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Abstract

This paper address the problem of optical expansion
(OE). OE describes the object scale change between two
frames, widely used in monocular 3D vision tasks. Previ-
ous methods estimate optical expansion mainly from opti-
cal flow results, but this two-stage architecture makes their
results limited by the accuracy of optical flow and less ro-
bust. To solve these problems, we propose the concept of
3D optical flow by integrating optical expansion into the
2D optical flow, which is implemented by a plug-and-play
module, namely TPCV. TPCV implements matching features
at the correct location and scale, thus allowing the simul-
taneous optimization of optical flow and optical expansion
tasks. Experimentally, we apply TPCV to the RAFT optical
flow baseline. Experimental results show that the baseline
optical flow performance is substantially improved. More-
over, we apply the optical flow and optical expansion re-
sults to various dynamic 3D vision tasks, including motion-
in-depth, time-to-collision, and scene flow, often achiev-
ing significant improvement over the prior SOTA. Code is
available at https://github.com/HanLingsgjk/
TPCV .

1. Introduction

Optical expansion (OE) is a fundamental and important
concept in monocular dynamic 3D vision tasks [1,3, 22,23,
32]. OE describes the scale change of an object between
two frames, which can be translated into motion in the depth
direction. It has essential applications in time-to-collision,
scene flow, and motion-in-depth estimation. OE schemes
have unique advantages in 3D motion estimation tasks, re-
quiring only a single camera and enabling dense and fixed
baseline independent results. In this paper, we discuss a ro-
bust and novel approach for OE estimation.
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Figure 1. Scale matching idea. Left: multi-scale matching be-
tween two frames. Right: texture around the matching point,
where s is the size of the image scaling. The core idea of scale
matching is to match texture features at the correct location and
scale. As seen above, the texture at the license plate can be better
matched when the second frame is scaled 0.7 times in size, where
the scaling magnification also reflects the optical expansion of that
local pixel between the two frames. Furthermore, scale matching
can better handle the motion in the depth direction and contains
potential 3D motion information.

Prior works In early time-to-collision (TTC) studies
[4, 22, 23], OE was obtained from motion modeling, where
the motion estimation was provided by optical flow or SIFT
[10]. Such algorithms relied on optical flow results and
specific model assumptions, often yielding only sparse and
low-accuracy results. Some recent methods [32] regress OE
based on existing optical flow results and achieve better out-
comes. However, these two-stage estimation methods rely
on accurate optical flow results and decrease computational
efficiency. Instead, we consider optical flow and expan-
sion estimation as two complementary tasks. Introduc-
ing OE in optical flow can realize matching features at the
correct location and scale. As shown in Fig. 1, this fusion
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Figure 2. Three different matching modes. We match objects
between two consecutive frames, where the cat is away from the
camera and the car is close to the camera. (a) The 2D optical
flow matches the cat and car in the original size image. (b) Match
the second frame with the first frame after multiscale scaling, we
found that cat can be better matched when magnified by 1.25
times, and car can be better matched when shrunk by 0.75 times.
However, obtaining an accurate enlarged picture of a cat is impos-
sible. (c) Transpose matching, where the cat zoomed in in frame
1 to 2 is equivalent to the cat zoomed out in frame 2 to 1. The
core of TPCV is to convert the problem of zooming in the forward
optical flow to zooming out in the reverse flow.

eliminates the effect of scale variation of moving objects
on optical flow matching, allowing the algorithm to predict
moving foreground objects more accurately. Specifically,
we refer to the fused task as 3D optical flow, and the 3D
optical flow consists of a 2D optical flow field f and a 1D
scale flow field s, where s describes the scale change of
objects between two frames.

Solving for 3D Optical Flow We view solving 3D opti-
cal flow as a scale matching problem—matching the fea-
ture at the right location and scale. The matching idea
has been applied in many successful optical flow meth-
ods [5, 27, 31, 36], where they iteratively update the opti-
cal flow by constructing a correlation volume, querying the
correlation of pixel pairs in the correlation volume based on
the current estimation. In this paper, we propose a plug-
and-play upgrade module: TPCV, a multi-scale correlation
volume from which the algorithm can query the correlation
between pixel pairs at different locations and scales. We
show that 3D optical flow can be robustly extracted from the
correlation features provided by TPCV. Importantly, TPCV
can be easily applied to matching-based optical flow meth-
ods or 3D visual tasks, increasing the performance.

Why TPCV? The computation of 3D optical flow re-
quires computing pixel pairs correlation between feature

maps at different scales. As shown in Fig. 2, firstly, we tried
to directly scale the image for matching, but this did not
present good results; the main reason is the unrealistic large-
scale features. So we rethink the problem in reverse, where
the size reduction in the forward optical flow is equivalent
to the enlargement in the inverse optical flow. We convert
the part that needs to be enlarged to the reduction part in the
inverse flow, and combine the forward and inverse parts to
form a transposed correlation volume (TPCV) to query the
correlation of feature pairs.

TPCV Application In order to evaluate the performance
of TPCV, we applied it to the classic and basic matched op-
tical flow framework RAFT [27]. For upgrading 2D opti-
cal flow to 3D optical flow, only need to replace the orig-
inal 4D correlation volume in RAFT with TPCV and add
an output head of OE in the GRU iterative optimization
layer. The relative OE and optical flow ground truth for
training are obtained from the existing 3D scene flow train-
ing datasets [15, 19].

Contributions We summarize our contributions as fol-
lows:

• We propose a plug-and-play module: TPCV, which
can be applied to matching-based optical flow frame-
work. Based on TPCV, the original 2D optical flow
can be easily upgraded to 3D optical flow, improving
accuracy.

• We applied TPCV to the optical flow framework
RAFT, which significantly improved the performance
without changing the optimizer structure, especially on
the moving foreground target.

• We display the effectiveness of TPCV across a vari-
ety of benchmark tasks, establishing new SOTA results
for scene flow, time-to-collision (TTC) and motion-
in-depth estimation - while maintaining a competitive
speed.

2. Relate works
Optical Flow The main task of optical flow is to es-

timate the dense pixel displacement between two frames.
Recent matching-based methods have achieved great suc-
cess [5, 25, 31, 36]. They query the correlation between
pixel pairs through a 4D correlation volume for subsequent
matching and regression. In these matching methods, the
calculation of correlation is the algorithmic core. However,
all of these methods ignore the correlation mutation caused
by the scale change when the object moves in depth, result-
ing in the incapacity to handle the foreground moving ob-
jects. In this paper, we upgrade traditional image-to-image
feature matching to image-to-scale-space matching based
on scale matching. which allows our method to deal with
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Figure 3. A typical 3D optical flow calculation process. The estimation of 3D optical flow using TPCV is mainly divided into two parts.
First, query the correlation features of optical flow and OE from TPCV according to the current estimation, and then regress the optical flow
and OE results based on the correlation features. The TPCV module does not contain any parameters to be optimized, even the calculation
of inverse optical flow in the green box, so it can be easily applied to other methods.

scale changes in motion. Although some previous meth-
ods [6, 11, 34] also introduced the idea of the multi-scale
image pyramid, but their pyramid is often used to save com-
puting costs, expand network receptive field, speed up rea-
soning, and optimize loss function, which is still essentially
image-to-image matching.

Scene flow Scene flow calculates the motion of dense
pixels in 3D space. Recently, some successful scene flow
methods [2, 8, 13, 18, 29, 33] are based on the rigid assump-
tion, which assumes that the motion state of pixels on the
same rigid object should be the same. These hypothesis-
based optimization methods transform the scene flow task
into a segmentation problem. Judging the foreground rigid
object mask has become a key factor affecting the method’s
performance. However, it will inevitably introduce too
much semantic information to assist judgment. Although
these methods perform well on existing datasets, but re-
quire additional semantic labels and depth information to
aid training.

There is also a class of methods [9] that highly fuse depth
and optical flow information by combining the inference
process of depth and optical flow networks, so that the re-
sults can complement each other. However, the segmenta-
tion of rigid masks is still implicitly involved in this pro-
cess. Another kind of Monocular method [1, 32] calculates
scene flow by optical expansion. Owing to optical expan-
sion is directly regressed from optical flow or RGB images,
it often obtains poor accuracy. Unlike them, TPCV obtains
scale changes based on scale matching, eliminating the de-
pendence on depth and semantic information.

3. Method

We propose a general optical flow upgrade module:
Transpose pyramid correlation volume (TPCV), which can
be widely applied to various 2D optical flow frameworks
and upgraded to 3D optical flow. In this section, we will

explain the construction details of TPCV, examples applied
to RAFT, and supervision of 3D optical flow.

3.1. Construction Details of TPCV

The main function of the TPCV module is to index the
correlation features of pixel pairs from different scales at
different locations. These features will be used for subse-
quent optical flow estimation and scale estimation.

As shown in the Fig. 3, TPCV consists of three steps:
Constructing the correlation volume of forward flow and re-
verse flow based on the input multi-scale features; Querying
the correlation features from the correlation volume; Calcu-
lation of inverse optical flow.

3.1.1 Correlation Volume

The correlation volume of TPCV is divided into forward
and inverse, where the forward correlation volume is essen-
tially the dot product of the original-scale feature map of
the frame 1 and the multi-scale feature map of the frame 2.
The structure of the inverse correlation volume is the same
as the forward; only the order of dot products is swapped.

Specifically, We extract the multi-scale features F x
1 and

F s
2 respectively from the input image pyramid, where x and

s refers to the scale change. The forward correlation volume
consists of 4D correlation volumes Cs with different scales:

Cs(i, j, u, v) = F 1
1 (i, j) · F s

2 (u, v) (1)

where (i, j) and (u, v) refer to locations in F 1
1 and F s

2 ,
F x
1 ∈ RxH×xW×C , F s

2 ∈ RsH×sW×C , s, x = 0.5, 0.5 +
1/S, ..., 1, Cs ∈ RH×W×sH×sW , in our experiment S = 4.

Similarly, the inverse correlation volume C ′
x is computed

as:
C ′

x(u, v, i, j) = F 1
2 (u, v) · F x

1 (i, j) (2)

where (u, v) and (i, j) refer to locations in F 1
2 and F x

1 ,
C ′

x ∈ RH×W×xH×xW .
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Figure 4. TPCV details. This figure shows the details of the inverse flow query of TPCV: Build the inverse correlation volume C′
x; Query

the inverse correlation feature cf ′
x according to the optical flow estimation; Query the forward correlation feature cfs from cf ′

x; Query the
OE features from cfs according to the current OE estimation.

3.1.2 Query Correlation Feature

This section introduces how to query1 the correlation fea-
tures from the correlation volume, which is mainly divided
into two steps. First, the multi-scale optical flow features
are queried from the correlation volume based on the opti-
cal flow results. Then, the multi-scale optical flow features
are sampled in the scale dimension based on the current OE
results. As shown in Fig. 4.

After obtaining the forward optical flow f and the corre-
lation volume Cs, the forward correlation feature cfs(s <
1) can be queried as follows:

cfs(i, j) = Cs(i, j, su, sv)

= Cs(i, j, s(i+ f(i, j, 0)), s(j + f(i, j, 1)))

= Corr(p, qs)

(3)

where cfs ∈ RH×W , (i, j) and (u, v) refer to the loca-
tions of p and q, Corr(p, qs) describes the Correlation be-
tween point p and point q scaled by s times, s = 0.5, 0.5 +
1/S, ..., 1.

Similarly, after acquiring the inverse optical flow f ′ and
the correlation volume C ′

x, the inverse correlation feature
cf ′

x(x < 1) can be queried as follows:

cf ′
x(u, v) = C ′

x(u, v, xi, xj)

= C ′
x(u, v, x(u+ f ′(u, v, 0)), x(v + f ′(u, v, 1)))

= Corr(qx, p)

(4)

where f ′(u, v) = −f(i, j), (u, v) = (i, j) + f(i, j), cf ′
x ∈

RH×W , x = 0.5, 0.5 + 1/S, ..., 1.
Then based on the forward optical flow f to query the

1In this paper, the query is implemented by the gridsample function in
Pytorch.

forward correlation features cfs when s > 1:

cf1/x(i, j) = cf ′
x(i+ f(i, j, 0), j + f(i, j, 1))

= Corr(p, q1/x)
(5)

Combining s < 1 and s > 1, the complete forward optical
flow correlation feature Cf is obtained:

Cf = {cf0.5, ..., cf1, ..., cf2} (6)

where Cf ∈ RH×W×(S+1).
After getting Cf , the OE feature is obtained by querying

the third scale dimension of Cf based on the current OE
estimation s. So far, we have described the query method of
the OE features Foe, and cf1 is the optical flow correlation
feature Fof .

In the process of applying TPCV to RAFT, we also query
the neighborhood of optical flow and OE to obtain the op-
timization direction. We show more details about query in
supplementary material.

3.1.3 Calculation of Inverse Optical Flow

In this section, we consider designing a inverse optical flow
algorithm. In the previous work [12, 17], inverse opti-
cal flow is calculated by an extra network. However, this
method is not applicable to TPCV. First, the extra network
will increase the time and memory cost; second, to en-
sure the stability of querying, we hope that the forward
and inverse flow can be perfectly closed-loop (about closed-
loop, see Eq. (4), where f ′(u, v) = −f(i, j), (u, v) =
(i, j) + f(i, j), (i, j) = (u, v) + f ′(u, v)).

In order to ensure the perfect closed-loop of the forward
and inverse flow, we refer to the idea of Javier [24], that is,
the forward flow directly solves the inverse flow. The spe-
cific process is shown in Algorithm 1, where corr is cf1,
xw is the current point to be processed, xi is the four co-
ordinate points around xw, wi and wght are intermediate
variables that store correlation weights.
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Algorithm 1 Inverse optical flow
Input:f ,corr
Parameter:wght
Output: f ′

1: Initialize f ′ = 0,wght = −∞.
2: for all x ∈ Ω do
3: xw ← x+ f(x)
4: Find the four neighbors of xw : {x1,x2,x3,x4}
5: for i = 1 to 4 do
6: wi ← corr(xi,xw)
7: if wi > wght(xi) then
8: f ′(xi)← −f(x)
9: wght(xi)← wi

10: end if
11: end for
12: end for
13: return f ′

3.2. Apply TPCV in RAFT

RAFT is a typical matching optical flow method, which
iteratively maintains an optical flow field through the GRU
module. In this section, we will explain how to apply TPCV
to RAFT.

We do not change the structure of the RAFT feature ex-
tractor and GRU optimizer. The only change is that we use
the TPCV module to replace the original 4D correlation vol-
ume to obtain optical flow correlation features and OE cor-
relation features. We provide more details of network con-
struction in the supplementary material.

Optimization After applying TPCV, we maintain an op-
tical flow field f and a scale flow field s at the same time.
The calculation of the optical flow update amount is the
same as RAFT, and we add a new output header to update
the scale flow from hidden features ht generated by GRU:

ht = GRU(ht−1, Fof , Foe)

∆s = tanh(Conv(ReLU(Conv(ht))))
(7)

where ∆s is the update amount of scale flow, initial h0 is
given by feature encoder.

3.3. Supervision of 3D Optical Flow

3.3.1 2D Optical Flow Loss

We follow RAFT and supervise the 2D optical flow with L1

distance between the predicted flow and ground truth, the
2D optical flow loss is defined as:

Lf =

N∑
k=1

γN−k
∥∥fk − fgt

∥∥
1

(8)

where we set γ = 0.8, N = 12 in our experiments.

3.3.2 Scale Flow Loss

Existing datasets do not directly provide supervised scale
data. We refer to the scale change and motion in depth con-
version formula established by Gengshan Yang [32] to train
the 3D optical flow indirectly.

Yang pointed out that under the assumption of small ro-
tation, the scale change and motion-in-depth are approxi-
mately equal, which allows us to use the scene flow dataset
to obtain the scale loss, which is defined as follows:

Ls =

N∑
k=1

γN−k
∥∥sk − z′gt/zgt

∥∥
1

(9)

where z′gt and zgt are the ground truth depths of the pixels
in the second frame and the first frame, s is the scale flow
field.

The overall loss function of 3D optical flow is:

L = Lf + Ls (10)

4. Experiments
Experimental results are discussed in this section to

demonstrate the effectiveness of TPCV. Experiments show
that TPCV can significantly improve the estimation accu-
racy of the optical flow for foreground objects under the
same number of optimizer parameters. Furthermore, the
ability of motion-in-depth estimation far exceeds the prior
SOTA method. Specifically, we first compared the optical
flow performance between the TPCV and baseline mod-
els. Then we applied the 3D optical flow results to the 3D
scene perception tasks, including motion-in-depth, time-to-
collision and scene flow estimation.

Setup We first pre-train our model on the Driving (D) for
80k iterations (batch = 6, lr = 0.002). For the optical flow
estimation task, we finetune it on KITTI (K-200) with 60k
iterations (batch = 6, lr = 0.00125). For motion-in-depth
and time-to-collision task, we follow the split of optical ex-
pansion [32]. Specifically, we select one for every 5 im-
ages in K-200 for validation (K-40) and add the rest 160
images for training (K-160) with 60k iterations (batch = 6,
lr = 0.00125). For the scene flow task, we use K-200 for
training with 60k iterations (batch = 6, lr = 0.00125) and
submit the results to the KITTI scene flow benchmark.

4.1. Optical Flow

In this section, we compare the effect of applying TPCV
on the baseline optical flow model. We chose RAFT [27]
as the baseline model, not because it offers better perfor-
mance, but because it is the basic framework for most ad-
vanced optical flow models [5, 16, 25, 26] and has strong
representativeness.
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RAFT+AOIRCRAFT GMA RAFT RAFT+TPCV

Flow result

Fl-fg 99.95  Noc Fl-fg 99.84 Fl-fg 100  Noc Fl-fg 100Frame1

Frame2

Fl-fg 99.00  Noc Fl-fg 96.80 Fl-fg 98.87  Noc Fl-fg 96.39 Fl-fg 77.71  Noc Fl-fg 31.13

Figure 5. Results for KITTI test image. The upper line is the optical flow error. The redder the colour represents the greater the error,
where Noc Fl-fg is the outlier rate of the non-occluded part, and the lower line is the colour-coded optical flow result. Observing the car
window in the red box, there is a large-scale change between the two frames, and only our TPCV can get the correct result.

The main indicator we compare is the outlier rate of fore-
ground and background optical flow, where outliers are the
points whose endpoint error is greater than 3px or 5%.

Method Fl-bg Fl-fg Fl-all Improvement

RAFT [27] 4.74 6.87 5.1 -

GMA [5] 4.78 7.03 5.15 +attention
CRAFT [25] 4.58 5.85 4.79 +attention
RAFT+AOIR [26] 4.68 6.99 5.07 regularisation
RAFT+TPCV(ours) 4.53 5.52 4.69 scale correlation

Table 1. Quantitative optical flow performance comparison on
KITTI test. Fl-bg and Fl-fg are the outlier rates of the foreground
and background optical flow. The best among the all are bolded.
Our method greatly improves the performance of foreground opti-
cal flow.

Validation performance We first compare the perfor-
mance of TPCV and baseline RAFT. As shown in Tab. 1,
TPCV improves the accuracy of the baseline model compre-
hensively, especially the foreground error is reduced from
6.87 to 5.52, which proves that TPCV can help the baseline
model adapt to the foreground object scale changes effec-
tively.

We also compare some state-of-the-art RAFT-based
improvement methods’ performance, where CRAFT and
GMA both introduce attention mechanisms into the RAFT
framework to solve the occlusion problem. While
RAFT+AOIR studies new regularization schemes, these
methods all change the structure of RAFT’s optimizer and
feature extractor, increasing the computational cost and
training cost. However, our TPCV still achieves the best re-
sults, although the optimizer structure is not changed. Fig. 5
shows optical flow results under large-scale changes. All
methods except TPCV cannot handle large-scale changes,
proving the superiority of TPCV’s scale matching strategy.

4.2. Motion-in-depth (MID)

In this section, we discuss the performance of 3D optical
flow in the MID estimation task. Based on the relationship

established in the previous work [32], we can equate the
scale change s to MID τ . For example, an object is dou-
bled in size between two frames (s = 0.5, the second frame
is scaled by 0.5 times and matches the first frame), which
means that its distance from the camera is shortened by 0.5
times (τ = z′/z = s = 0.5, where z′ and z are the depth of
frame2 and frame1).

MID is a key indicator in tasks such as time-to-collision,
scene flow, and depth estimation. To demonstrate the su-
periority of TPCV, we compare it with the current state-of-
the-art MID methods. The error of MID is defined as:

MIDerror = ||log(τ)− log(τgt)||1 · 104 (11)

where τgt is obtained by dividing the matching depth of the
second frame and the first frame.

Method Input MIDerror Time/s

OSF [20] Stereo 115 3000
PRSM [30] Stereo 124 300
Binary TTC [1] Mono 73.55 2.2
Optical expansion [32] Mono 75 0.2
RAFT+TPCV(ours) Mono 42.84 0.2

Table 2. MID estimation on K-40 validation set. Our method
outperforms other methods by a large margin.

We first compare with traditional optimization methods
that use stereo information: PSMR and OSF decompose
pixels into rigid blocks, and iteratively update the optimized
optical flow and depth fields based on rigid assumptions and
hand-designed priors. To calculate the MID we divide the
depth of the second frame by the depth of the first frame.
Experimental results show that our errors are much smaller
than them (115 vs. 42.84) and in less time2.

We also compare with the state-of-the-art MID methods
Optical expansion and Binary TTC. TPCV outperforming

2Timing results are computed on 375x1242 images with an RTX 3090
GPU using 200 updates.
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Ground Truth

Image 195 Error: 115.89 Error: 254.93 Error: 57.72

OSF Optical expansion TPCV (ours)

Figure 6. Motion-in-depth results for image “195” in the K-40. Up: Ground truth and motion-in-depth results, where the darker indicates
the objects moving towards the camera. Down: The input image and error map, where the whiter the pixels, the greater the error. In both
foreground and background regions, our method is much more accurate than other methods.

them by a large margin (73.55 vs 42.84), and the average er-
ror is reduced by 42%. Different from their directly regress
MID, TPCV calculates MID based on matching, making the
result robust and accurate. The above experiments prove
that our TPCV module is progressiveness in depth motion
estimation.

4.3. Time-to-collision (TTC)

Time-to-collision estimation is essential for obstacle
avoidance and path planning tasks [3, 7, 14, 21]. In fact,
the time for a pixel to reach the camera plane (TTC) can be
directly obtained from MID:

TTC =
Z

Z − Z ′T =
T

1− Z′

Z

(12)

where T is the sampling interval of the camera (in KITTI
T = 0.1s) and Z ′/Z is the motion-in-depth τ .

Method Err-1s Err-2s Err-5s Time/s

Binary TTC [1] 2.4 3.16 3.25 0.0192
OSF [20] 1.79 2.93 4.03 3000
Optical expansion [32] 1.86 1.87 2.45 0.2
RAFT+TPCV(ours) 1.14 1.65 1.57 0.2

Table 3. Percentage errors of time-to-collision estimation on
K-40 validation set

We treat TTC as a binary classification problem, and for
each pixel, we judge whether the TTC time is less than {1s,
2s, 5s}. Only the points moving towards the camera are
evaluated (the TTC of points farther away is meaningless).

In this experiment, we use the binary mode of Binary
TTC. In this mode, a binary mask will be directly output.
Although the accuracy is decreased, the reasoning speed
is greatly improved. Optical expansion and OSF perform
reasonably well, consistent with their high precision perfor-
mance in the motion-in-depth task. Our monocular method
achieves the lowest error in all time intervals, which proves
that the 3D optical flow estimated by TPCV can well predict
future collisions.

4.4. Scene Flow

Correctly estimating the 3D motion of objects in space
is crucial for autonomous driving and dynamic environ-
ment path planning for robots. The scene flow consists
of the optical flow and the depth of matched pixels be-
tween two frames. In order to unify the standard with the
most advanced methods, we use GA-Net [35] to obtain the
depth of the first frame d1, and obtain the depth of the sec-
ond frame d2 based on the motion-in-depth τ estimated by
TPCV (d2 = d1 ∗ τ ). The model was trained on the com-
plete K-200 dataset and tested on the KITTI public scene
flow evaluation website3.

We first compare TPCV with monocular methods, as
shown in Tab. 4 TPCV leads in all monocular methods with
significant advantages, consistent with the previous superior
performance of TPCV in motion-in-depth and optical flow
tasks. It proves the effectiveness of our matching strategy
in the field of 3D motion estimation.

We also compare with the state-of-the-art depth-
based methods CamLiFlow, RigidMask+ISF and RAFT3D.
Noticing that they tend to get smaller Fl-bg errors, which
is thanks to the aid of depth information to optimize the
background optical flow. Nonetheless, our monocular ap-
proach achieves the best results on all foreground metrics
and maintains a competitive inference speed. We note that
TPCV outperforms even most depth-based methods on the
D2-all metric, which demonstrates the high potential of our
3D optical flow for estimating 3D motion.

RAFT3D + TPCV We apply TPCV to RAFT3D.
Specifically, we directly use TPCV to replace the correla-
tion volume in RAFT3D, and change the original direct re-
gression depth change to the estimated depth change ratio.
The experimental results show that the addition of TPCV
significantly improves the performance of SF-all (5.77 →
5.00). However, we found that Fl-fg did not improve. We
think it is because RAFT3D introduced potential semantic
information when estimating the foreground.

3http://www.cvlibs.net/datasets/kitti/eval_
scene_flow.php

5451

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php


Method Input D1-bg D1-fg D1-all D2-bg D2-fg D2-all Fl-bg Fl-fg Fl-all SF-bg SF-fg SF-all

CamLiFlow [9] D+M 1.48 3.46 1.81 1.92 8.14 2.95 2.31 7.04 3.1 2.87 12.23 4.43
RigidMask+ISF [33] D+M 1.53 3.65 1.89 2.09 8.92 3.23 2.63 7.85 3.5 3.25 13.08 4.89
RAFT3D [28] D+M 1.48 3.46 1.81 2.51 9.46 3.67 3.39 8.79 4.29 4.27 13.27 5.77
RAFT3D+TPCV(ours) D+M 1.48 3.46 1.81 1.93 8.79 3.07 2.48 10.19 3.76 3.03 14.82 5.0

Optical expansion [32] M 1.48 3.46 1.81 3.39 8.54 4.25 5.83 8.66 6.3 7.06 13.44 8.12
Binary TTC [1] M 1.48 3.46 1.81 3.84 9.39 4.76 5.84 8.67 6.31 7.45 13.74 8.5
RAFT+TPCV(ours) M 1.48 3.46 1.81 2.29 7.63 3.18 4.53 5.52 4.69 5.34 10.6 6.21

Table 4. State-of-art published methods on KITTI scene flow benchmark. D+M means depth and monocular information, and M means
monocular information. D1, D2, Fl, and SF is the percentage of disparity, optical flow and scene flow outliers. -bg,-fg and -all represent the
percentage of outliers averaged only over background regions, foreground regions and overall ground truth pixels. The best among all are
bolded, and the second best are underlined. Our monocular method performs quite well, not only far ahead of similar monocular methods,
but also outperforming stereo-based methods in foreground scene flow estimation, which proves that the TPCV module can accurately
estimate the 3D motion.

5. Ablation
Setup We conduct more extensive experiments to ver-

ify the advanced nature of the TPCV module. For all ex-
periments, we pre-train with 80K on the Driving dataset
(batch=6, lr = 0.00025) , refinement training on K-160
(batch=6, lr = 0.000125) , and testing on the K-40 dataset.

Method Flowepe MIDerror Memory

RAFT* 1.61 56.2 2.7GB
RAFT+pyramid 1.42 48.9 5.2GB
RAFT+TPCV 1.31 42.8 3.0GB

Table 5. Ablation study on optical flow and motion-in-depth
estimation. Flowepe is the average endpoint pixel error of optical
flow estimation, the lower the better.

Comparison to regression (RAFT*) We first replace
the TPCV in ”RAFT+TPCV” with 4D correlation volume,
at this time, the estimation of scale flow degenerates into di-
rect regression, similar to optical expansion [32]. As shown
in Tab. 5, after replacement, the optical flow error increased
from 1.31 to 1.61 (increases 22.9%), and the motion-in-
depth error increased from 42.8 to 56.2 (increases 31.3%).
It proves that the TPCV module plays a crucial role in ad-
vanced optical flow and motion-in-depth estimation.

Comparison to pyramid matching (RAFT+pyramid)
We also tried a pyramid matching scheme, shown in Fig. 2
(b), which matched the first frame feature with the same
scale feature in the image pyramid of the second frame. we
directly obtain large-scale images through interpolation. As
shown in Tab. 5, the optical flow and motion-in-depth errors
are greatly reduced after introducing the matching strategy,
which once again proves the superiority of the matching
method. However, it is still not as good as the performance
of TPCV (1.42 vs. 1.31; 48.9 vs. 42.8); we believe that it is

mainly due to the construction of false large-scale features,
which makes it difficult to perform correct feature matching
for objects far away from the camera.

6. More experimental results

We followed the experimental procedure of RAFT3D
[28] to conduct more experiments on the sizeable syn-
thetic dataset Flyingthings3D. The results show that after
applying TPCV, the end-to-end 3D error of RAFT3D is re-
duced from 0.062m to 0.048m, and the end-to-end 2D error
dropped from 2.2px to 1.95px. See supplementary materials
for details of results.

Limitation We also conducted experiments on Sintel,
but the baseline results did not improve significantly after
applying TPCV; we believe this is because Sintel contains
many non-rigid scenes, while the conversion between MID
and OE depends on the rigid assumption.

7. Conclusion

We combine optical flow and optical expansion, propos-
ing the concept of 3D optical flow, which can eliminate
the influence of scale change on optical flow matching and
provide motion information in the depth direction. Then
we design a plug-and-play 2D to 3D optical flow upgrade
module: TPCV, associated with a set of supervised learning
strategies. Experimentally, we apply TPCV to the RAFT,
achieving significant performance improvements in 2D op-
tical flow tasks and multiple 3D perception tasks, including
motion-in-depth, scene flow, and time-to-collision.
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