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Figure 1. Chronology reconstruction. Given timestamped Internet photos (a) of a landmark that has changed significantly over the years
(e.g., 5Pointz, NYC, the collective graffiti art project shown above), our method can reconstruct a time-varying 3D model, and render
photo-realistic images (b) with independent control of viewpoint, time (c) and illumination (d). Photos by Flickr users Ryan Brown,
DaniGMX, DJ Leekee, Diff Graff, Lee Smith, James Prochnik, Verity Rollins Photo under CC BY.

Abstract

In this work, we aim to reconstruct a time-varying 3D
model, capable of rendering photo-realistic renderings with
independent control of viewpoint, illumination, and time,
from Internet photos of large-scale landmarks. The core
challenges are twofold. First, different types of temporal
changes, such as illumination and changes to the under-
lying scene itself (such as replacing one graffiti artwork
with another) are entangled together in the imagery. Sec-
ond, scene-level temporal changes are often discrete and
sporadic over time, rather than continuous. To tackle these
problems, we propose a new scene representation equipped
with a novel temporal step function encoding method that
can model discrete scene-level content changes as piece-
wise constant functions over time. Specifically, we represent
the scene as a space-time radiance field with a per-image
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illumination embedding, where temporally-varying scene
changes are encoded using a set of learned step functions.
To facilitate our task of chronology reconstruction from In-
ternet imagery, we also collect a new dataset of four scenes
that exhibit various changes over time. We demonstrate that
our method exhibits state-of-the-art view synthesis results
on this dataset, while achieving independent control of view-
point, time, and illumination. Code and data are available
at https://zju3dv.github.io/NeuSC/.

1. Introduction

If we revisit a space we once knew during our childhood,
it might not be as we remembered it. The buildings may
have weathered, or have been newly painted, or may have
been replaced entirely. Accordingly, there is no such thing
as a single, authoritative 3D model of a scene—only a model
of how it existed at a given instant in time. For a famous
landmark, Internet photos can serve as a kind of chronicle
of that landmark’s state over time, if we could organize the
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information in those photos in a coherent way. For instance,
if we could reconstruct a time-varying 3D model, then we
could revisit the scene at any desired point in time.

In this work, we explore this problem of chronology re-
construction, revisiting the work on Scene Chronology from
nearly a decade ago [27]. As in that work, we seek to use In-
ternet photos to build a 4D model of a scene, from which we
can dial in any desired time (within the time interval where
we have photos). However, the original Scene Chronol-
ogy work was confined to reconstructing planar, rectangular
scene elements, leading to limited photo-realism. We can
now revisit this problem with powerful neural scene represen-
tations, inspired by methods such as NeRF in the Wild [26].
However, recent neural reconstruction methods designed for
Internet photos assume that the underlying scene is static,
which works well for landmarks with a high degree of per-
manence, but fails for other scenes, like New York’s Times
Square, that feature more ephemeral elements like billboards
and advertisements.

However, we find that adapting neural reconstruction
methods [26] to the chronology reconstruction problem has
many challenges, and that straightforward extensions do
not work well. For instance, augmenting a neural radiance
field (NeRF) model with an additional time input t, and fit-
ting the resulting 4D radiance field to a set of images with
timestamps yields temporally oversmoothed models, where
different scene appearances over time are blended together,
forming ghosted content; such a model underfits the tempo-
ral signal. On the other hand, applying standard positional
encoding [31] to the time input overfits the temporal sig-
nal, conflating transient appearance changes due to factors
like illumination with longer-term, sporadic changes to the
underlying scene itself.

Instead, we seek a model that can disentangle transient,
per-image changes from longer-term, scene-level changes,
and that allows for independent control of viewpoint, time,
and illumination at render-time. Based on the observation
that scene-level content changes are often sudden, abrupt
“step function”-like changes (e.g., a billboard changing from
one advertisement to another), we introduce a novel encod-
ing method for time inputs that can effectively model piece-
wise constant scene content over time, and pair this method
with a per-image illumination code that models transient
appearance changes. Accordingly, we represent 4D scene
content as a multi-layer perceptron (MLP) that stores density
and radiance at each space-time (x, y, z, t) scene point, and
takes an illumination code as a side input. The time input
t to this MLP is encoded with our proposed step function
encoding that models piecewise constant temporal changes.
When fit to a set of input images, we find that our representa-
tion can effectively factor different kinds of temporal effects,
and can produce high-quality renderings of scenes over time.

To evaluate our method, we collect a dataset of images

from Flickr and calibrate them using COLMAP, resulting
in 52K successfully registered images. These photos are
sourced from four different scenes, including dense tourist ar-
eas, graffiti meccas, and museums, building upon the datasets
used in Scene Chronology. These scenes feature a variety of
elements that change over time, including billboards, graffiti
art, and banners. Experiments on these scenes show that
our method outperforms current state-of-the-art methods and
their extensions to space-time view synthesis [6, 26]. We
also present a detailed ablation and analysis of our proposed
time encoding method.

In summary, our work makes the following contributions:

• To the best of our knowledge, ours is the first work
to achieve photo-realistic chronology reconstruction,
allowing for high-quality renderings of scenes with
controllable viewpoint, time, and illumination.

• We propose a novel encoding method that can model
abrupt content changes without overfitting to transient
factors. This leads to a fitting procedure that can ef-
fectively disentangle illumination effects from content
changes in the underlying scene.

• We benchmark the task of chronology reconstruction
from Internet photos and make our dataset and code
available to the research community.

2. Related Work

3D/4D reconstruction from Internet photos. The typi-
cal 3D reconstruction pipeline for Internet photos involves
first recovering camera poses and a sparse point cloud using
Structure from Motion (SfM) methods [1, 39, 41, 46, 47],
then computing a dense reconstruction using Multi-View
Stereo (MVS) algorithms [10–12, 42]. However, these meth-
ods assume the scene to be largely static, and are unable
to produce coherent models for scenes with large-scale ap-
pearance changes over time. To extend these methods to
achieve 4D reconstruction, Schindler and Dellaert developed
a method that takes photos of a city over time, and reasons
probabilistically about visibility and existence of objects like
buildings that may come and go across decades [40]. Most
related to our work, Scene Chronology extends MVS meth-
ods [43] to 4D by clustering reconstructed 3D points into
space-time cuboids [27]. However, it can only reconstruct
and render planar regions, leading to limited photo-realism.
To handle more complex geometry, Martin-Brualla et al.
represent scene geometry using time-varying depth maps,
allowing their method to generate high-quality time-lapse
videos [24, 25]. However, this depth map–based represen-
tation limits the range of camera viewpoints their method
can synthesize. In our work, we tackle these challenges and
devise a new method that can handle large-scale scenes with
complex geometry, and can generate large camera motions.
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Novel view synthesis. Early methods achieve novel view
synthesis through light field interpolation [7,13,16] or image-
based rendering [4,9,15,55]. Recently, neural scene represen-
tations [28, 30, 32, 33, 45, 50, 52] have shown unprecedented
view synthesis quality. Of particular interest is NeRF [31],
which represents radiance fields using a multi-layer percep-
tron (MLP) and achieves impressive rendering results. Many
works [8,17,18,21,34–36,51,53,54] extend NeRF to model
dynamic scenes with moving objects given a monocular
or multi-view video as input. In our work, we focus on a
different type of 4D view synthesis problem that involves
modeling unstructured Internet photo collections capturing
scenes that exhibit substantial appearance changes over time.

Neural rendering from Internet photos. One challenge of
rendering from Internet photos is handling varying, unknown
illumination present in the image collection. Recently, sev-
eral neural rendering methods demonstrate promising results
on rendering static landmarks while allowing for control of
illumination effects [20, 29]. In particular, NeRF-W [26]
conditions a reconstructed neural radiance field on a learn-
able per-image illumination vector, thereby factoring out
per-image illumination effects. Chen et al. [6] propose a
CNN module for predicting an illumination vector from an
image, enabling transfer of illumination from unseen im-
ages to the model. Sun et al. [48] build on NeRF-W to
reconstruct 3D meshes from a collection of Internet photos.
Finally, Zhao and Yang et al. [2] and Rudnev et al. [38] en-
able outdoor scene relighting based on neural radiance fields.
However, these methods are limited to primarily static land-
marks like the Brandenburg Gate, and cannot handle scenes
with substantial changes over time like Times Square.

Modeling temporal signals. One useful type of data for
modeling temporal signals is time-lapse videos from station-
ary cameras, which provide organized visual information for
scene understanding and factorization. Many previous meth-
ods [19, 22, 49] show how to factor temporally-varying fac-
tors (e.g., illumination) from permanent scene factors (e.g.,
geometry and reflectance) from time-lapse videos. More re-
cently, [14] introduces a method that disentangles time-lapse
sequences in a way that allows separate, after-the-fact con-
trol of overall trends, cyclic effects, and random effects in the
images. In our work, we focus on a more challenging setup,
where our input is unstructured Internet photos from differ-
ent viewpoints, and where we aim to synthesize novel views
in addition to factorizing different temporal components.

3. Method
The input to our method is a collection of Internet photos

of a landmark (e.g., Times Square) with known timestamps
and camera poses. Our goal is to recover a 4D scene repre-
sentation that can be used to render photo-realistic images
of that scene with independently controlled viewpoint, time,

Viewpoint

Time

Illumination

Internet photos: sparse sampling of viewpoint, time and illumination
Synthesized images: interpolating and independently controlling each component

Rendering with different viewpoints

Rendering with different time

Rendering with different illumination

Figure 2. Problem illustration. Given an Internet photo collection
of a scene, each image can be thought of as a sample in a high-
dimensional space consisting of entangled information, including
viewpoint, time, and lighting effects. The photo collection rep-
resents a sparse sampling of this space. Our goal is to recover a
4D scene representation from this sparse sampling, and to enable
interpolation in this high-dimensional space with disentanglement
and independent control of viewpoint, time, and lighting.

and lighting effects as illustrated in Fig. 2. This is a challeng-
ing problem because different kinds of temporal changes,
including scene content changes (changes to the scene itself)
and lighting variation (e.g., time of day) are entangled in each
image, but must be disentangled in the scene representation
to enable independent control over each temporal component.
Furthermore, content changes in our target scenes often hap-
pen suddenly, meaning that the scene representation must be
able to model discrete, sporadic changes over time.

To tackle this problem, we propose a new 4D scene rep-
resentation that can disentangle viewpoint, lighting effects,
and time. Our key observation is that the scene content of-
ten changes less frequently over time and remains nearly
constant in-between changes, whereas illumination changes
much more frequently and sometimes dramatically. For
example, the graffiti in 5Pointz (see Fig. 1) may only be
replaced every few months, but illumination can change over
the course of a few hours. Motivated by this observation,
we model illumination variation with a per-image illumina-
tion embedding, and model the underlying 4D scene content
using an MLP with time as input. We introduce our scene
representation in Sec. 3.1. To model piece-wise constant
temporal content with abrupt transitions, we propose a novel
encoding method in Sec. 3.2 that utilizes the behavior of the
step function, i.e., remaining consistent given a continuous
input, while allowing abrupt changes at transition points.
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Figure 3. Visual ablation of the proposed time encoding. Given a video rendered at a fixed viewpoint through several years, we compute
the Mean Squared Error (MSE) between every pair of consecutive frames. The vertical and horizontal axes represent MSE and time,
respectively. For a scene with sporadic changes, we expect to see infrequent “deltas” in this MSE plot. We observe that our method indeed 1)
recovers the transition points of scene changes and 2) stays consistent (zero MSE) at other times. With no time encoding, 1) is violated,
leading to blended, ghosted visual content (top left), and with positional encoding, 2) is violated, leading to temporal flicker (top middle).
Please see our supplemental video for animated results.

3.1. 4D Reconstruction from Internet Photos

Given a posed image collection {Ii}Ni=1 with timestamps
{ti}Ni=1, we represent the 4D scene as a time-varying neural
field. To disentangle changes to the underlying scene from
the varying and unknown per-image illumination, each im-
age Ii is assigned a learnable illumination embedding vector
ℓi, which is meant to encode the illumination present in that
view. Formally, given a space-time point (x, ti) with 3D
spatial coordinate x and time ti, along with an illumination
code ℓi and view direction d, we use an MLP denoted by F
to encode its radiance c and volume density σ as follows:

c, σ = F(x, ti, ℓi,d). (1)

Following NeRF [31], the input spatial coordinates x and
ray direction d are mapped to higher-dimensional vectors
via a fixed positional encoding function. For simplicity,
we assume that the scene geometry is mostly constant, and
only the appearance changes over time, but our method
could also be extended to handle time-varying geometry.
Therefore the model in Eq. (1) can be divided into a static,
time-invariant geometric model and a time-aware appearance
model, denoted by Fgeo and Fapp, respectively:

v, σ = Fgeo(x), (2)

c = Fapp(x,v, ti, ℓi,d). (3)

Fgeo models static geometry, and is parameterized by just
the input 3D position x, while Fapp models time-dependent
appearance, and depends on the space-time point (x, ti),
illumination embedding ℓi, view direction d, and the inter-
mediate geometry feature vector v produced by Fgeo. Please

refer to the supplementary material for additional details
about the model architecture.

From this scene representation, we can render images
using volume rendering, and optimize the scene representa-
tion by comparing these rendered images to the known input
views via an image reconstruction loss. Specifically, given
an input image Ii with timestamp ti, we compute the color
of a ray r(s) = o + sd, emitted from the camera center o
through a given pixel in direction d as follows: We use strat-
ified sampling to sample a set of quadrature points {sk}Kk=1

between sn and sf , the near and far bounds along the ray.
Then, given the illumination embedding ℓi and timestamp ti
of image Ii, we can compute the color c(sk, ti, ℓi) and den-
sity σ(sk) of each sample sk given our scene representation.
We then accumulate these points using volume rendering, as
in NeRF [31], yielding the expected color Ĉ(r, ti, ℓi):

Ĉ(r, ti, ℓi) =

K∑
k=1

T (sk)α(σ(sk)δk)c(sk, ti, ℓi), (4)

where T (sk) = exp

(
−

k−1∑
k′=1

σ(sk′)δk′

)
, (5)

where α(x) = 1 − exp(−x), and δk = sk+1 − sk. We
minimize the sum of squared error between the rendered and
ground truth pixels:

L =
∑

(r,i)∈Ω

∥Ci(r)− Ĉ(r, ti, ℓi)∥22, (6)

where Ci(r) is the observed pixel color in image Ii with
timestamp ti, and Ω is the set of all the sampled pixels from
the image collection {Ii}Ni=1.
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Figure 4. Fitting an MLP to a noisy piecewise constant 1D
signal. Given the noisy orange data points (uniform noise), we
aim to recover the clean blue curve shown in the upper left plot.
We present the results of fitting the input data using an MLP with
different encoding methods and activation functions. Our proposed
step function encoding achieves the best results, recovering the
discrete, sporadic changes in the signal without over-fitting to noise.

3.2. Step Function Encoding for Time Input

The method described above serves as a baseline to model
a 4D scene from Internet photos. However, we found that
this baseline cannot model temporal changes in the target
scene well. Specifically, temporal appearance changes in
man-made scenes are often abrupt, such as a new billboard
or sign in Times Square, or a new graffiti artwork in an art
mecca like 5Pointz. In contrast, the baseline above tends to
average over temporal content changes, resulting in a cross-
fade transition in time between two appearance states, rather
than a sharp, sudden transition. Fig. 3 shows an example
where this baseline (denoted “without encoding” in the fig-
ure) produces a ghosted blend of two temporally consecutive
graffiti artworks. This finding is consistent with NeRF’s
observation that standard coordinate inputs cannot model
high-frequency signals [31]. To address this issue, NeRF
uses positional encoding to map input spatial coordinates to
a high-frequency signal. However, we found that applying
positional encoding to the time input causes the network to
not only fit the underlying appearance changes in the scene,
but also overfit to per-image lighting effects. In other words,
it fails to disentangle these two components and leads to
severe flickering artifacts over time, as shown in Fig. 3.

To address this problem, we present a novel encoding
method based on a step function. The step function has
the desirable property that the output mostly stays constant
with respect to the input, except when it changes abruptly
at a transition point. Therefore, we consider using the step
function defined below as the encoding function for time t:

h(t) =

{
0 if t ≤ u

1 if t > u
, (7)

where u is a learnable parameter representing the transition
point. However, h(t) is discontinuous and the gradient for u
is not well-defined. We therefore use a smooth approxima-

tion to h(t) to make it differentiable, denoted as h̄(t):

h̄(t) =

{
1
2exp( t−u

β ) if t ≤ u

1− 1
2exp(−(t−u))

β ) if t > u
, (8)

where β is a learnable parameter representing the steepness
of the step function. In practice, u is randomly initialized
from zero to one and β is initialized to 0.3. Our encoding
method uses a vector of step functions, denoted as H(t),
each with its own learned transition point, to express mul-
tiple transition points. u and β are jointly learned during
training. We experimentally show that we can simply set the
dimension of this vector to a large number that exceeds the
expected number of scene transitions.

To illustrate the effectiveness of our proposed encoding
function, we compare it with different encoding functions
on a toy 1-D fitting experiment in Fig. 4. Baseline meth-
ods either overfit the noise (positional encoding [31], Gaus-
sian [37]) or underfit the discrete, sporadic changes (without
encoding, SIREN [44]). In contrast, our step function en-
coding correctly recovers the sharp changes in the signal by
approximating real step functions with small β parameters.
Note that Gaussian and SIREN are used as the activation
layer of a network, while our method and positional encod-
ing are used to modulate the input.

3.3. Implementation Details

Learning scene appearance with parametric encoding.
Using an implicit representation to reconstruct a large scene
featuring content changes over time requires a large model
capacity. While we could simply increase the size of the
MLP, this strategy incurs a linear increase in training and
rendering time. Motivated by Neural Sparse Voxel Fields
(NSVF) [23], we adopt a parametric encoding which adds
additional trainable parameters for scene appearance to ef-
fectively increase model capacity without introducing as
much overhead. Observing that our target man-made scenes
often satisfy the Manhattan world assumption, we use a tri-
plane structure to arrange additional trainable parameters [3],
which we found to be compact and expressive in our ex-
periments. Specifically, we define three learnable feature
planes: Exy, Eyz , Exz . Each feature plane has a resolution
of D×D×B, where D and B denote the spatial resolution
and number of feature channels, respectively. Given a 3D
point p, we project it onto three axis-aligned orthogonal
planes to obtain pxy,pyz,pxz . We can fetch the feature
fxy = interp(Exy,pxy), where interp is a linear interpola-
tion operation. The same method can be applied to obtain
fyz and fxz . The appearance parametric encoding for p is
defined as the concatenation of fxy , fyz and fxz .

Handling transient objects. Learning a scene representa-
tion using Internet photos with transient objects may intro-
duce 3D inconsistencies. To solve this problem, we employ
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Times Square Akihabara 5Pointz The Met
# Retrieved images 289,794 105,445 23,628 186,663
# Calibrated images 29,629 13,671 6,503 2,184
# Selected images 5,965 1,078 3,521 2,127

Table 1. Dataset statistics. We collect four scenes for evaluation.
For each scene, we first retrieve photos from the Internet, then run
COLMAP to calibrate them and reconstruct a sparse point cloud.
After calibration, we choose a region of interest from the point
cloud and select the corresponding images as input to our method.

a pretrained semantic segmentation model [5] to identify pix-
els of transient objects (e.g., pedestrians) and exclude these
pixels during training. However, a segmentation model may
not effectively filter out all transient pixels. To handle the re-
maining transient pixels, we use an MLP to predict whether
each pixel in each image is a transient object. We learn it
using the uncertainty loss, reducing the effect of transient
pixels during training models as demonstrated in [6].

Other details. Our model includes an 8-layer MLP with
256 neurons for each layer as its backbone, and a 4-layer
MLP as its appearance head. Our model is trained with an
initial learning rate of 5e-4, which is reduced to 5e-5 after
800k iterations. At each iteration, we randomly sample 1024
rays from an image. Following NeRF [31], we train our two
models using the coarse-to-fine sampling strategy with 64
and 128 points for each ray in the coarse and fine levels,
respectively. The model tends to converge after about 800k
iterations, which takes about 40 hours on an RTX 3090 GPU.

4. Experiments
4.1. Experimental Setup

Datasets. We collect four scenes from Flickr that include
two commercial tourist areas (Times Square and Akihabara),
a graffiti mecca (5Pointz), and a museum (the Metropolitan
Museum of Art aka the Met). The two commercial areas
feature an array of billboards and other elements that change
over time. 5Pointz is an outdoor space where artists paint
graffiti art over time, each piece replacing (or augmenting)
a previous one. The Met has a varying array of banners and
signs advertising different exhibitions. For each scene, we
run COLMAP to recover camera parameters and a sparse
point cloud. Due to the large number of input images, run-
ning COLMAP on some of these scenes can take weeks on a
cluster with multiple servers. We will release our processed
data and data processing scripts as a resource for the com-
munity. Note that whole calibrated scenes, such as Times
Square, can be excessively large for reconstruction using
implicit representations. Instead, we perform view synthesis
experiments on a region of the scene. Tab. 1 summarizes
these datasets. We include visualizations of the reconstructed
models and the selected regions, along with data processing
details, in the supplemental material.

Act. func. /
Freq. / Dim.

Temporal stability View synthesis quality
Mean ↓ Entropy ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w/o. Time - N/A N/A 18.18 0.572 0.461
w/o. Encoding - 0.116 5.314 20.54 0.719 0.296
Learned Latent - 11.04 5.590 20.95 0.731 0.291

Activation SIREN [44] 0.101 5.552 20.54 0.696 0.330
Gaussian [37] 0.088 5.512 20.28 0.704 0.315

Positional
Encoding

5 0.247 4.936 20.71 0.731 0.288
10 5.657 5.795 20.57 0.724 0.294
15 9.995 5.777 20.64 0.721 0.301

Step Func.
Encoding

8 0.102 1.602 20.52 0.728 0.289
16 0.147 2.213 21.32 0.745 0.274
24 0.190 2.625 21.09 0.734 0.282
32 0.217 2.806 21.10 0.738 0.281

Table 2. Quantitative ablation of the proposed time encoding
on 5Pointz. Act. func. represents the activation function while Freq.
is the frequency of standard positional encoding [31]. Dim. is the
dimension of the vector size for the learned step functions.

Metrics. To measure view synthesis quality, we randomly
select a few dozen images per scene as a test set. To en-
sure the validity of our evaluation, we visually inspect the
images in the test set and remove those that have excessive
noise or that do not align with the intended task, such as
black and white photos or images that are primarily por-
traits. For the remaining test images, there may still be some
transient objects present. We manually annotate masks for
these objects and ignore them during evaluation. Following
NeRF-W [26], we use half of the valid pixels of each image
to finetune the illumination embedding and the other half
for testing PNSR/SSIM/LPIPS metrics. Please refer to the
supplemental material for additional details.

4.2. Ablations and Analysis

Qualitative ablation of the step function encoding. An ad-
vantage of our method is that it can model abrupt scene-level
content changes without overfitting per-image illumination
noise. We compare our method with two baselines: (1) or-
dinary time input without any encoding, and (2) positional
encoding of time [31] (with a frequency of 15). We seek
to visualize the temporal stability of each method. To do
so, given a 4D reconstruction, we first render a video of
the scene through time from a fixed viewpoint and with a
fixed illumination code (i.e., only content changes). We then
compute the mean squared error (MSE) between every two
consecutive frames in this video. Plots of MSE over time
for each method are shown in Fig. 3. An ideal plot should
have large MSE values at sparse points due to abrupt content
changes, and zero MSE elsewhere. Our method yields results
that exhibit this desired behavior. In contrast, the baseline
with no temporal encoding (raw time input) produces smooth
transitions across content changes, while positional encoding
of time leads to flickering videos. To further illustrate these
behaviors, we visualize images around a scene appearance
transition point in the first row of Fig. 3.

Quantitative ablations and sensitivity analysis. In addi-
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Figure 5. Independent control of illumination effects and time. The top row shows the results of interpolating the illumination embeddings
of two real images of 5Pointz, where the leftmost and rightmost images are real images, and all other images are rendered using our method.
The bottom rows show the results of rendering scenes across time with fixed illumination embeddings (for Times Square).

tion to view synthesis quality, we also evaluate the temporal
stability of synthesized views under a fixed illumination
embedding, which indicates the degree of disentanglement
between illumination effects and content changes. Similar to
the ablations discussed above, we measure temporal stability
using the statistics of MSE image differences between each
two adjacent frames over time, for videos rendered at a fixed
viewpoint with fixed illumination embedding. Specifically,
we choose the mean and entropy of these MSE values as
our stability metrics. Higher mean values indicate signif-
icant changes between adjacent frames, corresponding to
temporal flicker. High entropy is associated with high un-
certainty in the distribution. Considering image differences
over time, high entropy values indicate that scene content
changes are distributed throughout time, and are not “peaky”.
Smaller mean and entropy values indicate that the changes
are more concentrated, indicating better modeling of scene
content with discrete and sporadic changes. Please refer to
the supplement for additional details on how these metrics
are calculated.

We quantitatively ablate our encoding method in terms
of view synthesis stability and quality in Tab. 2. We show
several baselines and variants: (1) w/o Time which does
not take time as input, (2) w/o Encoding, which directly
takes raw, unencoded time as input, and (3) Learned Latent,
mapping time to a set of learned latent codes. We also
change the activation function from ReLU to SIREN [44]
and to Gaussian [37], which have been shown to have more
powerful modeling abilities. The baselines of positional
encoding with different frequencies are also included. While

many variants achieve reasonable reconstruction quality, our
method can also achieve both low mean and entropy.

We also provide a sensitivity analysis on the dimension
of the vector size of the learned step functions (Dim.) in
Tab. 2. The results show that our method can achieve high
view synthesis quality once the dimension is ≥ 16. Larger
dimensions lead to slightly lower temporal coherence, but
not a large degradation. This suggests that we can simply
set the number of step functions to a number larger than the
number of expected changes in that scene. We set Dim. to
16 in our experiments for all scenes except Times Square,
where we set Dim. to 32.

Further qualitative and quantitative ablations of the step
function encoding can be found in the supp. material.

Application. We demonstrate the ability of our method to
render plausible and photo-realistic images with controlled
time and illumination effects in Fig. 5.

4.3. Comparisons with the State of the Art

We compare to the state-of-the-art methods NeRF-W [26]
and HaNeRF [6], which both reconstruct high-fidelity scene
models via implicit representations [31]. NeRF-W models
illumination using per-image embeddings, while HaNeRF
models illumination using a CNN module. However, these
methods are designed for static landmarks and cannot handle
our test scenes with substantial content changes. We there-
fore extend these methods by adding time as a network input
for fairer comparisons.

We present quantitative and qualitative comparisons with
these methods in Tab. 3 and Fig. 6. Our method produces
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Figure 6. Qualitative comparison with the state of the art. The three column images under Input time: tx are rendered using timestamps tx
and the viewpoints of the left image. Our method renders high-quality images and produces plausible images when changing the input time.

4D view
synthesis

Times Square Akihabara 5Pointz The Met
Entropy ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Entropy ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Entropy ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Entropy ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRFW [26] % N/A 16.59 0.820 0.211 N/A 17.41 0.853 0.164 N/A 17.52 0.545 0.500 N/A 23.21 0.881 0.159
HaNeRF [6] % N/A 15.39 0.807 0.218 N/A 17.50 0.860 0.160 N/A 16.82 0.539 0.508 N/A 22.32 0.882 0.158
NeRFW-T ! 4.990 18.71 0.847 0.190 5.483 19.16 0.874 0.140 5.768 19.41 0.611 0.418 4.923 23.83 0.875 0.164
HaNeRF-T ! 4.929 17.36 0.844 0.189 5.565 18.39 0.873 0.140 5.881 17.90 0.585 0.445 4.943 22.56 0.881 0.156
Ours ! 3.122 20.87 0.894 0.132 2.482 20.31 0.902 0.101 2.213 21.32 0.745 0.274 2.399 24.07 0.895 0.129

Table 3. Quantitative comparison with the state of the art. We augment NeRF-W and HaNeRF to take time as input (*-T). Our method
outperforms prior methods across all metrics, demonstrating that our method can better handle such time-varying Internet collections.

lower entropy across all the scenes. In addition to better
temporal stability, our method also has better view synthesis
quality. We attribute this to the use of a well-designed ap-
pearance parametric encoding. We include ablations of the
parametric appearance encoding in the supplemental mate-
rial. To compare the ability of view synthesis through time,
we synthesize photos of the same viewpoint at another time
as shown in Fig. 6. The step function encoding helps avoid
blending artifacts. In contrast, the other methods often ex-
hibit such artifacts when content changes occur, as is evident
in the supplemental video.

5. Conclusion
We explored the problem of chronology reconstruction,

aiming to reconstruct and render temporally complex scenes
with controlled viewpoint, time, and illumination effects
from Internet photos. We proposed a new neural scene rep-
resentation equipped with a novel step function encoding to
address several challenges, including the entanglement of
illumination variation and scene content changes, as well

as abrupt scene content changes. We also collected a new
dataset to benchmark this problem. Experiments show that
our method exhibits state-of-the-art performance and is ca-
pable of producing plausible, stable view synthesis results
across time. Detailed ablations and analysis were conducted
to validate our proposed components.

Limitations and future work. Our method takes as input
Internet photos with timestamps. Inaccurate timestamps may
hinder the training process, and Internet photos that do not
have timestamps cannot be utilized for training. Exploring
how to simultaneously predict timestamps is an interesting
avenue for future work. In addition, some urban scenes such
as Times Square have billboards that display videos (not still
images), which are difficult for our method to reconstruct,
as their content has high temporal frequency is not well
supported by other images in the collection.

Acknowledgements. The authors would like to acknowl-
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