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Abstract

In panorama understanding, the widely used equirectan-
gular projection (ERP) entails boundary discontinuity and
spatial distortion. It severely deteriorates the conventional
CNNs and vision Transformers on panoramas. In this pa-
per, we propose a simple yet effective architecture named
PanoSwin to learn panorama representations with ERP. To
deal with the challenges brought by equirectangular projec-
tion, we explore a pano-style shift windowing scheme and
novel pitch attention to address the boundary discontinu-
ity and the spatial distortion, respectively. Besides, based
on spherical distance and Cartesian coordinates, we adapt
absolute positional embeddings and relative positional bi-
ases for panoramas to enhance panoramic geometry infor-
mation. Realizing that planar image understanding might
share some common knowledge with panorama understand-
ing, we devise a novel two-stage learning framework to
facilitate knowledge transfer from the planar images to
panoramas. We conduct experiments against the state-of-
the-art on various panoramic tasks, i.e., panoramic object
detection, panoramic classification, and panoramic layout
estimation. The experimental results demonstrate the effec-
tiveness of PanoSwin in panorama understanding.

1. Introduction
Panoramas are widely used in many real applications,

such as virtual reality, autonomous driving, civil surveil-
lance, etc. Panorama understanding has attracted increas-
ing interest in the research community [5, 27, 34]. Among
these methods, the most popular and convenient represen-
tation of panorama is adopted via equirectangular projec-
tion (ERP), which maps the latitude and longitude of the
spherical representation to horizontal and vertical grid co-
ordinates. However, the inherent omnidirectional vision re-
mains the challenge of the panorama understanding. Al-
though convolutional neural networks (CNNs) [11, 14, 28]
have shown outstanding performances on planar image un-
derstanding, most CNN-based methods are unsuitable for
panoramas because of two fundamental problems entailed
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Figure 1. (1). Fig. a is how a panoramic image looks, just like
a planar world map, where top/bottom regions are connected to
the earth’s poles; the right side is connected to the left. (2). Our
PanoSwin is based on window attention [19]. Fig. a also shows
the original window partition in dotted orange, where the two
windows in bold orange are separated by equirectangular projec-
tion(ERP). (3). Fig. b shows pano-style shift windowing scheme,
which brings the two departed regions together. (4). Fig. c shows
our pitch attention module, which helps a distorted window to in-
teract with an undistorted one.

by ERP: (1) polar and side boundary discontinuity and (2)
spatial distortion. Specifically, the north/south polar region
in spherical representations are closely connected. But the
converted region covers the whole top/bottom boundaries.
On this account, polar boundary continuity is destroyed by
ERP. Similarly, side boundary continuity is also destroyed
since the left and right sides are split by ERP. Meanwhile,
spatial distortion also severely deforms the image content,
especially in polar regions.

A common solution is to adapt convolution to the spher-
ical space [4, 5, 24, 34]. However, these methods might suf-
fer from high computation costs from the adaptation pro-
cess. Besides, Spherical Transformer [2] and PanoFormer
[22] specially devise patch sampling approaches to remove
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panoramic distortion. However, the specially designed
patch sampling approaches might not be feasible for planar
images. In our experiments, we demonstrate that exploiting
planar knowledge can boost the performance of panorama
understanding.

Inspired by Swin Transformer [19], we propose
PanoSwin Transformer to reduce the distortion of
panoramic images, as briefly shown in Fig. 1. To cope with
boundary discontinuity, we explore a pano-style shift win-
dowing scheme (PSW). In PSW, side continuity is estab-
lished by horizontal shift. To establish polar continuity, we
first split the panorama in half and then rotate the right half
counterclockwise. To overcome spatial distortion, we first
rotate the pitch of the panorama by 0.5π. So the polar re-
gions of the original feature map are “swapped” with some
equator regions of the rotated panorama. For each win-
dow in the original panorama, we locate a corresponding
window in the rotated panorama. Then we perform cross-
attention between these two windows. We name the module
pitch attention (PA), which is plug-and-play and can be in-
serted in various backbones. Intuitively, pitch attention can
help a window “know” how it looks without distortion.

To leverage planar knowledge, some works [24, 25]
proposed to make novel panoramic kernel mimick out-
puts from planar convolution kernel layer by layer. How-
ever, PanoSwin is elaborately designed to be compati-
ble with planar images: PanoSwin can be switched from
pano mode to vanilla swin mode. Let PanoSwin in these
two modes be denoted as PanoSwinp and PanoSwins.
PanoSwinp/PanoSwins can be adopted to process panora-
mas/planar images, details about which will be introduced
in Sec. 3.6. In our paper, PanoSwin is under pano mode
by default. The double-mode feature of PanoSwin makes
it possible to devise a simple two-stage learning paradigm
based on knowledge preservation to leverage planar knowl-
edge: we first pretrain PanoSwins with planar images; then
we switch it to PanoSwinp and train it with a knowledge
preservation (KP) loss and downstream task losses. This
paradigm is able to facilitate transferring common visual
knowledge from planar images to panoramas.

Our main contributions are summarized as follows: (1)
We propose PanoSwin to learn panorama features, in which
Pano-style Shift Windowing scheme (PSW) is proposed to
resolve polar and side boundary discontinuity; (2) we pro-
pose pitch attention module (PA) to overcome spatial dis-
tortion introduced by ERP; (3) PanoSwin is designed to be
compatible with planar images. Therefore, we proposed a
KP-based two-stage learning paradigm to transfer common
visual knowledge from planar images to panoramas; (4) we
conduct experiments on various panoramic tasks, including
panoramic object detection, panoramic classification, and
panoramic layout estimation on five datasets. The results
have validated the effectiveness of our proposed method.

2. Related Work
Vision Transformers. Inspired by transformer architec-
tures [7, 31] in NLP research, Vision Transformers [8, 9,
19, 33] were proposed to learn vision representations by
leveraging global self-attention mechanism. ViT [8] di-
vides the image into patches and feeds them into the trans-
former encoder. Recent works also proposed to inserting
CNNs into multi-head self-attention [32] or feed-forward
network [38]. CvT [32] showed that the padding operation
in CNNs implicitly encodes position. DeiT [29] proposed
a pure attention-based vision transformer. CeiT [38] pro-
posed a image-to-tokens embedding method. Swin trans-
former [19] proposed a window attention operation to re-
duce computation cost. More details will be discussed on
Sec. 3.1. DeiT III [30] proposed an improved training strat-
egy to enhance model performance.
Panorama Representation Learning. Prior works usually
adapt convolution to sphere faces. KTN [24] proposed com-
pensating for distortions introduced by the planar projec-
tion. S2CNN [4] leveraged the generalized Fourier trans-
form and proposed to extract features using spherical filters
on the input data, in which both expressive and rotation-
equivariance were satisfied. SphereNet [5] sample points
uniformly in the sphere face to enable conventional con-
volutions. SpherePHD [16] used regular polyhedrons to
approximate panoramas and projected panoramas on the
icosahedron that contains most faces among regular poly-
hedrons. Several works [6, 10, 34] also sought to achieve
rotation equivariance with graph convolution.

Recent works took advantage of transformer architecture
[31] to learn panorama features. PanoFormer [22] divided
patches on the spherical tangent domain as a vision trans-
former input to reduce distortion. Spherical transformer [2]
uniformly samples patches as transformer input and pro-
poses a module to alleviate rotation distortion. However,
these works mainly target panoramas. Therefore, it might
be unable to transfer planar knowledge to panoramic tasks.

3. Method
A panorama in equirectangular form is like the planar

world map in our daily life. Each pixel of the panorama
can be located by a longitude u and a latitude v: (u, v), u ∈
[−π, π), v ∈ [−0.5π, 0.5π]. Compared with Swin Trans-
former [19], the main novelty of PanoSwin lies in three as-
pects: pano-style shift windowing scheme, pitch attention
module, and KP-based two-stage learning procedure.

3.1. Preliminaries of Swin Transformer

ViT [8] divides an image into patches and adopts a CNN
to learn patch features. These patch features are then viewed
as a sequence and fed into a transformer encoder. Although
ViT [8] achieves good performances in various vision tasks,
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Figure 2. Pano-style/original shift windowing scheme comparison. The arrowed line in orange shows each conversion step.
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Figure 3. Top: our way to obtain a rotated window and perform
pitch attention: (a) The pitch of the panorama is rotated by 90◦;
(b) we sample a rotated window in the rotated panorama for each
original window; (c) window-wise attention is performed between
old and rotated windows. The squares, distinguished by color,
show each window conversion step. Bottom: detailed step (c).

it suffers from high computation costs from global atten-
tion. Thus, Swin Transformer [19] proposed local multi-
head self-attention (W-MSA), where image patches were
further divided into small windows. Attention is only per-
formed within each window. To enable information interac-
tion among different windows, Swin Transformer [19] in-
troduced Shifted Window-based Multi-head Self-Attention
(SW-MSA), where the image is horizontally and vertically
shifted to form a new one. As shown in Fig. 2-(2), W-
MSA/SW-MSA is performed within each red/blue win-

dows. However, shift windowing can bring distant pixels
together. So attention masks are required in this process.
Besides, Swin Transformer discards absolute positional em-
beddings but adopts relative position bias [12,13,19], which
specifies the relative coordinate difference between two
patches within a window, instead of directly identifying the
x/y coordinate [31].

3.2. Pano-style Shift Windowing Scheme

The problem of boundary discontinuity is brought by
ERP. In a panorama, the left side (u ≈ −π) and right side
(u ≈ π) are indeed connected. Also, all pixels around the
north/south pole (v ≈ −0.5π/0.5π) are adjacent. Tradi-
tional CNNs cannot deal with boundary discontinuity. The
original shift windowing scheme in Swin Transformer [19]
(Fig. 2-(2)) might capture wrong geometry continuity as
well. Therefore, we propose a pano-style shift windowing
scheme (PSW) and a pano-style shift windowing multi-head
self-attention module (PSW-MSA), as shown in Fig. 2-(1).
PSW can well capture the continuity around both side and
polar boundaries of the panorama. There are three steps:
(1) We horizontally shift the image, which enables the con-
tinuity around the left and right sides; (2) we split the im-
age in half and rotate the right half by π counterclockwise,
which enables the continuities around north pole regions;
(3) we vertically shift the image, which enables the conti-
nuities around south pole regions. Besides, pixels in each
shifted window are connected, so no attention mask is re-
quired in our shift windowing scheme, further simplifying
the attention process.

3.3. Panoramic Rotation

Before going further, we need to introduce an operation
that rotates the north pole of the panoramic image to a target
coordinate. We define it as function R, as shown in Fig. 5.
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Figure 4. a-f.Detection visualization on 360-Indoor test set, where rectangular boxes are converted to spherical plane [3]. g-h.Layout pre-
diction visualization on Stanford 2D-3D test set, green/lightblue curves shows the prediction/the groundtruth. i-j are layouts reconstructed
from prediction of g-h.

Let the north pole of the panorama be P0 = (0,−0.5π).
Given a target coordinate P1 = (u1, v1) that P0 will be
rotated to, for a pixel P = (u, v), we generate a new co-
ordinate P ′ = (u′, v′) by P ′ = R(P, P1). By defining
a Cartesian coordinate transition Sph(P ) = (x, y, z) for a
given pixel P = (u, v):

x = sin(u) cos(v), y = cos(u) cos(v), z = − sin(v), (1)

we can explain the function R in a formula:

v′ = 2asin(
1

2
||Sph(P )− Sph(P1)||2)− 0.5π,

Pa⊗̂Pb : Sph(Pa)⊗ Sph(Pb),

u′ = Angle(P ⊗̂P1, P0⊗̂P1, (P0⊗̂P1)⊗ P1),

(2)

where : stands for “define”; ⊗ is cross product.
Angle(x1,x2,x3) gives the angle between vector x1 and
vector x2, ranging from −π to π; the counterclockwise di-
rection is given by x3, that is, Angle(x3,x2,x3) < π. It
can be accomplished by arc cosine. To obtain a rotated
panorama, we first calculate each target pixel coordinate by
Eq. (2) and then sample a new panorama. Note that pitch ro-
tations [26] and horizontal shifting [27] are special cases of
R when u′ = 0 and v′ = 0. Also, R could be an approach
to augment a panoramic image by setting P1 randomly.

Computation analysis: If we only consider multiplica-
tion operation, the function R consumes one || · ||2, three
Sph, and four ⊗. Since resultant v′/u′ should be scaled to
image height/width, bilinear interpolation (BI-INT) is also
required. Define a constant K = Ω(|| · ||2) + 3Ω(Sph) +
4Ω(⊗) + Ω(BI-INT) = 3 × 1 + 2 × 3 + 6 × 4 + 8 = 41.
Then, given a panorama of H×2H size, we can give a lower
bound for the computational complexity Ω(R) = 2KH2.

3.4. Pitch Attention Module

Spatial distortion might severely hamper model perfor-
mances, especially around polar regions. To target this
problem, we propose a pitch attention module (PA). The

workflow of the pitch attention module is shown in Fig. 2.
Given a panorama I0 of size H × 2H , in step (a), we ro-
tate the pitch of I0 by 0.5π and obtain I1. That is, for each
P1 ∈ I0, we obtain P ′ ∈ I1 by P ′ = R((−π, 0), P1). Af-
ter the pitch rotation, the polar (resp. equator) regions of I0
are transformed to equator (resp. polar) regions of I1.
I0 is partitioned into windows like the W-MSA block in

Swin transformer. Step (b) in Fig. 2 shows the way that we
obtain the corresponding window in I1. For each window
in I0, we locate the rotated window center in I1, and then
sample a new square window in I1. At last, we perform
cross attention between the old and new windows, where
the old ones are the query and value, while the new ones are
the key. The other details are the same as a W-MSA block
of Swin transformer.

Computation analysis: Let the panorama of H× 2H×
C size be sliced into h×2h patches and the window size be
M , we can give the computational complexity lower bound:
Ω(PA) = Ω(R) + Ω(W-MSA) + Ω(BI-INT) × 2H2 =

2(K + 8)H2 + 8h2C2 + 4M2h2C. Since we have H =
Mh, Ω(PA) = 8h2C2+(4C+2K+16)M2h2, where K =
41. When C is large (e.g., C = 512 as produced by many
backbones), extra computational complexity introduced by
pitch attention can be negligible.

In our network design, we insert a pitch attention mod-
ule to the last of each backbone block, as shown in Tab. 3.
Although pitch attention can enable interaction between ad-
jacent windows, it does not replace PSW-MSA because (1)
the interaction is not fair for all patches; (2) pitch attention
brings more computation than PSW-MSA.

An alternative to our pitch attention module might be
to adopt gnomonic projection [5] to generate tangent-plane
windows, which are undistorted. However, (1) computation
of gnomonic projection depends on viewpoints. It might be
difficult to parallelize gnomonic projection for each window
on GPU and therefore is more time-consuming; (2) we con-
duct experiments and find that tangent-plane windows yield
no performance gain against pitch attention.
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Algorithm 1: two-stage learning paradigm.
Input: a downstream task loss LDS ; a randomly initialied PanoSwin model P .
Output: A trained PanoSwin model.

1 Aplan ← a set of planar augmentation methods, e.g., random resizing, cropping and rotation;
2 Apano ← a set of pano-compatible augmentation methods, e.g., random panoramic rotation, flipping, color jittering;
3 Define train(model, loss, augs) as a function that trains model by optimizing loss and enables augmentation

approaches specified by augs;
4 T ← train(model = Ps, loss = LDS , augs = Aplan ∪ Apano);
5 S ← T ; fix(T ); fix(αi,j of S); S ← train(model = Sp, loss = LDS + LKP , augs = Apano);
6 return S

(3)

(1)

(2)

North Pole

target coordinate

Figure 5. Illustration of panoramic rotation to target position
(0.3π,−0.4π): (1)/(2): the original/rotated panoramic image. (3):
north pole rotation in sphere space. In formula, the figure shows
P ′ = R(P, (0.3π,−0.4π)).

3.5. Pano-style Positional Encodings

For relative positional biases, since the spherical dis-
tance between two patches in different windows varies
largely by the window locations, we condition the relative
positional biases on the great-circle distance:

dc =αi,j sin
2(
vj − vi

2
)+

αi,j cos(vj) cos(vi) sin
2(
uj − ui

2
) + βi,j ,

(3)

where αi,j is great-circle bias and βi,j is planar bias, both
learnable. They are looked up in a table, just like [19].

As for absolute positional embeddings, although Liu
et. al. [19] show that relative positional biases are enough
to reveal patch-wise geometric relations; therefore, absolute
positional embeddings might not be necessary. However,
panoramic geometric relations can be complicated. For ex-
ample, on the same latitude, the left of a pixel can also
be its right. Positional encodings based on Cartesian co-
ordinates can strengthen pixel-level geometric information.
We condition the absolute positional embeddings by both

longitudes/latitudes and the sphere Cartesian coordinates.
Several following fully connected layers encode x, y, z, u, v
into de-dimensional absolute positional embeddings, where
de is the patch embedding dimension. Then the positional
embedding is added to the patch embedding.

3.6. Two-Stage Learning Paradigm

We devised a two-stage learning paradigm, as shown by
Alg. 1. We call the first stage the planar stage and the sec-
ond the panoramic stage. The planar stage learns planar
knowledge, while the panoramic stage transfers common
knowledge from planar images to panoramas.

The planar stage views the panorama as a planar image
by various augmentation. Regular planar images can also be
fed in this stage, but we try not to introduce additional train-
ing samples for a fair comparison. Let LDS be the down-
stream task loss, e.g., a classification loss, or a bounding
box regression loss. To enable PanoSwin to process planar
images, we switch it to PanoSwins: (1) we let I1 ← I0 in
Sec. 3.4; (2) absolute positional embeddings are disabled;
(3) great-circle bias αi,j is set to 0 in Eq. (3). We let the
obtained model be a teacher net T .

In the panoramic stage, we initialize a student net S
identical to T . Then we fix T and the planar bias βi,j

of S(Eq. (3)). Then we enable all previously disabled
panoramic features of S and train S with panoramas. Since
little distortion/discontinuity is introduced to central re-
gions, we hope that S can mimic central signals of T .
For this purpose, we introduce a KP loss LKP to preserve
the pretrained knowledge in central regions simply using a
weighted L2 loss. Given a panorama feature map x, we
explain LKP in formula:

LKP =
1∑N
i wi

N∑
i

wi||A(S(x))(i) − Ts(x)(i)||22, (4)

where wi = cos2(vi) cos
2( 12ui) and vi/ui is the lati-

tude/longitude of pixel i; A is an adaptation convolutional
layer with a kernel size of 1× 1. The panoramic stage opti-
mizes LDS + wKPLKP and only allows augmentation ap-
proaches compatible with panoramas, including panoramic
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augmentation like random panoramic rotation and non-
geometric augmentation like random color jittering. wKP

is a weight for LKP that starts at 1 and then decays to 0. In
the remaining paper, we will denote a PanoSwin obtained
by the two-stage learning paradigm as PanoSwin+.

There could be many other knowledge distillation ap-
proaches to improve knowledge preservation performance
for specific tasks [20,24,35], but LKP shows a general way
to transfer planar knowledge to panoramic tasks.

original images panomas generated by ERP projection

Figure 6. Cases of SPH-MNIST (top) and SPH-CIFAR10
(bottom)

No. Backbone error↓ para.
M1 SpherePHD [16] 5.92 57k
M2 SphericalTrans. [2] 9.57 60k
M3 SphericalTrans-(Ext.) [2] 4.91 60k
M4 SGCN [34] 5.58 60k
M5 S2CNN [4] 6.97 58k
M6 SwinT13 [19] 4.01 67k
M7 PanoSwinT12 3.08 66k
M8 GCNN [10] 17.21 282k
M10 SphereNet (BI) [5] 5.59 196k
M11 PanoSwinT8 2.25 191k
M12 VGG [23]+KTN [24] 2.06 294M
M13 SwinT [19] 1.53 28M
M14 PanoSwinT92 1.21 28M
M15 PanoSwinT 1.18 30M
M16 PanoSwinT+ 1.15 30M

Table 1. SPH-MNIST classification result comparison.

4. Experiments
4.1. Experimental Settings

We conduct experiments on three tasks: panoramic clas-
sification, panoramic object detection, and panoramic lay-
out estimation. Considering existing works on panorama
representation learning vary a lot in model size, we de-
sign different PanoSwin backbones for a fair comparison
in terms of model parameters, as shown in Tab. 3. To bet-
ter remove spatial distortion, three convolutional layers are

No. Backbone acc↑ para.
C1 SpherePHD [16] 59.20 57k
C2 SphericalTransformer [2] 58.21 60k
C3 SGCN [34] 60.72 60k
C4 S2CNN [4] 10.00 58k
C5 SwinT13 [19] 60.46 67k
C6 PanoSwinT12 62.24 66k
C7 SwinT [19] 72.64 28M
C8 PanoSwinT92 74.50 28M
C9 PanoSwinT 74.84 30M
C10 PanoSwinT+ 75.01 30M

Table 2. SPH-CIFAR10 classification result.

adopted to capture a larger reception field so as to learn bet-
ter patch embedding.

For panoramic classification, we conduct experiments
on SPH-MNIST and SPH-CIFAR10 datasets. SPH-MNIST
and SPH-CIFAR10 are synthetic panoramic image datasets,
as shown in Fig. 6, where the images of MNIST and
CIFAR are projected with 120◦ of horizontal and verti-
cal FOV. The resultant panoramas are resized to 48 ×
96. We set learning rate lr = 0.001 for light-weighted
SwinT13, PanoSwinT8, and PanoSwinT12. For SwinT13,
PanoSwinT12 and PanoSwinT, we set lr = 0.0001. We
adopt adam optimizer and batch size b = 48 and train the
model for 100/500 epochs in the planar/panoramic stage.

For panoramic object detection, we conduct exper-
iments on the WHU street-view panoramic dataset [36]
(StreetView in short) and 360-Indoor [3]. The object de-
tection performance is evaluated by mean average precision
with IOU=0.5 (mAP@0.5). (1) StreetView contains 600
street-view images, in which there are 5058 objects from
four object categories. The training/test set split strictly fol-
lows [36], where one-third of images are used for training
and the rest for testing. (2) 360-Indoor contains 3335 indoor
images from 37 image categories, in which there are 89148
objects from 37 object categories. The training/test set split
strictly follows [3]; 70% images are used for training and
the rest for testing. Following [3], we train our model us-
ing conventional bounding boxes, that is, xywh format. We
adopt FasterRCNN+FPN [17,21] as detector. One different
setting is that, since PanoSwin can overcome side discon-
tinuity, we allow the bounding box to cross the image side
boundary by padding the pixels from the other side when
training PanoSwin. We set so for Swin as well for a fair
comparison. We set learning rate lr = 0.0002, batch size
b = 4. We develop the detection framework based on the
MMDetection toolbox [1]. The model is trained for 50/100
epochs in the planar/panoramic stage.

For panoramic room layout estimation, following
HorizonNet [26], we train the model on the LayoutNet
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structure alias embedding dim structure para.
PanoSwinT8 8 [W, PSW, PA], PM, [W, PSW, PA], PM, [W, PSW, PA], PM, [W, PSW] 191k

PanoSwinT12 12 [W, PSW, PA], PM, [W, PSW] 66k
SwinT13 [19] 13 [W, PSW, W], PM, [W, PSW] 67k
PanoSwinT92 92 [W,PSW,PA],PM,[W,PSW,PA],PM,[(W,PSW)*2,W,PA],PM,[W,PSW] 28M

SwinT [19] 96 [W,SW],PM,[W,SW],PM,[(W,SW)*3],PM,[W,SW] 28M
PanoSwinT 96 [W,PSW,PA],PM,[W,PSW,PA],PM,[(W,PSW)*2,W,PA],PM,[W,PSW] 30M

Table 3. PanoSwin architecture variants. W/SW: regular/shift windowing attention [19]. PSW: pano-style shift windowing attention. PA:
pitch attention module. PM: patch merging [19]. ()*n denotes repeating n times. Refer to Supplementary for more details.

dataset [39], which is composed of PanoContext and the
extended Stanford 2D-3D, consisting of 500 and 571 anno-
tated panoramas respectively. Following HorizonNet [26],
we train our model on the LayoutNet training set and
test it on Stanford 2D-3D test set. We ONLY enable the
panoramic stage in this task.

No. Backbone mAP@0.5↑ para.
I1 R50 [11] + COCO 33.1 72M
I2 SwinT [19] + COCO 33.8 45M
I3 PanoSwinT92 + COCO 35.6 45M
I4 R50 [11] 20.6 72M
I5 R50 [11] + SC [5] 21.1 72M
I6 SwinT [19] 24.0 45M
I7 PanoSwinT92 28.0 45M
I8 PanoSwinT 28.6 47M
I9 PanoSwinT+ 29.4 47M

Table 4. Object detection performance comparison on 360-Indoor.
R50 stands for ResNet50 [11]. SC stands for SphereConv [5].
COCO denotes a pretraining procedure on MSCOCO [18].

No. Backbone mAP@0.5 ↑ para.
S1 VGG [23]+SCNN [37] 64.1 > 77M
S2 R50 [11] 68.2 72M
S3 R50 [11]+SC [5] 69.4 72M
S4 SwinT 72.8 45M
S5 PanoSwinT92 75.4 45M
S5 PanoSwinT+ 75.7 47M

Table 5. StreetView object detection performance comparison

4.2. Main Results

For panoramic classification, the results on SPH-
MNIST/SPH-CIFAR10 are reported in Tab. 1/Tab. 2. Two
important observations are: (1) Swin transformer can
achieve results comparable to SOTA works with a similar
number of model parameters, e.g., M6 v.s. M4, revealing
that Swin is more generalizable than CNNs; (2) PanoSwin

No. Backbone 3DIoU↑ CE↓ PE↓ para.
P1 R50 [11] 78.12 0.90 2.91 82M
P2 R50 [11] + SC [5] 77.64 0.90 2.94 82M
P3 R34 [11] 77.86 0.92 3.01 33M
P4 SwinT [19] 78.00 0.94 3.05 44M
P5 PanoSwinT92 78.10 0.92 2.99 44M
P6 R50 [11]+ IN 84.66 0.66 2.04 82M
P7 R34 [11] + IN 83.88 0.68 2.14 33M
P8 SwinT [19] + IN 84.04 0.66 2.07 44M
P9 PanoSwinT92 + IN 84.11 0.65 2.00 44M

P10 PanoSwinT + IN 84.21 0.65 1.98 46M

Table 6. Layout estimation comparison on Stanford-2D3D test
set. “+ IN” denotes ImageNet [15] pretraining. CE/PE stands for
corner error/pixel error.

always beats Swin, e.g., M7 v.s. M6, M14 v.s. M13, indi-
cating that PanoSwin can better learn panorama features.

Furthermore, on SPH-MNIST, we also test the trained
SwinT13/PanoSwinT12 model on mnist test sets projected
on the equator and polar regions. For SwinT13(M6), the test
error rises from 2.94 to 5.41. For PanoSwinT12(M7), the
test error rises from 2.87 to 3.32. The results further show
that PanoSwin is more robust in handling spatial distortion.

For panoramic object detection, 360-Indoor and
StreetView [36] are two real-world datasets, making the re-
sults more convincing. The results on these two datasets
are reported in Tab. 4 and Tab. 5, respectively. The
performance gain of PanoSwinT+ against SwinT is even
larger, e.g. 5.4 on 360-Indoor. In addition, we inves-
tigate the detection performance of low-latitude regions
against high-latitude regions. Viewpoints of low-latitude
regions range from −30◦ to 30◦, while viewpoints of
the high-latitude region range from ±60◦ to ±90◦). We
find out that mAP@50 drops by 1.9/3.5/2.0/5.8 using
PanoSwinT92/SwinT/ResNet50+SC/ResNet50. It reveals
that (1) attention mechanisms are better than CNN at han-
dling spatial distortion; (2) our proposed PanoSwin is the
most robust to deal with polar spatial distortion.

Results on panoramic layout estimation are reported in
Tab. 6. Fig. 4 visualizes the layouts estimated by PanoSwin.
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PanoSwinT92 outperforms other backbones but ResNet50.
Although HorizonNet+PanoSwinT92 has almost only half
parameters as HorizonNet+ResNet50 does, PanoSwinT92
still outperforms ResNet50 in corner error and pixel error
with ImageNet [15] pretraining, and is only slightly ex-
ceeded by ResNet50 without pretraining. The results con-
tradict the larger advantage of PanoSwin in object detec-
tion. We conjecture that this is because (1) layout estima-
tion needs pixel-level understanding more than object-level
understanding. So spatial distortion is no longer a big prob-
lem; (2) layout estimation depends on wall corners instead
of polar regions. So polar boundary discontinuity is not im-
portant; (3) HorizonNet designs a Bi-LSTM to overcome
side boundary discontinuity. Therefore, PanoSwin shows
little advantage in layout estimation performance.

Tab. 7 reports inference speed. It shows that (1) pitch at-
tention brings non-negligible computation (PST v.s. PSTs);
(2) PanoSwin is efficient when compared against other
panoramic backbones (PST v.s. KTN/SphereNet), which is
because PanoSwin introduces few non-parallelizable opera-
tions. On the contrary, many existing works introduce oper-
ations that cannot be parallelized. For example, KTN [24]
adopts different convolutions of various kernel sizes in dif-
ferent latitudes, resulting in a time-consuming “for” loop in
forwarding. While SphereNet [5] also takes a long time to
calculate uniform sampling coordinates for each convolu-
tion.

PST PSTs SwinT KTN [24] PST8 SN
para. 30M 30M 28M 294M 191k 196k
CPU↓ 1.207 1.018 0.982 5.136 0.186 0.682
GPU↓ 0.042 0.015 0.010 3.842 0.021 0.025

Table 7. Single image(512x1024 size) inference speed comparison
(second). PST/SN is short for PanoSwinT/SphereNet [5].

No. alternative SM↓ 3I↑
A1 only planar stage 1.76 26.8
A2 only panoramic stage 1.18 25.9
A3 PSW→W 1.43 28.0
A4 PA→W 2.01 27.9
A5 swin rel. pos. [19] 1.31 28.3
A6 remove abs. pos. 1.19 29.0
A7 wi ← 1 in LKP 1.26 27.6
A8 w/o LKP 1.18 28.6
A9 full model+ 1.15 29.4

Table 8. Ablation of SPH-MNIST classification and 360-Indoor
object detection using PanoSwinT. Column “SM”/“3I” reports test
error on SPH-MNIST/mAP@50 on 360-Indoor. “swin rel. pos.”
denotes replacing our proposed pano-style relative position biases
with the original swin-style relative biases [19].

4.3. Ablation Study

We conduct ablation experiments on SPH-MNIST clas-
sification and 360-Indoor object detection. The results are
reported in Tab. 8. On the one hand, a general difference
revealed in the results between these two datasets is that the
360-Indoor dataset is more sensitive to our proposed mod-
ules than SPH-MNIST, e.g., setting A2, A6, and A8. We
consider that this is because SPH-MNIST is larger but sim-
pler than 360-Indoor. Therefore some modules like planar-
stage training, pano-style absolute positional embeddings,
and LKP only result in a marginal performance gain.

On the other hand, we have observations for different
modules: (1) A1 and A2 show that both the planar stage and
panoramic stage are necessary, implying that planar knowl-
edge is also helpful for panorama representation learning.
Indeed, various planar augmentation approaches can be
very effective in improving model performance. But some
of the existing works [2, 5] might not emphasize the im-
portance of planar knowledge. (2) A3 and A4 validate
effectiveness of PSW and PA. Fig. 4.d-f also reveals so. De-
tection on the table and the chair on the left/right side shows
that PSW effectively bridges side discontinuity. Detection
on the large white table in the middle bottom implies that
PA can solve spatial distortion. (3) A5 and A6 demon-
strate the effectiveness of absolute position encodings and
relative position biases. (4) A8 shows that central knowl-
edge preservation accomplished by LKP can well improve
model performance. While A7 shows that naive L′

KP even
results in a performance drop, implying that polar and side
planar knowledge from the teacher net T is not reliable.

5. Conclusion

Spatial distortion and boundary discontinuity are two fun-
damental problems in panorama understanding. In this pa-
per, we propose PanoSwin to learn panorama features in the
ERP form, which is simple and fast. In PanoSwin, we first
propose a pano-style shift windowing scheme that bridges
discontinued boundaries. Then a novel pitch attention
module is proposed to overcome spatial distortion. More-
over, to transfer common knowledge from planar images to
panoramic tasks, we contribute a KP-based two-stage learn-
ing paradigm. Experiments demonstrate that, without intro-
ducing many extra parameters and computation over Swin
[19], PanoSwin achieves SOTA results in various tasks, in-
cluding panoramic classification, panoramic object detec-
tion, and panoramic layout estimation. In the future, we
will further extend PanoSwin to more tasks like panoramic
segmentation and panoramic depth estimation.
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