tx)

# Concatenate then L2 normalize
features = cat((im f, tx f))
features = normalize(features)
labels = cat((im labels, tx labels))

# Compute softmax (cross entropy) loss
logits = w(features)
loss = cross entropy loss(logits / T, labels)
loss.backward()

# Update linear layer
update(w.params)
# [optional] Update (partial or full) encoders
update(image encoder.params)
update(text encoder.params)

Figure 5. Additional PCA projection plots for random pairs
of classes in ImageNet [15]. Adding one-shot text as training
samples can oftentimes aggressively shift the decision boundary.

whereby visual and text examples lie in slightly different
parts of the embedding space (indicating the potential to
aggressively shape the final decision boundary). In fact,
WiSE-FT [100] is inspired by similar reasons to ensemble
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Method
Number of shots

Train speed
1 2 4 8 16

Zero-Shot CLIP (58.8) - - - - - -
Linear Probing 36.7 47.6 57.2 65.0 71.1 <1min
WiSE-FT [100] 59.1 61.8 65.3 68.4 71.6 <1min

CoOp [113] 59.6 62.3 66.8 69.9 73.4 14hr
ProGrad [114] 62.6 64.9 68.5 71.4 74.0 17hr

Tip-Adapter [111] 64.5 66.7 69.7 72.5 75.8 5min
Tip-Adapter† [111] 63.3 65.9 69.0 72.2 75.1 5min

Cross-Modal Linear Probing 64.1 67.0 70.3 73.0 76.0 <1min
Cross-Modal Partial Finetuning 64.7 67.2 70.5 73.6 77.1 <3min

Table 1. Comparison to SOTA using the CoOp [113] protocol,
which reports top-1 accuracy across 11 test sets in Table 5. We in-
clude per-dataset results and standard deviation in section 9. For a
fair comparison, we reuse the same few-shot visual samples and
hand-engineered text prompts used by Tip-Adapter [111]. The
original Tip-Adapter searches over hyperparameters (e.g. early
stopping) on the large-scale test set, which may not be realistic for
few-shot scenarios. Instead, we rerun their codebase and early-
stop on a few-shot validation set (as we do), denoted by †. We
reproduce WiSE-FT in our codebase since the original work does
not provide few-shot results. In summary, by incorporating one-
shot text samples into our training set, a simple cross-modal linear
probe already outperforms all prior methods across all shots. Ad-
ditionally, partial finetuning further improves performance, espe-
cially for 8 and 16 shots. Finally, our methods are faster to train
than prior work, sometimes significantly (full report in Table 8).

Method Number of shots

1 2 4 8 16

Linear Probing 36.7 47.6 57.2 65.0 71.1
Cross-Modal Linear Probing 64.1 67.0 70.3 73.0 76.0

� 27.4 19.4 13.1 8.0 4.9
WiSE-FT [100] 59.1 61.8 65.3 68.4 71.6

Cross-Modal WiSE-FT 63.8 66.4 69.0 71.7 74.1
� 4.7 4.6 3.7 3.3 2.5

CoOp [113] 59.6 62.3 66.8 69.9 73.4
Cross-Modal Prompting 62.0 64.9 68.6 71.4 74.0

� 2.4 2.6 1.8 1.5 0.6
Tip-Adapter† [111] 63.3 65.9 69.0 72.2 75.1

Cross-Modal Adapter 64.4 67.6 70.8 73.4 75.9
� 1.1 1.7 1.8 1.2 0.8

Table 2. Cross-modal adaptation improves existing methods.
We follow the same protocol as Table 1, reporting the delta accu-
racy between uni-modal and cross-modal variants of various state-
of-the-art methods. The consistent boost suggests that cross-modal
training is orthogonal to techniques for uni-modal adaptation, such
as prompting [113], adapter [39], and robust finetuning [100].

the uni-modal visual classifier with a “zero-shot” (one-shot-
text) classifier (in the linear probing case). However, Equa-
tion 8 shows that cross-modal adaptation can also be seen as
jointly learning an ensemble, while WiSE-FT [100] learns
the visual classifier independently of the text classifier. This
suggests that other adaptation methods may benefit from
cross-modal learning, as we show next.

Cross-modal adaptation helps prior art (Table 2).
This includes prompting (CoOp [113]), adapters (Tip-
Adapter [111]), and robust-finetuning (WiSE-FT [100]).
We see a large improvement in the low-data regime (1
and 2 shots). Notably, we do not need to tune any meth-
ods, and simply reuse the reported hyperparameters. For
prompting, we follow CoOp [113] to optimize 16 con-
tinuous tokens with the same training setting. For the
Adapter model, we follow the same 2-layer MLP architec-
ture of CLIP-Adapter [21] with the given residual ratio of
0.2; we outperform Tip-Adapter without relying on their
training-free initialization of MLP. For WiSE-FT, we adopt
the given ratio (0.5) to post-hoc ensemble the learned and
the zero-shot classifiers. Overall, our experiments suggest
that cross-modal adaptation is consistently effective, and
should likely be a baseline moving forward given its ease-
of-implementation (algorithm 1). For example, instead of
separately benchmarking on “zero-shot” (one-shot-text) and
few-shot-vision, a cross-modal linear prob would suffice to
evaluate representations of a multimodal model.

5. Vision-Audio Adaptation
We now explore cross-modal adaption for other modal-

ities such as audio. We pose the following question: can
one learn a better dog visual classifier by listening to a dog
barking? To examine this question, we curate the first au-
diovisual benchmark that supports few-shot classification of
both image and audio.

Our ImageNet-ESC benchmark.1 We construct our
audiovisual benchmark by intersecting two of the most pop-
ular image and audio datasets: ImageNet [15] with 1000
types of objects and ESC-50 [77] with 50 types of envi-
ronmental sounds (including animal, nature, human activ-
ity, domestic, and urban noises). We use the class names
of the two datasets for class matching. For each class in
ESC-50, we check whether there is a corresponding Im-
ageNet class that may produce this type of sound. In
this process, we observe that the audio-to-object match-
ing can sometimes be one-to-many. For example, the
clock-alarm class in ESC-50 can be mapped to ei-
ther digital clock or analog clock in ImageNet;
the dog (barking) class in ESC-50 can be matched to
any of the 120 dog species. In such scenarios, we ran-
domly match the classes, e.g. clock alarm to digital
clock and dog to otterhound. Also, we find that
some audio classes loosely match with some visual objects,
such as drinking-sipping to water bottle and
pouring-water to water jug. As such, we create
two versions of the dataset: (1) ImageNet-ESC-27, which
represents the maximal intersection consisting of all loose
matches, and (2) ImageNet-ESC-19, a subset of the for-

1Download instructions can be found in our codebase.
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mer version consisting of more accurate matches. The final
matches are shown in appendix Table 9.

Few-shot evaluation protocol. We use five-fold few-
shot splits sampled from ImageNet, with each split divided
into half for training and validation. Test performance is
recorded on the official ImageNet validation set of the cor-
responding classes. We adopt the predefined five folds of
ESC-50, where each fold contains 8 samples per class. We
construct 5 splits from ESC-50 by selecting one fold for
training and validation, and record test performance on the
other 4 folds. We report averaged performance over 25 runs
(since we have 5 random splits for each modality). To keep
consistent with our vision-language experiments, we adopt
a uni-modal validation and test set and leave cross-modal
testing for future work.

Audio encoding. We use AudioCLIP [27] with an ES-
ResNeXT backbone [28] as the audio encoder �audio. Be-
cause AudioCLIP is trained on a large-scale video dataset
(AudioSet [23]) while freezing the pre-trained CLIP text
and image encoder, it produces audio embeddings in the
same representation space. While AudioCLIP is pretrained
on a sizable amount of data, we note that it does not come
close to matching the scale of CLIP pretraining [27, 81].
Thus, it does not perform favorably compared to the SOTA
for downstream “zero-shot” audio (i.e. one-shot text) clas-
sification tasks [27]. However, scaling up audio pretraining
is orthogonal to our investigation.

Audio improves image classification. Table 3 shows
that adding a random one-shot-audio improves upon naive
image-only linear probing, especially in an extremely low-
shot setting. This reaffirms Figure 3’s hypothesis that cross-
modality can reduce the ambiguity of the uni-modal few-
shot setup; in other words, one can learn a better image clas-
sifier by listening to object sounds. One exception is the 4-
shot performance on ImageNet-ESC-27, where adding au-
dio does not help. We posit that (1) loosely-matched classes
can result in noisier training data, and (2) the audio repre-
sentations are not as robust due to smaller-scale pretraining.
This suggests that cross-modal adaptation is less effective
when representations are not aligned well or insufficiently
trained. Nevertheless, under most scenarios, cross-modal
adaptation helps. Table 15 shows that adding the language
modality (i.e. label names) can significantly boost the per-
formance, which is expected because our benchmark is cu-
rated with textual information. For all experiments, we fol-
low an identical procedure to vision-language experiments
in section 3 and provide details in appendix section 8.

Vision improves audio classification. We additionally
evaluate the reverse task – whether adding a random one-
shot image sample for downstream audio classification can
improve upon audio-only training. Table 4 shows the re-
sults, where we see the same favorable trend. This success
concludes that our approachis modality-agnostic.

Dataset Method
Image Classification

1-shot 2-shot 4-shot

ImageNet-ESC-19
Image-Only Linear 68.0 75.7 83.1
Image-Audio Linear 69.3 76.7 83.2

ImageNet-ESC-27
Image-Only Linear 60.1 71.8 79.0
Image-Audio Linear 60.9 73.3 78.9

Table 3. Image classification results on ImageNet-ESC bench-
mark. Adding one audio shot can improve image classification
under most few-shot scenarios, even when the audio and vision
modalities are only loosely aligned.

Dataset Method
Audio Classification

1-shot 2-shot 4-shot

ImageNet-ESC-19
Audio-Only Linear 31.2 41.1 48.5
Audio-Image Linear 35.7 45.9 51.6

ImageNet-ESC-27
Audio-Only Linear 28.2 39.0 47.1

Audio-Image Linear 35.0 43.5 48.5

Table 4. Audio classification results on ImageNet-ESC bench-
mark. Similar to Table 3, adding one image shot improves few-
shot audio classification.

Dataset Classes Train Val Test Hand-crafted Prompt [111]

Caltech101 [19] 100 4,128 1,649 2,465 a photo of a {cls}.

OxfordPets [75] 37 2,944 736 3,669 a photo of a {cls}, a type of pet.

StanfordCars [50] 196 6,509 1,635 8,041 a photo of a {cls}.

Flowers102 [71] 102 4,093 1,633 2,463 a photo of a {cls}, a type of flower.

Food101 [6] 101 50,500 20,200 30,300 a photo of {cls}, a type of food.

FGVCAircraft [66] 100 3,334 3,333 3,333 a photo of a {cls}, a type of aircraft.

SUN397 [103] 397 15,880 3,970 19,850 a photo of a {cls}.

DTD [14] 47 2,820 1,128 1,692 {cls} texture.

EuroSAT [35] 10 13,500 5,400 8,100 a centered satellite photo of {cls}.

UCF101 [93] 101 7,639 1,898 3,783 a photo of a person doing {cls}.

ImageNet [15] 1000 1.28M N/A 50,000

itap of a {cls}.
a bad photo of the {cls}.

a origami {cls}.
a photo of the large {cls}.
a {cls} in a video game.

art of the {cls}.
a photo of the small {cls}.

Table 5. Detailed statistics of the 11 datasets. We adopt the
hand-engineered templates selected by Tip-Adapter [111] unless
otherwise stated. Note that this set of templates is identical to the
ones selected by CLIP [81] and CoOp [113], except for ImageNet.

6. Ablation Studies
We present a few selected ablation studies in this section.

For comprehensive results, please refer to section 9.
Data augmentation of text samples. Like most prior

works [81, 113], we also find that data augmentation can
improve downstream performance during vision-language
adaptation (cf. Table 1). Notably, since the class names are
included as training samples, one can explore augmentation
techniques for text (just as random cropping for images).
Besides the fixed template a photo of a {cls} and
hand-crafted templates (Table 5), we also try a template
mining strategy that does not rely on the selected dataset-
specific templates. To automatically mine for the templates,
we search among a pool of 180 templates for 21 templates
with the best zero-shot performance on the few-shot vali-
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Finetuning ImageAugment TextAugment
Number of shots

1 2 4 8 16

Linear
CenterCrop

Classname 61.8 65.3 69.0 72.0 74.9
a photo of a {cls}. 63.2 66.2 69.7 72.5 75.3

Template Mining 63.5 67.2 70.3 73.1 75.7
Hand Engineered [111] 63.7 66.7 70.3 72.9 75.5

+Flipped View Hand Engineered [111] 64.1 67.0 70.3 73.0 76.0

Partial
CenterCrop

Classname 62.5 65.7 69.3 72.9 76.2
a photo of a {cls}. 63.8 66.8 69.8 73.4 76.7

Template Mining 64.3 67.1 70.3 73.5 76.5
Hand Engineered [111] 64.6 67.2 70.2 73.7 76.9

+Flipped View Hand Engineered [111] 64.7 67.7 70.6 73.8 77.2

Table 6. Augmentation for cross-modal adaptation. We evalu-
ate the impact of selected augmentation techniques following the
same CoOp protocol as in Table 1.

dation set of each dataset. We discuss how we collect the
180 templates in appendix section 8. For image augmen-
tation, we perform standard flipping and random cropping.
We show a subset of results in Table 6, and find that all
text augmentation techniques provide a sizable boost in per-
formance. We also report comprehensive ablations in ap-
pendix Table 11 and compare it to the SOTA prompting
method ProDA [63]. The salient conclusions include (1)
the performance gain from image augmentation is saturated
after more than two views, and (2) template mining can
be as competitive as a large number of 36 carefully-tuned
prompts. In fact, prompting [61, 63, 113] can be viewed
as another text augmentation technique under cross-modal
adaptation, and we leave this exploration to future work.

Test-time distribution shifts. We examine how robust
our approach is against test-time distribution shifts in Ta-
ble 7. Specifically, we follow the CoOp [113] protocol to
report the test performance of a classifier trained on the
source dataset (16-shot ImageNet) to 4 distribution-shifted
target test sets, including ImageNet-V2 [83], ImageNet-
Sketch [96], ImageNet-A [37], and ImageNet-R [36]. As
shown in Table 7, cross-modal adaptation can significantly
boost the robustness of image-only linear probing and is
competitive against baselines designed to address robust-
ness such as CoCoOp [112] and WiSE-FT [100]. Cross-
Modal adaptation also improves upon WiSE-FT [100] and
sets the new SOTA. We can conclude that language modal-
ity plays an important role in robustness, similar to how hu-
mans rely on textual cues for recognition [37].

Efficiency. As shown in Table 8, our approaches are
much more lightweight because we do not rely on deep
finetuning [112, 113] or heavy image augmentations. This
allows us to speed up training by pre-extracting features,
resulting in rather fast training speeds.

7. Discussion and Limitations
We show that cross-modal training is a lightweight

and effective approach for adapting pre-trained multimodal
models for downstream uni-modal tasks. One reason for

Method
Source Target

ImageNet -V2 -Sketch -A -R

ResNet50
Zero-Shot CLIP 58.2 51.3 33.3 21.7 56.0
Linear Probing 55.9 46.0 19.1 12.7 34.9
CoOp (M=4) 63.0 55.1 32.7 22.1 55.0

CoOp (M=16) 63.3 55.4 34.7 23.1 56.6
WiSE-FT (↵=0.5) 62.9 54.2 33.3 20.3 57.4

Cross-Modal WiSE-FT (↵=0.5) 65.2 56.6 35.6 22.6 59.5
Cross-Modal Linear Probing 64.5 55.3 33.1 20.0 56.4

ViT-B/16
Zero-Shot CLIP 66.7 60.8 46.2 47.8 74.0
Linear Probing 65.9 56.3 34.8 35.7 58.4
CoOp (M=4) 71.9 64.2 46.7 48.4 74.3

CoOp (M=16) 71.7 64.6 47.9 49.9 75.1
CoCoOp 71.0 64.1 48.8 50.6 76.2

WiSE-FT (↵=0.5) 73.0 65.2 49.1 49.8 77.6
Cross-Modal WiSE-FT (↵=0.5) 72.9 65.4 49.2 50.5 77.8

Cross-Modal Linear Probing 73.2 64.8 47.9 48.3 76.4

Table 7. Robustness under test-time distribution shifts. We
follow CoOp [113]’s protocol for evaluating the test-time perfor-
mance on variants of ImageNet. We report results with two im-
age encoders (ResNet50 and ViT-B/16), and mark the best and
second best results. Salient conclusions: (a) Cross-modal linear
probing is much more robust than its uni-modal counterpart while
being competitive to previous SOTA methods such as WiseFT and
CoOp, and (b) it can be further augmented with post-hoc modifi-
cation through WiseFT to achieve new the SOTA.

Method Iteration Time Accuracy Gain

Zero-shot CLIP [81] 0 0 60.33 0
Image-Only Linear 12k 15sec 56.44 -3.89

CoOp [113] 100k 14h 40min 62.95 +2.62
ProGrad [113] 100k 17hr 63.45 +3.12

Tip-Adapter [111] 10k 5min 65.18 +5.18
Cross-Modal Linear 12k 15sec 64.51 +4.14
Cross-Modal Partial 12k 2.5min 65.95 +5.57

Table 8. Efficiency and accuracy for different methods on
ImageNet-16-shot. All experiments are tested with batch size 32
on a single NVIDIA GeForce RTX 3090 GPU. Our approaches
take less time and achieve SOTA performance.

its effectiveness is that it naturally addresses the underspec-
ification of few-shot learning. In the context of vision-
language adaptation, one can achieve SOTA results by using
existing text labels as free training samples. In the context
of vision-audio adapation, one can learn better visual object
classifiers by listening to object sounds (and better audio
classifiers by looking at objects!). One attractive aspect of
cross-modal learning is that the learned models naturally
apply to multimodal test data, such as the classification of
videos that contain both visual and audio signals. However,
cross-modal learning is less effective when model represen-
tations are not well-aligned or insufficiently trained. Nev-
ertheless, due to its simplicity and effectiveness, we hope
cross-modal learning becomes a tool for future research on
multi-modal adaptation.

19332



References
[1] Mohamed Afham, Salman Khan, Muhammad Haris Khan,

Muzammal Naseer, and Fahad Shahbaz Khan. Rich
semantics improve few-shot learning. arXiv preprint

arXiv:2104.12709, 2021. 3
[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Men-
sch, Katie Millican, Malcolm Reynolds, et al. Flamingo: a
visual language model for few-shot learning. arXiv preprint

arXiv:2204.14198, 2022. 3
[3] Humam Alwassel, Dhruv Mahajan, Bruno Korbar, Lorenzo

Torresani, Bernard Ghanem, and Du Tran. Self-supervised
learning by cross-modal audio-video clustering. Advances

in Neural Information Processing Systems, 33:9758–9770,
2020. 3

[4] Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank
Wood, and Leonid Sigal. Improved few-shot visual clas-
sification. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 14493–
14502, 2020. 3

[5] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv

preprint arXiv:2108.07258, 2021. 2
[6] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.

Food-101–mining discriminative components with random
forests. In European conference on computer vision, pages
446–461. Springer, 2014. 7, 15, 21

[7] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101 – mining discriminative components with ran-
dom forests. In European Conference on Computer Vision,
2014. 17

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language mod-
els are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in

Neural Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc., 2020. 2

[9] Gemma Calvert, Edward Bullmore, M.J. Brammer,
Ruth Campbell, Steven Williams, Philip Mcguire, Peter
Woodruff, S.D. Iversen, and Anthony David. Activa-
tion of auditory cortex during silent lipreading. science,
276(5312), 593-596. Science (New York, N.Y.), 276:593–
6, 05 1997. 3
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